
Volume 2, No. 3, May-June 2011

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 595

ISSN No. 0976-5697

Implementing ARM7TDMI-S through EXPRESSION ADL

 Veena Ramnani
Department of Computer Science

Mohanlal Sukhadia University Udaipur,

Rajasthan, India

ramnaniv@yahoo.com

Dr. Manoj Kumar Jain*

Department of Computer Science

Mohanlal Sukhadia University Udaipur,

Rajasthan, India

manoj@cse.iitd.ernet.in

Abstract: The embedded systems designs critically require a fast and automated architecture exploration methodology. Furthermore, shrinking

time-to-market has created an urgent need to design hardware and software in parallel. Architecture Description Languages (ADLs) are

effectively used for designing Application Specific Instruction set Processors (ASIP).This paper focuses on EXPRESSION ADL.

EXPRESSION utilizes MIPS 4K like processor called acesMIPS and supports a mixed behavioral/structural representation of the architecture.It

can capture a processor- memory architecture description and generate a compiler and simulator automatically from this description the purpose

of this paper is to simulate ARM7TDMI-S through EXPRESSION and in the process analyze the framework for it structural and instruction set

capabilities. It was found that EXPRESSION has several shortcomings and is not able to simulate ARM7TDMI-S.

Keywords: Retarget able Compiler, ASIP, Design Space Exploration, ADL, EXPRESSION tool-kit.

I. INTRODUCTION

ASIP design (Jain, M.K. et al 2005, Jain, M.K. et al

2007) allow a wide range of memory organizations and

hierarchies to be explored and customized for the specific

embedded application. The ASIP designer is faced with the

task of rapidly exploring and evaluating different

architectural and memory configurations. Furthermore,

shrinking time-to-market has created an urgent need to

automatically generate compiler/simulator tool-kit.

Retargetable compilers are a promising approach for

automatic compiler generation. A compiler is said to be

„retargetable‟ if it can be used to generate code for different

processor architectures by reusing significant compiler

source code. This has resulted in a paradigm shift towards a

language-based design methodology using Architecture

Description Language (ADL) for embedded System-on-

Chip (SOC) optimization, exploration of architecture

/compiler co-designs and automatic compiler/simulator

generation.

An ADL (Mishra, P. et al 2005) for design space

exploration should capture both structural and behavioral

aspects of the system. In a mixed-level ADL the system

designer is able to make structural changes like varying the

number of functional units, register files, data paths etc and

behavioral changes by varying the Instruction Set by

adding/deleting operations, changing data types etc.

EXPRESSION follows a mixed-level approach to enable

changes to structure or Instruction Set (IS) or the memory

subsystem.

II. RELATED WORK

Architecture description languages (ADL) (Mishra, P.

and Dutt, N., 2005) are used to perform early exploration,

synthesis, test generation, and validation of processor-based

designs. ADLs are used to specify programmable

architectures. The specification can be used for generation

of a software toolkit including the compiler, assembler,

simulator and debugger. The application programs are

compiled and simulated, and the feedback is used to modify

the ADL specification with the goal of finding the best

possible architecture for the given set of applications. The

ADL specification can also be used for generating hardware

prototypes under design Constraints such as area, power and

clock speed. Several researches have shown the usefulness

of ADL-driven generation of functional test programs and

test interfaces. The specification can also be used to

generate device drivers for real-time operating systems.

Retargetable compilers MSSQ, RECORD, CHESS,

EXPRESS, SPAM, LISATek employ ADLs to achieve

retargetability. Traditionally, the ADLs are classified as

behavioral, structural or mixed level, depending on whether

they describe the Instruction Set or structure of the processor

or both.

MIMOLA (Leuper, R. and Marwedel, P.1998)

primarily captures the structure of the processor. The MSSQ

and RECORD compilers use MIMOLA for retargetability.

MIMOLA does not support cycle-accurate simulator and

does not fully cover the memory hierarchy. The RECORD

(Leuper, R. and Marwedel, P.1997) compiler does not

include standard optimization techniques and also its scope

is limited to DSP architectures. MSSQ‟s (Leupers, R. et al

1994) architecture scope is limited to micro programmable

controllers and it lacks explicit description of processor

pipelines which may result in poor code quality. MIMOLA

descriptions are generally very low-level and laborious to

write.

nML and ISDL are examples of behavioral ADLs. nML

is the basis of retargetability offered by the

CHESS/CHECKERS environment .In nML (Mishra, P. and

Dutt, N., 2005), the processor‟s instruction set is described

as an attributed grammar with the derivations reflecting the

set of legal instructions. However, nML does not support

multi-cycle or multi-word instructions. ISDL (Hadjiyiannis,

G. et al 1997) does not support parallelism, which makes

code generation for complex architecture like DSPs and

VLIW machines difficult.

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June ,2011,595-599

© 2010, IJARCS All Rights Reserved 596

FLEXWARE, MDes, LISATek and EXPRESSION

have a mixed-level structural/behavioral representation

(Halambi, A., et al 2001). FLEXWARE is not able to handle

the resource conflict between parallel/pipelined instructions

and also explicit specification of memory subsystem is not

possible. MDes is used in the Trimaran framework

.Trimaran provides parameterized ILP architecture called

HPL-PD. It has fixed instruction set, but numerous

parameters that can be adapted (e.g.

registers,FUs,latencies,etc.). There is a limit, however, to the

extent the machine can be modified, since the machine must

remain in the HPL-PD space. MDes permits description of

traditional memory hierarchy (register files, caches, etc) and

it cannot handle on-chip DRAM, frame buffers, partitioned

memory address spaces,etc.

LISATek (Hohenauer, M. et al 2004) processor

employs Language for Instruction Set Architecture (LISA)

that describes the behavior, the structure and the I/O

interface. LISATek offers high flexibility at the expense of

additional manual compiler description effort.

Retargetability in EXPRESS is achieved by EXPRESSION

ADL which is capable of describing behavior and structure

of the processor. It integrates the structural and instruction-

set description and provides support for novel memory

subsystems. SPAM uses OLIVE as its machine description

language. OLIVE only supports description of Instruction

Set Architecture (ISA). It does not capture the pipeline

timing and irregular data paths. The comparison of the

above ADLs has been given in (Jain, M.K. and Ramnani,

V., 2007). It is observed in the above ADLs that there is a

trade off between retargetability effort and design space

explored . We have chosen EXPRESSION as the base of our

research because it has the mixed-level approach, the

retargetability efforts are less as it has a GUI and it covers a

considerable design space.

III. EXPRESSION

The EXPRESSION ADL (Grun, P. et al 1998, Halambi,

A. et al 1999) follows a mixed-level approach (behavioral

and structural) to facilitate automatic software toolkit

generation, validation, HDL generation, and design space

exploration for a wide range of programmable embedded

systems. The ADL captures the structure, behavior, and

mapping (between structure and behavior) of the

architecture. The ADL captures all the architectural

components and their connectivity as a net list. It considers

four types of components: units (e.g., ALUs), storages (e.g.,

register files), ports, and connections (e.g., buses). It

captures two types edges in the net list: pipeline edges and

data transfer edges. The pipeline edges specify instruction

transfer between units via pipeline latches, whereas data

transfer edges specify data transfer between components,

typically between units and storages or between two

storages. It has the ability to capture novel memory

subsystem.

The behavior is organized into operation groups, with

each group containing a set of operations having some

common characteristics. Each operation is then described in

terms of its opcode, operands, and behavior. The mapping

functions map components in the structure to operations in

the behavior. It defines, for each functional unit, the set of

operations supported by that unit (and vice versa).

The EXPRESSION tool-kit comes with a GUI (V-SAT)

(Khare, A. et al 1999) front-end to schematically enter the

architecture connectivity and instruction set description. The

GUI back end converts the schematic description and

instruction set description into EXPRESSION ADL format.

Figure 1 : Base Architecture

A snap shot of the base architecture acesMIPS (Biswas,

P. et al 2003) is shown in Figure 1. It has five pipeline

stages:

Fetch, Decode, Operand Read, Execute and Writeback.

The Operand Read and Execute stages have five parallel

pipeline paths: ALU1, ALU2, Floating-Point, Branch, and

Load Store. It has two register files: integer and float. It has

two level of cache hierarchy with common L2 for both data

and instruction. It also uses SRAM as a scratch-pad

memory.

IV. EXPERIMENTATION WITH EXPRESSION

FRAMEWORK

We present in this section, some of the exploration

directions, which are deemed to be important by a system

designer. The benchmarks that were used for testing the

EXPRESSION framework comprise the following:

a. Livermore Loops. (Benchmarks/LLs)

b. Multimedia kernels. (Benchmarks/MMs)

We present here the result of running the Livermore

Loops and Multimedia kernels on the acesMIPS architecture

and performing the architecture explorations discussed in

the next sub sections.

A. Adding a Parallel Pipeline path

Figure 2: Change in performance after adding a parallel pipeline path

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June ,2011,595-599

© 2010, IJARCS All Rights Reserved 597

Our first experiment demonstrates the impact of adding

a parallel pipeline path comprising of the ALU3_READ and

ALU3_EXECUTE units.

(OpReadUnit ALU3_READ

(CAPACITY 1)

(INSTR_IN 1)

(INSTR_OUT 1)

(TIMING (all 1))

(OPCODES ALU_Unit_ops)

(LATCHES (OUT Alu3ReadExLatch))

(LATCHES (IN DecAlu3ReadLatch))

(PORTS Alu3ReadPort1 Alu3ReadPort2)

)

(OperationLatch Alu3ReadExLatch

)

(UnitPort Alu3ReadPort1("_READ_")

(ARGUMENT _SOURCE_1_)

(CAPACITY 1))

(UnitPort Alu3ReadPort2("_READ_")

(ARGUMENT _SOURCE_2_)

(CAPACITY 1))

(ExecuteUnit ALU3_EX

(CAPACITY 1)

(INSTR_IN 1)

(INSTR_OUT 1)

(TIMING (all 1))

(OPCODES ALU_Unit_ops)

(ARGUMENT _UNIT_) (LATCHES (OUT

Alu3ExWbLatch))

(LATCHES (IN Alu3ReadExLatch))

)

(OperationLatch Alu3ExWbLatch

)

)

It can be observed in Figure 2 that the cycle count in

some of the benchmarks increases after a parallel path is

introduced .Adding a parallel path should increase the

performance of the benchmarks i.e. the cycle count should

decrease or should remain the same. On the contrary the

cycle count has increased which is due to poor scheduling in

EXPRESSION.

B. Introducing a Pipeline Stage

Figure 3: Change in Performance after Introducing a new Pipeline Stage

In Figure 3 we have studied the impact of adding a new

pipeline stage (Tomiyama, H. et al 1999) consisting of

“mult” operation.

(SimpleStageUnit Alu2_S2

(CAPACITY 1)

(INSTR_IN 1)

(INSTR_OUT 1)

(TIMING (mult 1))

(OPCODES MultGroup)

(ARGUMENT _UNIT_) (LATCHES (OUT

Alu2_S2WbLatch))

(LATCHES (IN Alu2ExWbLatch))

)

(OperationLatch Alu2_S2WbLatch

)

)

The benchmarks were analyzed for parallelization using

affine partitioning (Lim, A.2001). It is found that the

benchmarks which can be parallelized, have not benefited

from the new pipelined stage as is expected.

C. Adding a MAC Operation

The MAC (multiply and accumulate) operation is a

combination of three simple generic machine operations –

IMUL, MFLO and IADD, described in the EXPRESSION

generic machine model in (Biswas, P. 2003).

(

(GENERIC

(

(IMUL DST[1] = REG(1) SRC[1] = REG(2) SRC[2] =

REG(3))

(MFLO DST[1] = REG(4) SRC[1] = REG(2))

(IADD DST[1] = REG(5) SRC[1] = REG(6) SRC[2] =

REG(4))

)

)

(TARGET

(

(mac DST[1] = REG(5) SRC[1] = REG(2) SRC[2] =

REG(3) SRC[3] = REG(4))

)

)

)

Figure 4: Change in Performance after adding a MAC operation

The rule for mac above should be specified before the

rules of mult and addu.

In Figure 4, we analyze the performance of the

benchmarks by introducing the MAC operation.

Benchmarks which have several addition and multiplication

operations benefit from this instruction which combines the

two operations into one instruction, while most of the

benchmarks remain unaffected. If we analyze the

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June ,2011,595-599

© 2010, IJARCS All Rights Reserved 598

benchmarks closely, it is found that the performance of the

MAC operation is arbitrary. Some benchmarks that have

scope of use MAC operation do not show any improvement

in performance and vice versa.

V. INSTRUCTION SET EXPLORATION

The instruction set has been compared with that of

ARM7TDMI(ARM Limited ,2004) . The Instruction Set

description can be addressed under the following heads:

a. Setting VAR_GROUPS

b. Setting OP_GROUPS

c. Setting OPERAND_MAPPING

d. Setting TREE_MAPPING

e. Setting Instruction Description

The GUI permits adding/deleting instructions in the

instruction set(OP_GROUPS).It is possible to introduce

complex instructions, which are a combination of other

instructions ,in the OP_GROUP. In (Jain, M.K. and

Ramnani, V., 2009) it has been shown that on introducing

the MAC instruction (multiply and accumulate) operation, a

combination of three simple generic machine operations –

IMUL, MFLO and IADD, the performance of the MAC

operation is arbitrary. Benchmarks which have several

addition and multiplication operations benefit from this

instruction which combines the two operations into one

instruction, while most of the benchmarks remain

unaffected. If we analyze the benchmarks closely, it is found

that some benchmarks that have scope of use MAC

operation do not show any improvement in performance and

vice versa.

EXPRESSION supports integer, float and double data

types .The target registers are classified into var_groups or

register classes based on their data types and mappings with

the var_groups in generic register files. The data types have

been further categorized into var_groups depending on the

register classes. 33 VAR_GROUPS have been specified in

EXPRESSION .The utility of these var_groups is

questionable .It is observed that „int_any‟ , „int_cc‟ ,

„int_hilo‟ , „int_normal‟ refer to the same register class

GPRFile[1-28]. Also, out of the 33 VAR_GROUPS only a

few of them have been used to describe the source and

destination operands .The var_groups that have been utilized

are:

Integer - int_any, int_hilo, int_all, int_immediate,

int_mem

Double - double1_normal, double_all

Float - float_normal, float_all

It can be said that the var_groups have been defined

according to their usage, otherwise the var_groups are

basically the data types i.e. integer, float and double.

Existence of the VAR_GROUPS, in turn ,has generated the

need for OPERAND_MAPPING .

EXPRESSION does not provide flags like Carry, Zero,

Overflow, Negative etc. It has a single flag register „CC‟

which used to store the output for all types of logical tests.

This prevents conditional execution of the instructions .Due

to the absence of these flags , the framework has separate

instructions for all the logical tests like in ALU_OP there

are „sgt‟ , „sge‟ , „ slt‟ ,‟sle‟ , „seq‟ and „sne‟. There are

similar instructions in FALU_OP for float and double data.

The framework cannot handle function / procedure, since no

program status register for storing the program status on

function/procedure call has been defined. Interrupt and

exception handling have also not been addressed in the

framework.

A lot of heterogeneity is observed in the in the

instruction set. For instance „and‟ and „andi‟ are separate

instructions for register and immediate operands. Similarly,

there are „or‟ and „ori‟ and „xor‟ and „xori‟ . But, „mult‟,

„div‟, „addu‟ and „subu‟ are single instructions for register

and immediate 2nd operand. There is no instruction for the

logical test “not equal to “in FALU_OP for float and double

operands, but instructions for all other tests have been

defined:

For Double: c_le_d , c_lt_d , c_ge_d , c_gt_d , c_eq_d

For Float: c_le_s , c_lt_s , c_ge_s , c_gt_s , c_eq_s

The instruction for the same has been defined in

ALU_OP.

The instruction set does not contain any instruction for

bit-wise manipulation of data. Bit-wise operations are one‟s

complement, bitwise AND, masking , manipulation of half-

word , etc.

VI. IMPLEMENTING ARM7TDMI-S WITH

EXPRESSION TOOL-KIT

ARM7TDMI-S(Technical Publications,1998, ARM

Limited ,2005) is a high-performance 32-bit RISC

Microcontroller with Thumb extensions .It supports 512KB

on-chip Flash ROM with In-System Programming (ISP) and

In-Application Programming (IAP), 32KB RAM and

Vectored Interrupt Controller,

In order to simulate ARM7TDMI-S, the following

modifications were made in the basic acesMIPS

architecture:-

a. ALU2 and FALU and their data paths were removed.

b. The op-group for FALU is removed.

c. The register file FPRfile is removed and then the data

types in VAR-GROUPS linked to FPRfile are removed.

Consequently, the instruction description also needs to

be changed.

d. Change the size of GPRfile to 16.

e. Change the size of Main Memory to 32KB , delete the

IL1 and L2 memory modules.

The Livermore Loops (Benchmarks/LLs) available with

the EXPRESSION tool-kit were first simulated on

ARM7TDMI-S (Chipset LPC 2148) (Koninklijke Philips

Electronics ,2005)and then on the EXPRESSION tool-kit

with the above modifications made on acesMIPS

architecture. A difference in the cycle count is observed as

has been shown in Chart 1.

Comparison of cycle count for acesMIPS and ARM7TDMI-S

0

2000

4000

6000

8000

10000

12000

LL
1.
c

LL
3.
c

LL
5.
c

LL
7.
c

LL
11

.c

LL
14

.c

LL
17

.c

LL
20

.c

LL
22

.c

Benchmarks

C
y
c
le

 C
o

u
n

t

acesMIPS

ARM7TDMI-S

Chart 1: Cycle count for benchmarks implemented on acesMIPS and

ARM7TDMI-S

Manoj Kumar Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June ,2011,595-599

© 2010, IJARCS All Rights Reserved 599

VII. CONCLUSIONS

The EXPRESSION tool-kit is capable of automatic

compiler / simulator generation. The GUI in the framework

facilitates exploring various processor architectures.

However, some of the modifications do not give expected

result. The scope of this tool-kit is analyzed by varying

various parameters through the GUI and executing the

benchmarks. The results of variations are shown in Figure 5.

It is observed that introduction of a parallel path increases

the cycle count of some benchmarks. Similar decrease in

performance is observed on adding a new pipeline stage and

introducing MAC instruction. The EXPRESSION tool-kit

needs improvement on the instruction scheduling part,

specially the parallelization and pipelining of the data path.

In this paper, we have simulated ARM7TDMI-S on the

EXPRESSION tool-kit to see whether they give the same

cycle count on the benchmarks. It is observed that the results

not comparable. In future research, validation of these

results i.e. cycle count of these benchmarks will be carried

out using other simulators.

Figure 5 : Cycle count variations after different variations in acesMIPS

architectute

The design space needs to be enhanced, so that it can

generate code for various VLIW processors. The review

made in this paper will help develop a framework which

requires less retargetability efforts and capable to cater to a

wide range of processors.

VIII. REFERENCES

[1] Jain , M.K., Kumar, A., Balakrishnan ,M., and

Gangwar, A.(2005) Customizing Embedded Processors

for Specific Applications , In proceedings of Recent

Trends in Practice and Theory of Information

Technology, Proc. of NRB Seminar, Cochin, pp. 261-

284

[2] Jain, M.K. and Ramnani, V.,(2007) Challenges in

Retargetable Compiler Technology in ASIP Design,

Indian Engineering Congress

[3] Mishra , P. and Dutt, N.,(2005) Architecture

Description Languages for Embedded systems, In IEE

Proceedings on Computer and Digital. Techniques,

Vol. 152, No. 3

[4] Grun, P., Halambi, A., Khare, A., Ganesh , V. And

Dutt, N.(1998) EXPRESSION : An ADL for System

Level Design Exploration .Dept. of Information and

Computer Science. University of California , Irvine.

Technical Report #98-29

[5] Halambi, A., Grun, P.,Ganesh, V. , Khare, A. , Dutt , N.

and Nicolau , A. , (1999) EXPRESSION: A Language

for Architecture Exploration through

Compiler/Simulator Retargetability. In Proc. DATE

[6] Khare, A., Savoiu, N., Halambi, A., Grun, P., Dutt, N.

and Nicolau, A. (1999) V-SAT: A visual specification

and analysis tool for system-on-chip exploration. In

Proc. EUROMICRO.

[7] Biswas, P., Pasricha, S., Mishra, P., Shrivastava, A.,

Dutt, N. and Nicolau, A. (2003) EXPRESSION User

Manual, Version 1.0

[8] Tomiyama, H., Halambi, A., Grun, P., Dutt, N. and

Nicolau, A. ,(1999) Modeling and Verification of

Processor Pipelines in SOC Design Exploration , In

Proc. of 4th International High Level Design Validation

and Test Workshop (HLDVT'99), pp. 10--16

[9] Lim, A.(2001) Improving Parallelism and Data Locality

with affine Partitioning ,Ph.D. Thesis, Standford

University

[10] Biswas, P., Pasricha, S., Mishra, P., Shrivastava, A.,

Dutt, N. and Nicolau, A.(2003) EXPRESSION User

Manual, Version 1.0,

[11] Jain, M.K. and Ramnani, V., (2009) Reviewing the

EXPRESSION Framework ,Multidisciplinary

Conference on emerging Issues and Global Scenario ,

Udaipur , ISSN 0975-3613

[12] Technical Publications (1998) ARM7TDMI

Microprocessor Core ,LSI Logic Corporation ,

Document DB14-000058-02, First Edition

[13] ARM Limited (2004) ARM Technical Reference

Manual, ARM Limited , ARM DDI 0210C

[14] ARM Limited (2005) ARM Architecture Reference

Manual, ARM Limited , ARM DDI 0100I

[15] Koninklijke Philips Electronics (2005)LPC214X User

Manual, Philips Semiconductors ,Volume 1

[16] Leupers, R. and Marwedel , P.(1998) Retargetable code

generation based on structural processor descriptions .

Design Automation for embedded Systems, 3(1) : 1-36

[17] Leupers, R. , Schenk , W. and Marwedel , P.(1994)

Micro code Generation for Flexible Parallel Target

Architectures , PACT

[18] Leupers, R. and Marwedel, P.(1997)Retargetable

Compilers for Embedded DSPs , In: Proceedings 7th

European Multimedia , Microprocessor Systems and

Electronic Commerce Conference(EMMSEC) ,

Florence/Italy.

[19] Hadjiyiannis, G. , Hanono , S. and Devadas , S. (1997)

ISDL: An Instruction Set Language for Retargetability ,

In: Proceeding of Design Automation Conference

Anaheim ,CA

[20] Halambi, A., Shrivastava, A., Dutt, N. and Nicolau, A.

(2001) A Customizable Compiler Framework for

Embedded Systems, In: SCOPES

[21] Hohenauer , M. , Scharwaechter , H., Karuri , K. ,

Wahlen , O. , Kogel , T. , Leupers,R., Ascheid , G. ,

Meyr , H. And Braun, G. (2004) Compiler-in-loop

Architecture Exploration for Efficient application

specific Embedded Processor Design, In: Design &

Electronik , Munich , Germany.

