
��������	�
����	�
�������������

��� ����!��"�����#�������

!�#$�#%&'(��
'��$)*�%�

������+���*���������,,,��-���������

© 2010, IJARCS All Rights Reserved 539

ISSN No. 0976-5697

Analysis of CK metrics and Li and Henry’s metrics for UML Class diagrams

Narendra Pal Singh Rathore *
Computer Science

SSSIST, Sehore

Sehore, India

Enggnarendra1029@gmail.com

Prof. Ravindra Gupta
Computer Science

SSSIST, Sehore

Sehore, India

Ravindra_p84@rediffmail.com

Abstract: For the last couple decade’s software quality changed in many levels. The demand for increased software quality has resulted in

quality being more of differentiator between products than it ever has been before. For this reason, software developers need objective and valid

measures for use in the evaluation and improvement of product quality from the initial stages of development. Class diagrams are a key artefact

in the development of object-oriented (OO) software because they lay the foundation for all later design and implementation work. It follows

that emphasizing class diagram quality may significantly contribute to higher quality OO software system. The primary aim of this work,

therefore, is to present a survey, as complete as possible, of the existing relevant works regarding class diagram metrics. In this survey paper we

present study on CK metrics and Li and Henry’s metrics for class diagrams.

Keywords: class diagram, object oriented, UML, metrics, software quality

I. INTRODAUCTION

 In the OO paradigm one of the key artifacts is the class

diagram. The class diagram constitutes the backbone of the

OO development and provides a solid foundation for the

design and the implementation of software. Therefore, class

diagram quality has great influence over the system that is

ultimately implemented. Quality in software products is

characterized by the presence of different external attributes

such as functionality, reliability, usability, efficiency,

maintainability and portability. [21]. But these attributes can

only be measured late in the OO software development life

cycle. Therefore, it is necessary to find early indicators of such

qualities based, for example, on the structural properties of

class diagrams. [1] This is the context where software

measurement is fundamental, because measures can allow us

to evaluate class diagram quality characteristics in an objective

way, thus avoiding a bias in the evaluation process.

Measuring class diagram quality allows OO software

designers:
• To identify weak design spots when it costs less to improve
them, rather than repair consequent errors at later
implementation phases.

• To choose between design alternatives in an objective way.

•To predict external quality characteristics such as,

maintainability, reusability, etc, and improve resource

allocation based on these predictions.

 Although in the OO software measurement arena the need for

measures that can be applied in the early phases of the

development process is emerging, up until a few years ago the

work done in this sense was scarce because most software

measurement researchers focused on the measurement of code

and advanced design.[2] [22][23]

The aim of this work is to present a survey of the existing

literature of OO measures that can be applied to measure

internal quality attributes of class diagrams, considering the

following proposals:

 Chidamber and Kemerer. [3][4][5]

As the Unified Modeling Language (UML) has emerged as a

modeling standard, and in general has been widely accepted by

most software development organizations, we will focus this

work on UML class diagrams. [7] A precise demarcation of

analysis, design, and implementation activities is not easy, due

to widespread adoption of iterative and fountain life cycles,

which tend, sometimes deliberately, to blur their distinctions.

[6] For our current purposes, we shall consider the UML class

diagram, at its initial stages of development, to be composed

of the following UML constructs:

• Packages.

• Classes.

• Each class has attributes and operations.

• Attributes have their name.

•Operations only have their signature, i.e. their name and

definition of parameters.

•Relationships: Association, Aggregation3, Generalization and

Dependencies

For defining a Metrics for Software some issues that must be

taken into account. [8][9][10][11][23]

•Metrics must be defined pursuing clear goals (using for

example the GQM method. [12][14]

•Metrics must be theoretically validated, by addressing the

question �is the measure measuring the attribute it is

purporting to measure?
• Metrics must be empirically validated, by addressing the
question �is the measure useful in the sense that it is related to
other external quality attributes in the ways expected.

The objective of our work is two-fold:

1. Provide practitioners with information on the available

metrics for UML class diagrams, if they are empirically

validated (from the point of view of the practitioners, one of

the most important aspects of interest, i.e., if the metrics are

really fruitful in practice).

2. Provide researchers with an overview of the current state of

metrics for UML class diagrams, focusing on the strengths and

weaknesses of CK Metrics and Li and Henry’s metrics. Thus,

Narendra Pal Singh Rathore et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,539-542

© 2010, IJARCS All Rights Reserved 540

researchers can have a broad insight into the work already

done in the field of metrics for UML class diagrams.
This work is organized as follows: The existing proposals of
OO metrics that can be applied to UML class diagrams are
presented in Section 2. Section 3 presents an overall analysis of
CK Metrics and Li and Henry’s metrics proposals. Finally,
Section 4 presents some concluding remarks and highlights in
the field of metrics for UML class diagrams.

II. OBJECT ORIENTED PROGRAMMING AND

METRICS

Object oriented programming and design are very important

in today’s environment. It provides generalized solutions for
many problems in addition to many benefits like reusability,
decomposition of problems into small easily understandable
objects and also helps to perform modifications in future and to
do functional extensions in already built systems. [15] Object
oriented programming is more recent and more important in
quality software programming than that of the old style
procedural programming. In the last two decades object
oriented software engineering receives much attention because
object oriented technology is wide spread. [16][17] Object
oriented technology and development requires different
approach to design, implementation and to measure metrics
compared to standard set of metrics. A large number of metrics
have been developed and proposed by researchers and
numerous tools are available to help to assess the design,
quality, maintenance and to collect metrics from software
programs. [18][19][20] Many object oriented metrics in
literature lack in theoretical proof and some have not been
validated. The metrics that evaluate object oriented
programming are: classes, methods, inheritance, coupling and
cohesion. Very few metrics are for object oriented interfaces.
The goal of this paper is first, study on role of metrics for
software quality and second study on CK Metrics and Li and
Henry’s metrics.

III. PROPOSALS OF METRICS FOR UML CLASS

DIAGRAMS

We will now present those metrics proposals selected for

consideration and that may best demonstrate the present-day

context of metrics for UML class diagrams.

CK metrics [Chidamber91; Chidamber94]

 Metrics. Chidamber and Kemerer proposed a first version
of these metrics and later the definition of some of them was
improved. [3][4] Only three of the six CK metrics are available
for a UML class diagram (see Table 1).

 TABLE 1

 CK METRICS [4]

Metric name Definition

WMC The Weighted Methods per Class is

defined as follows:

WMC=� ci;

 i=1

Where c1, ..., cn be the complexity of the

methods of a class with methods M1,

...,Mn. If all method complexities are

considered to be unity, the WMC = n,

the number of methods7.

DIT The Depth of Inheritance of a class is the

DIT metric for a class. In cases involving

multiple inheritances, the DIT will be the

maximum length from the node to the

root of the tree.

NOC The Number of Children is the number

of immediate subclasses subordinated to

a class in the class hierarchy.

•Goal. CK metrics were defined to measure design complexity

in relation to their impact on external quality attributes such as

maintainability, reusability, etc.

•Theoretical validation. Chidamber and Kemerer

corroborated that DIT and NOC both accomplish Weyuker’s

axioms for complexity measures. [4][13]. Briand classified the

DIT metric as a length measure, and the NOC metric as a size

measure.[25] Poels and Dedene have demonstrated by means

of the DISTANCE framework that they can be characterized at

ratio the scale level. [26]

•Empirical validation. Several empirical studies have been

carried out to validate these metrics, among others we refer to

the following:

• Li and Henry showed that CK metrics appeared to be

adequate in predicting the frequency of changes across classes

during the maintenance phase. [5]

•Chidamber and Kemerer have applied these metrics to two

real projects obtaining the following observations: [4]

•Designers may tend to keep the inheritance hierarchies

shallow, forsaking reusability through inheritance for

simplicity of understanding.

•These metrics were useful for detecting possible design flaws

or violations of design philosophy, and for allocating testing

resources.

•Basili have put the DIT metric under empirical validation,

concluding that the larger the DIT value, the greater the

probability of fault detection. Also, they observed that the

larger the NOC, the lower the probability of fault detection.

• Daly found that the time it took to perform maintenance tasks

was significantly lower in systems with three levels of

inheritance depth as compared to systems with no use of

inheritance. [24]
•Chidamber has carried out studies on three commercial
systems, in order to examine the relationships between CK
metrics and productivity, rework effort and design effort. None
of the three systems studied showed significant use of
inheritance, so DIT and NOC tended to have minimal values.
Chidamber suggested that low values of DIT and NOC indicate
that the reuse opportunities (via inheritance) were perhaps
compromised in favor of comprehensibility of the overall
architecture of the applications.

Li and Henry’s metrics [5]

• Metrics. Table 2 shows the metrics proposed by Li and

Henry, which are defined at class level

TABLE 2

LI AND HENRY’S METRICS [5]

Metric name Definition

DAC The number of attributes in a class that

have another class as their type.

DAC’ The number of different classes that are

used as types of attributes in a class.

Narendra Pal Singh Rathore et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,539-542

© 2010, IJARCS All Rights Reserved 541

NOM The number of local methods.

SIZE2 Number of Attributes + Number of local

methods

.
• Goal. These metrics measure different internal attributes

such as coupling, complexity and size.

• Theoretical validation. Briand have found that DAC and

DAC’ do not fulfill all the properties for coupling measures

proposed by Briand. [27][28] This means that neither DAC

nor DAC’ metrics can be classified according to Briand et al.’s

framework; this defines the set of properties that length, size,

coupling, complexity and cohesion metrics must fulfill.

• Empirical Validation. Li and Henry have applied these

metrics (and others) to two real systems developed using

Classic-ADA.[5] They found that the maintenance effort

(measured by the number of lines changed per class in its

maintenance history) could be predicted from the values of

these metrics (and others like DIT, NOC, etc.).
• Tool. A metric analyzer was constructed to collect metrics
from Classic-Ada designs and source code.

IV. GENERAL COMMENTS

After the individual analysis of both proposals, we can
conclude that:

• The work on measures for UML class diagrams at a high-

level design stage is scarce and is not yet consolidated.

• Although the metrics seem to be defined pursuing a clear

goal, which is the complete list of desirable properties of

“good” class diagrams, this is not totally clear.

• Even though CK metrics are shown overall to be empirically

the most thoroughly investigated, results in some cases,

especially those relating to the DIT metric, prove to be

contradictory. In summary, evidence regarding the impact of

inheritance depth on fault-proneness proves to be rather

equivocal. This is usually an indication that that there is

another effect that is confounded with inheritance dept.

Further research is necessary to identify this confounding

effect and disentangle it from inheritance depth in order to

assess the effect of inheritance depth by itself.

• CASE tools should be integrated with metrics tools which

support metrics like those presented above and allow users to

define their own metrics. Thus, CASE tools really can guide

and help designers to make decisions along the software

development life cycle.

V. CONCLUSIONS

The main contribution of this work is a survey of most of the

existing relevant works related to metrics for class diagrams at

initial stages of development, providing practitioners with an

overall view on what has been done in the field and which are

the available metrics that can help them in making decisions in

the early phases of OO development. This work will also help

researchers to get a more comprehensive view of the direction

that work in OO measurement is taking.

VI. REFERENCES

[1] Briand L., Arisholm S., Counsell F., Houdek F. and

Thévenod-Fosse P.: “Empirical Studies of Object-Orien-
ted Artifacts, Methods, and Processes: State of the Art and

Future Directions”, Empirical Software Engineering, vol.
4, no. 4, pp. 387-404, 2000.

[2] Etzkorn L., Bansiya J. and Davis C.: “Design and Code
Complexity Metrics for OO Classes·, vol. 12, no. 1, pp.
335-40, 1999.

[3] Chidamber S. and Kemerer C.: “Towards a Metrics Suite
for Object Oriented Design”.,Published in SIGPLAN
Notices, vol. 26, no. 11, pp. 197-211, 1991.

[4] Chidamber S. and Kemerer C.: “A Metrics Suite for
Object Oriented Design”, IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476-493, 1994.

[5] Li W. and Henry S.: “Object-Oriented Metrics that Predict
Maintainability”, vol. 23, no. 2, pp. 111-122, 1993.

[6] De Champeaux D. The Technical Writer Hadbook,Object
Oriented Development Process and Metric, Prentice Hall,
1997.

[7] Electronic Publication: Object Management Group. UML
Specification Version 1.5, OMG Document formal/03-03-
01.

[8] Briand L., Morasca S. and Basili V.: “An operational
process for goal-driven definition of measures”, IEEE
Transactions on Software Engineering, vol. 28 no. 12, pp.
1106-1125, 2002.

[9] Morasca S.: Software Measurement, Handbook of
Software Engineering and Knowledge Engineering, (S.K.
Chang, ed.), Chapter 2: Software Measurement, World
Scientific, pp. 239-276, 2001.

[10] Fenton N. and Neil M., Anthony Finkelstein: “Software
Metrics: a Roadmap”, Future of Software Engineering,
Ed., ACM, pp. 359-370, 2000.

[11] Calero C., Piattini M., and Genero M.: “Empirical
validation of referential integrity metrics”, Information
and Software Technology, vol. 43, pp. 949- 957, 2001.

[12] Van Solingen R. and Berghout E.: The
Goal/Question/Metric Method: A Handbook, A practical
guide for quality improvement of software development,
McGraw- Hill, 1999

[13] Weyuker E.: “Evaluating Software Complexity Metrics”,
IEEE Transactions on Software Engineering, vol. 14, no.
9, pp. 1357-1365, 1998.

[14] Basili V. and Rombach H.: “The TAME project: towards
improvement oriented software environments”, IEEE
Transactions on Software Engineering, vol. 14, no. 6, pp.
728-738, 1988.

[15] Rene Santaolaya Salgado, Olivia G. Fragosco Diaz,
Manuel A. Valdes Marrero, Issac M. Vaseuqz Mendez
and Shiela L. Delfin Lara, “Object Oriented Metric to
Measure the Degree of Dependency Due to Unused
Interfaces”, ICCSA 2004, Springer LNCS 3046, P.No:
808-817,2004.

[16] Terry .C. and Dikel .D.,”Reuse Library Standards Aid
Users in Setting up Organizational Reuse
Programs”,Embedded System Programming Product
News,1996.

[17] Pradeep Kumar Bhatia, Rajbeer Mann, “ An Approach to
Measure Software Reusability of OO Design”. March 29,
2008..

[18] Santonu Sarkar, Member, IEEE, Avinash C. Kak, and
Girish Maskeri Rama,“ Metrics for Measuring the Quality
of Modularization of Large-Scale Object-Oriented
Software, IEEE Transactions on Software Engineering,
Vol. 34, No. 5, Sep-Oct 2008.

[19] Rudiger Lincke, Jonas Lundberg and Welf
Lowe,”Comparing Software Metrics Tools”, ISSTA’08,
July 20-24, 2008, ACM 978-1- 59593-904-3/07.

[20] Nachiappan Nagappan, Thomas Ball and Andreas Zeller,”
Mining Metrics to Predict Component Failures”,

Narendra Pal Singh Rathore et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,539-542

© 2010, IJARCS All Rights Reserved 542

Verification and Measurement Group, Microsoft
Research, 2005, Redmond, Washington.

[21] ISO/IEC 9126-1: “Information Technology- Software
Product Quality – Part 1: Quality Model”, 2001.

[22] Henderson-Sellers B.: Handbook on Object-oriented
Metrics - Measures of Complexity, Prentice-Hall, Upper
Saddle River, New Jersey, 1996.

[23] Fenton N. and Pfleeger S.: Handbook on Software
Metrics: A Rigorous Approach, 2nd. edition. London,
Chapman & Hall, 1997.

[24] Daly J., Brooks A., Miller J., Roper M. and Wood M.:
“An Empirical Study Evaluating Depth of Inheritance on
Maintainability of Object-Oriented Software. Empirical
Software Engineering”, vol. 1, no. 2, pp. 109-132, 1996

[25] Briand L., Morasca S. and Basili V.: “Property-Based
Software Engineering Measurement”, IEEE Transactions
on Software Engineering, vol. 22, no. 6, pp. 68-86, 1996

[26] Poels G. and Dedene G.: “DISTANCE: A Framework for
Software Measure Construction”, Research Report
DTEW9937, Dept. Applied Economics, Katholieke
Universiteit Leuven, Belgium, 46 p., 1999.

[27] Briand, L., Daly J. and Wüst J.: “A Unified Framework
for Coupling Measurement in Object-Oriented
Systems”, IEEE Transactions on Software Engineering,
vol. 25, no. 1, pp. 91-121, 1999.

[28] Basili V., Briand L. and Melo W.: “A Validation of
Object-Oriented Design Metrics as Quality
Indicators”, IEEE Transactions of Software Engineering,
vol. 22, no. 10, pp. 751-761, 1996.

