
Volume 9, Special Issue No. 1, February 2018

International Journal of Advanced Research in Computer Science
(ISSN: 0976-5697)

RESEARCH PAPER

Available Online at www.ijarcs.info

Conference Paper: International Conference on “Recent Advances in Computing and Communication”
Organized by: Department of Computer Science, SSS Shasun Jain College for Women, Chennai, India 82

ISBN: 978-93-5300-455-2

ANSWERING PATTERN QUERIES USING VIEWS

Dr.S.T.Deepa
Associate professor, Department of Computer Science

Shri S.S.Shasun Jain College for Women
Chennai, India

email: deepatheodore@gmail.com

Ms.G.S. Shailaja
Computer Instructor

Chennai Higher Secondary School
Chennai, India

e-mail: shakthi.s2012@gmail.com

ABSTRACT

Information is playing an important role in our lives. One of the major sources
of information is databases. Databases and database technology are having
major impact on the growing use of computers. In order to retrieve
information from a database, one needs to formulate a query in such way that
the computer will understand and produce the desired output. The Structured
Query Language (SQL) norms are been pursued in almost all languages for
relational database systems. However, not everybody is able to write SQL
queries as they may not be aware of the structure of the database. So there is a
need for non-expert users to query relational databases in their natural
language instead of working with the values of the attributes. The idea of
using natural language instead of SQL, has promoted the development of
Natural Language Interface to Database systems (NLIDB). The need of
NLIDB is increasing day by day as more and more people access information
through web browsers, PDA’s and cell phones. In this paper we introduce an
intelligent interface for database. We prove that our NLIDB is guaranteed to
map a natural language query to the corresponding SQL query. We have tested
our system on Northwind database and show that our NLIDB compares
favourably with MS English Query product

Keywords: Natural language, pattern, containment, item set, queries.

I. INTRODUCTION

Data mining is the process of discovering interesting patterns from
massive amounts of data. As a knowledge discovery process, it
typically involves data cleaning, data integration, data selection, data
transformation, pattern discovery, pattern evaluation, and knowledge
presentation. The major dimensions of data mining are data,
knowledge, technologies, and applications. The book focuses on
fundamental data mining concepts and techniques for discovering
interesting patterns from data in various applications. Prominent
techniques for developing effective, efficient, and scalable data mining
tools are focused on. This chapter discusses why data mining is in high
demand and how it is part of the natural evolution of information
technology. It defines data mining with respect to the knowledge
discovery process. Next, data mining from many aspects, such as the
kinds of data that can be mined, the kinds of knowledge to be mined,
the kinds of technologies to be used and targeted applications are
discussed which helps gain a multidimensional view of data mining.
Data mining can be conducted on any kind of data as long as the data
are meaningful for a target application, such as database data, data
warehouse data, transactional data, and advanced data types. Finally
major data mining research and development issues are outlined.

II. LITERATURE REVIEW

The problem of answering queries using views is to find efficient
methods of answering a query using a set of previously defined
materialized views over the database, rather than accessing the
database relations[1]. The problem has recently received significant
attention because of its relevance to a wide variety of data
management problems. In query optimization, finding a rewriting of a
query using a set of materialized views can yield a more efficient
query execution plan. To support the separation of the logical and

physical views of data, a storage schema can be described using
views over the logical schema. As a result, finding a query execution
plan that accesses the storage amounts to solving the problem of
answering queries using views. Finally, the problem arises in data
integration systems, where data sources can be described as
precomputed views over a mediated schema. This article surveys the
state of the art on the problem of answering queries using views, and
synthesizes the disparate works into a coherent framework. We
describe the different applications of the problem, the algorithms
proposed to solve it and the relevant theoretical results.
Data integration is the problem of combining data residing at
different sources, and providing the user with a unified view of these
data[2]. The problem of designing data integration systems is
important in current real world applications, and is characterized by a
number of issues that are interesting from a theoretical point of view.
This document presents on overview of the material to be presented
in a tutorial on data integration. The tutorial is focused on some of the
theoretical issues that are relevant for data integration. Special
attention will be devoted to the following aspects: modeling a data
integration application, processing queries in data integration, dealing
with inconsistent data sources, and reasoning on queries.
 The problem of answering tree pattern queries using views was
revisited[3].They first show that, for queries and views that do not
have nodes labeled with the wildcard *, there is an alternative to the
approach of query rewriting which does not require us to find any
rewritings explicitly yet which produces the same answers as the
maximal contained rewriting. Then, using the new approach, they
give a simple criterion and a corresponding algorithm for identifying
redundant view answers, which are view answers that can be ignored
when evaluating the maximal contained rewriting. Finally, for queries
and views that do have nodes labeled *,they provide a method to find
the maximal contained rewriting and show how to answer the query
using views without explicitly finding the rewritings.
 View-based query processing requires answering a query posed
to a database only on the basis of the information on a set of views,
which are again queries over the same database[4].This problem is
relevant in many aspects of database management, and has been
addressed by means of two basic approaches: query rewriting and
query answering. In the former approach, one tries to compute a
rewriting of the query in terms of the views, whereas in the latter, one
aims at directly answering the query based on the view extensions.
They study view based query processing for the case of regular-path
queries, which are the basic querying mechanisms for the emergent
field of semi structured data. Based on recent results, They first show
that a rewriting is in general a co-NP function wrt to the size of view
extensions. Hence, the problem arises of characterizing which
instances of the problem admit a rewriting that is PTIME. A second
contribution of the work is to establish a tight connection between
view based query answering and constraint satisfaction problems,
which allows us to show that the above characterization is going to be
difficult. As a third contribution, we present two methods for
computing PTIME rewritings of specific forms. The first method,
which is based on the established connection with constraint

S.T.Deepa et al., International Journal of Advanced Research in Computer Science, 9 (Special Issue 1), February 2018,82-85

Conference Paper: International Conference on “Recent Advances in Computing and Communication”
Organized by: Department of Computer Science, SSS Shasun Jain College for Women, Chennai, India 83

satisfaction problems, gives us rewritings expressed in Data log with
a fixed number of variables. The second method, based on automata-
theoretic techniques, gives us rewritings that are formulated as unions
of conjunctive regular-path queries with a fixed number of variables.

The problem of query rewriting for TSL, a language for querying
semi structured data is addressed [5]. They develop and present an
algorithm that, given a semi structured query q and a set of semi
structured views V, finds rewriting queries, i.e., queries that access
the views and produce the same result as q. The algorithm is based on
appropriately generalizing containment mappings, the chase, and
unication techniques that were developed for structured, relational
data. We also develop an algorithm for equivalence checking of TSL
queries. We show that the algorithm is sound and complete for TSL,
i.e., it always finds every TSL rewriting query of q, and we discuss its
complexity. They extend the rewriting algorithm to use available
structural constraints (such as DTDs) to find more opportunities for
query rewriting. We currently incorporate the algorithm in the
TSIMMIS system.
The problem of maintaining materialized views of graph structured
data was studied [6]. The base data consists of records containing
identifiers of other records. The data could represent traditional
objects (with methods, attributes, and a class hierarchy), but it could
also represent a lower level data structure. They define simple views
and materialized views for such graph structured data, analyzing
options for representing record identity and references in the view.
We develop incremental maintenance algorithms for these views.
[7]Developers of rapidly growing applications must be able to
anticipate potential scalability problems before they cause
performance issues in production environments. A new type of data
independence, called scale independence, seeks to address this
challenge by guaranteeing a bounded amount of work is required to
execute all queries in an application, independent of the size of the
underlying data. While optimization strategies have been developed
to provide these guarantees for the class of queries that are scale-
independent when executed using simple indexes, there are important
queries for which such techniques are insufficient. Executing these
more complex queries scale-independently requires precomputation
using incrementally-maintained materialized views. However, since
this precomputation effectively shifts some of the query processing
burden from execution time to insertion time, a scale-independent
system must be careful to ensure that storage and maintenance costs
do not threaten scalability. In this paper, we describe a scale
independent view selection and maintenance system, which uses
novel static analysis techniques that ensure that created views do not
themselves become scaling bottlenecks. Finally, we present an
empirical analysis that includes all the queries from the TPC-W
benchmark and validates our implementation’s ability to maintain
nearly constant high quantile query and update latency even as an
application scales to hundreds of machines.
[8]To make query answering feasible in big datasets, practitioners
have been looking into the notion of scale independence of queries.
Intuitively, such queries require only a relatively small subset of the
data, whose size is determined by the query and access methods
rather than the size of the dataset itself. This paper aims to formalize
this notion and study its properties. We start by defining what it
means to be scale-independent, and provide matching upper and
lower bounds for checking scale independence, for queries in various
languages, and for combined and data complexity. Since the
complexity turns out to be rather high, and since scale-independent
queries cannot be captured syntactically, we develop sufficient
conditions for scale independence. We formulate them based on
access schemas, which combine indexing and constraints together
with bounds on the sizes of retrieved data sets. We then study two
variations of scale independent query answering, inspired by existing
practical systems. One concerns incremental query answering: we
check when query answers can be maintained in response to updates
scale-independently. The other explores scale independent query
rewriting using views.

The design and the evaluation of the ADMS optimizer was
described[9]. Capitalizing on a structure called Logical Access Path
Schema to model the derivation relationship among cached query
results, the optimizer is able to perform query matching coincidently
with the optimization and generate more efficient query plans using
cached results. The optimizer also features data caching and pointer
caching, different cache replacement strategies, and different cache
update strategies. An extensive set of experiments were conducted
and the results showed that pointer caching and dynamic cache
update strategies substantially speedup query computations and, thus,
increase query throughput under situations with fair query correlation
and update load. The requirement of the cache space is relatively
small and the extra computation overhead introduced by the caching
and matching mechanism is more than offset by the time saved in
query processing.
The prevalent use of XML highlights the need for a generic, flexible
access-control mechanism for XML documents that supports efficient
and secure query access, without revealing sensitive information to
unauthorized users 10]. A novel paradigm for specifying XML
security constraints and investigates the enforcement of such
constraints during XML query evaluation is introduced. The approach
is based on the novel concept of security views, which provide for
each user group (a) an XML view consisting of all and only the
information that the users are authorized to access, and (b) a view
DTD that the XML view conforms to. Security views effectively
protect sensitive data from access and potential inferences by
unauthorized users, and provide authorized users with necessary
schema information to facilitate effective query formulation and
optimization. We propose an efficient algorithm for deriving security
view definitions from security policies (defined on the original
document DTD) for different user groups. We also develop novel
algorithms for XPath query rewriting and optimization such that
queries over security views can be efficiently answered without
materializing the views. Our algorithms transform a query over a
security view to an equivalent query over the original document, and
effectively prune query nodes by exploiting the structural properties
of the document DTD in conjunction with approximate XPath
containment tests. Our work is the first to study a flexible, DTD-
based access-control model for XML and its implications on the
XML query-execution engine. Furthermore, it is among the first
efforts for query rewriting and optimization in the presence of general
DTDs for a rich class of XPath queries. An empirical study based on
real-life DTDs verifies the effectiveness of our approach.
[11] Graph pattern matching is typically defined in terms of subgraph
isomorphism, which makes it an np-complete problem. Moreover, it
requires bijective functions, which are often too restrictive to
characterize patterns in emerging applications. They proposed a class
of graph patterns, in which an edge denotes the connectivity in a data
graph within a predefined number of hops. In addition, we define
matching based on a notion of bounded simulation, an extension of
graph simulation. We show that with this revision, graph pattern
matching can be performed in cubic-time, by providing such an
algorithm. We also develop algorithms for incrementally finding
matches when data graphs are updated, with performance guarantees
for dag patterns. We experimentally verify that these algorithms scale
well, and that the revised notion of graph pattern matching allows us
to identify communities commonly found in real-world networks.
[12]They presented algorithms for computing similarity relations of
labeled graphs. Similarity relations have applications for the
refinement and verification of reactive systems. For finite graphs, we
present an O(mn) algorithm for computing the similarity relation of a
graph with n vertices and m edges (assuming m n). For effectively
presented infinite graphs, we present a symbolic similarity-checking
procedure that terminates if a finite similarity relation exists. We
show that 2D rectangular automata, which model discrete reactive
systems with continuous environments, define effectively presented
infinite graphs with finite similarity relations. It follows that the
refinement problem and the 8CTL model-checking problem are
decidable for 2D rectangular automata.

S.T.Deepa et al., International Journal of Advanced Research in Computer Science, 9 (Special Issue 1), February 2018,82-85

Conference Paper: International Conference on “Recent Advances in Computing and Communication”
Organized by: Department of Computer Science, SSS Shasun Jain College for Women, Chennai, India 84

Describing social positions and roles is an important topic within
social network analysis. One approach is to compute a suitable
equivalence relation on the nodes of the target network [13]. One
relation that is often used for this purpose is regular equivalence, or
bisimulation, as it is known within the field of computer science. In
this paper we consider a relation from computer science called
simulation relation. Simulation creates a partial order on the set of
actors in a network and we can use this order to identify actors that
have characteristic properties. The simulation relation can also be
used to compute simulation equivalence which is a less restrictive
equivalence relation than regular equivalence but is still computable
in polynomial time. This paper primarily considers weighted directed
networks and we present definitions of both weighted simulation
equivalence and weighted regular equivalence. Weighted networks
can be used to model a number of network domains, including
information flow, trust propagation, and communication channels.
Many of these domains have applications within homeland security
and in the military, where one wants to survey and elicit key roles
within an organization. Identifying social positions can be difficult
when the target organization lacks a formal structure or is partially
hidden.

III. METHODLOGY

Determining Pattern Containment

To do this, we first propose a sufficient and necessary
condition to characterize pattern containment. We then develop a
cubic time algorithm based on the characterization. Sufficient and
necessary condition. To characterize pattern containment, we
introduce a notion of view matches. Consider a pattern query Qs and
a set V of view definitions. For each V 2 V, let VðQsÞ ¼ fðeV; SeVÞ
j eV 2 Vg, by treating Qs as a data graph. Obviously, if V E Qs, then
SeV is the nonempty match set of eV for each edge eV. We define the
view match from V to Qs, denoted by MQsV , to be the union of SeV
for all eV in V.
Minimal Containment Problem:

Given a pattern query Qs and a set V of view definitions,it
returns either a nonempty subset V0 of V that minimally contains Qs,
or ; to indicate that Qs 6v V.
Algorithm minimal initializes (1) an empty set V0 for selected views,
(2) an empty set S for view matches of V0,and (3) an empty set E for
edges in view matches. It also maintains an index M that maps each
edge e in Qs to a set of views. Similar to algorithm contain, minimal
first computes MQsVi for all Vi 2 V. In contrast to contain that
simply merges the view matches, it extends S with a new view match
MQsVi only if MQsVi contains a new edge not in E, and updates M
accordingly. The for loop stops as soon as E ¼ Ep, as Qs is already
contained in V0. If E 6¼ Ep after the loop, it returns, since Qs is not
contained is V . The algorithm then eliminates redundant views, by
checking whether the removal of Vj causes MðeÞ¼ ; for some e2
MQsVj. If no such e exists, it removes Vj from V0. After all view
matches are checked, minimalreturns V0.
The algorithm is denoted as minimum. Given a pattern Qs and a set V
of views,
minimum identifies a subset V0 of V such that (1) Qs v V0 ifQs v V
and (2) cardðV0Þ _ log ðjEpjÞ _ cardðVOPTÞ, whereVOPT is a
minimum subset of V that contains Qs. That is, the approximation
ratio of minimum is OðlogjEpjÞ, where jEpj is typically small. The
algorithm iteratively finds the “top” view whose
view match can cover most edges in Qs that are not yet covered.To
do this, we define a metric aðVÞ for a view V, whereaðVÞ ¼ jMQsV
n EcjjEpj:Here Ec is the set of edges in Ep that have been covered
byselected view matches, and aðV Þ indicates the amount
ofuncovered edges that MQsV covers. We select V with the largesta
in each iteration, and maintain a accordingly. Similar to minimal,
algorithm minimum computes the view match MQsVi for each Vi 2
V, and collects them in a set S. It then does the following. (1) It

selects view Viwith the largest a, and removes MQsVifrom S. (2)
Itmerges Ec with MQsViif MQsVicontains some edges that arenot in
Ec, and extends V0 with Vi. During theloop, if Ec equals Ep, the set
V0 is returned. Otherwise,minimum returns indicating that Qs 6v V.
Maximally Contained Rewriting

A pattern query Qs0 is a subquery of Qs, denoted as Qs0 _
Qs, if it is an edge induced subgraph of Qs, i.e., Qs0 is a subgraph of
Qs consisting of a subset of edges of Qs, together with their endpoints
as the set of nodes. Query Qs0 is called a contained rewriting of Qs
using a set V of view definitions if_ Qs0 _ Qs, i.e., Qs0 is a subquery
of Qs, and_ Qs0 v V, i.e., Qs0 can be answered using V. Such a
rewriting Qs0 is a maximally contained rewriting ofQs using V if
there exists no contained rewriting Qs00 such that Qs0 Qs00, i.e.,
there exists no larger contained rewritingQs00 with more edges than
Qs0.Query-driven approximation scheme. When Qs is not contained
in V, we can still efficiently answer Qs in a (possibly
big) graph G following two approaches. (1) One may firs tidentify a
maximally contained rewriting Qs0 of Qs using V,and then compute
Qs0ðGÞ as approximate answers to Qs, bysimply invoking the
algorithm MatchJoin. (2) Alternatively, one may compute exact
answers QsðGÞ by using Qs0ðGÞ and by accessing a small fraction
GQs of G, such thatQsðGÞ ¼ Qs0ðGÞ [fðGQs Þ. Here fðGQs Þ first
locates thematches of Qs0ðGÞ in the original graph G and then
verifies the matches for Qs by visiting neighborhood of those
matches, a small number of nodes and edges in G that constitute GQs
; this is the approach suggested, referred
to as scale-independent query answering using views there. Due to
the space constraint, we focus on approximate answersQs0ðGÞ in this
paper. That is, when limited views are available, we can still
approximately answer pattern queries in
big graphs by relaxing Qs to maximally contained rewritingQs0,
using those views. Accuracy. Given a graph G, we measure the
quality of the approximate answers Qs0ðGÞ versus the true matches
in the exact answers QsðGÞby following the F-measure:

Acc ¼ 2 _ ðrecall _ precisionÞ=ðrecall þ precisionÞ;

where recall = #true matches found #true matches , and precision
=#true matches found # matches . Here #matches is the number of all
(edge)matches found by Qs0ðGÞ using views, #true matches is the
number of all matches in QsðGÞ; and #true matches found is the
number of all the true matches in both Qs0ðGÞ and QsðGÞ.
Intuitively, a high precision means that many matches inQs0ðGÞ are
true matches, and a high recall means Qs0ðGÞcontains most of the
true matches in QsðGÞ. The larger Acc that can be induced by Qs0,
the better. If Qs0 is equivalent toQs, i.e., Qs0ðGÞ = QsðGÞ for all G,
Acc takes the maximum value 1:0. Observe that for any edge e in Qs,
if e is covered by Qs0, then for any G, the match set Se of e in QsðGÞ
is asubset of the match set S0eof e in Qs0ðGÞ; that is, Qs0ðGÞ finds
all candidate matches of e in G.

IV. RESULTS AND DISCUSSIONS

 The criteria for comparing the methods of XML queries and
graph pattern queries

• Accuracy − Accuracy of classifier refers to the ability of
classifier. It predict the class label correctly and the
accuracy of the predictor refers to how well a given
predictor can guess the value of predicted attribute for a
new data.

• Speed − This refers to the computational cost in generating
and using the classifier or predictor.

S.T.Deepa et al., International Journal of Advanced Research in Computer Science, 9 (Special Issue 1), February 2018,82-85

Conference Paper: International Conference on “Recent Advances in Computing and Communication”
Organized by: Department of Computer Science, SSS Shasun Jain College for Women, Chennai, India 85

• Robustness − It refers to the ability of classifier or
predictor to make correct predictions from given noisy
data.

• Scalability − Scalability refers to the ability to construct
the classifier or predictor efficiently; given large amount
of data.

Interpretability − It refers to what extent the classifier or
predictor understands

The performance of the both the queries are analysed.

Method Performance %

25 queries 50 queries 100
queries

XML
queries 85 90 91

Graph
pattern queries 91 96 97

V. CONCLUSION

We have proposed a notion of pattern containment to
characterize what pattern queries can be answered using views, and
provided such an efficient matching algorithm. We have also
identified three fundamental problems for pattern containment,
established their complexity, and developed effective
(approximation)algorithms. When a pattern query is not contained in
available views, we have developed efficient algorithms for
computing maximally contained rewriting using views to get
approximate answers. Our experimental results have verified the
efficiency and effectiveness of our techniques. These results extend
the study of query answering using views from relational and XML
queries to graph pattern queries. Finally, to find a practical method to
query “big” social data, one needs to combine techniques such as
view-based, distributed, incremental, and compression methods. The
efficiency and effectiveness of the technique are verified through

experimental results. The study of query answering is extended from
These results extend the study of query relational to graph pattern
queries.

VI. REFERENCES

[1] A. Y. Halevy, “Answering queries using views: A survey,”
VLDBJ., vol. 10, no. 4, pp. 270–294, 2001.

[2] M. Lenzerini, “Data integration: A theoretical perspective,”
inProc. 21st ACM SIGMOD-SIGACT-SIGART Symp.
Principles DatabaseSyst., 2002, pp. 233–246.

[3] L. V. S. Lakshmanan, W. H. Wang, and Z. J. Zhao,
“Answeringtree pattern queries using views,” in Proc. 32nd
Int. Conf. VeryLarge Data Bases, 2006, pp. 571–582.

[4] J. Wang, J. Li, and J. X. Yu, “Answering tree pattern queries
usingviews: A revisit,” in Proc. 14th Int. Conf. Extending
Database Technol.,2011, pp. 153–164.

[5] X. Wu, D. Theodoratos, and W. H. Wang, “Answering
XMLqueries using materialized views revisited,” in Proc. 18th
ACMConf. Inf. Knowl. Manag., 2009, pp. 475–484.

[6] D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Y.
Vardi,“View-based query processing and constraint
satisfaction,”in Proc. 15th Annu. IEEE Symp. Logic Comput.
Sci., 2000, p. 361.

[7] Y. Papakonstantinou and V. Vassalos, “Query rewriting for
semistructureddata,” in Proc. ACM SIGMOD Int. Conf.
Manag. Data,1999, pp. 455–466.

[8] Y. Zhuge and H. Garcia-Molina, “Graph structured views
andtheir incremental maintenance,” in Proc. 14th Int. Conf.
Data Eng.,1998, pp. 116–125.

[9] M. Armbrust, E. Liang, T. Kraska, A. Fox, M. J. Franklin, and
D. A.Patterson, “Generalized scale independence through
incrementalprecomputation,” in Proc. ACM SIGMOD Int.
Conf. Manag. Data,2013, pp. 625–636.

[10] W. Fan, F. Geerts, and L. Libkin, “On scale independence for
queryingbig data,” in Proc. 33rd ACM SIGMOD-SIGACT-
SIGARTSymp. Principles Database Syst., 2014, pp. 51–62.

[11] C.-M. Chen and N. Roussopoulos, “The implementation and
performanceevaluation of the ADMS query optimizer:
Integratingquery result caching and matching,” in Proc. 4th
Int. Conf. ExtendingDatabase Technol.: Adv. Database
Technol., 1994, pp. 323–336.

[12] W. Fan, C. Y. Chan, and M. N. Garofalakis, “Secure XML
queryingwith security views,” in Proc. ACM SIGMOD Int.
Conf. Manag.Data, 2004, pp. 587–598.

[13] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu, “Graph
patternmatching: From intractable to polynomial time,” Proc.
VLDBEndowment, vol. 3, no. 1, pp. 264–265, 2010.

	Introduction
	LITERATURE REVIEW
	METHODLOGY
	RESULTS AND DISCUSSIONS
	CONCLUSION
	References

