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ABSTRACT 
 
Information is playing an important role in our lives. One of the major sources 
of information is databases. Databases and database technology are having 
major impact on the growing use of computers. In order to retrieve 
information from a database, one needs to formulate a query in such way that 
the computer will understand and produce the desired output. The Structured 
Query Language (SQL) norms are been pursued in almost all languages for 
relational database systems. However, not everybody is able to write SQL 
queries as they may not be aware of the structure of the database. So there is a 
need for non-expert users to query relational databases in their natural 
language instead of working with the values of the attributes. The idea of 
using natural language instead of SQL, has promoted the development of 
Natural Language Interface to Database systems (NLIDB). The need of 
NLIDB is increasing day by day as more and more people access information 
through web browsers, PDA’s and cell phones. In this paper we introduce an 
intelligent interface for database. We prove that our NLIDB is guaranteed to 
map a natural language query to the corresponding SQL query. We have tested 
our system on Northwind database and show that our NLIDB compares 
favourably with MS English Query product 
  
Keywords: Natural language, pattern, containment, item set, queries. 

I. INTRODUCTION 

Data mining is the process of discovering interesting patterns from 
massive amounts of data. As a knowledge discovery process, it 
typically involves data cleaning, data integration, data selection, data 
transformation, pattern discovery, pattern evaluation, and knowledge 
presentation. The major dimensions of data mining are data, 
knowledge, technologies, and applications. The book focuses on 
fundamental data mining concepts and techniques for discovering 
interesting patterns from data in various applications. Prominent 
techniques for developing effective, efficient, and scalable data mining 
tools are focused on. This chapter discusses why data mining is in high 
demand and how it is part of the natural evolution of information 
technology. It defines data mining with respect to the knowledge 
discovery process. Next, data mining from many aspects, such as the 
kinds of data that can be mined, the kinds of knowledge to be mined, 
the kinds of technologies to be used and targeted applications are 
discussed which helps gain a multidimensional view of data mining. 
Data mining can be conducted on any kind of data as long as the data 
are meaningful for a target application, such as database data, data 
warehouse data, transactional data, and advanced data types. Finally 
major data mining research and development issues are outlined. 

II. LITERATURE REVIEW 

The problem of answering queries using views is to find efficient 
methods of answering a query using a set of previously defined 
materialized views over the database, rather than accessing the 
database relations[1]. The problem has recently received significant 
attention because of its relevance to a wide variety of data 
management problems. In query optimization, finding a rewriting of a 
query using a set of materialized views can yield a more efficient 
query execution plan. To support the separation of the logical and 

physical views of data, a storage schema can be described using 
views over the logical schema. As a result, finding a query execution 
plan that accesses the storage amounts to solving the problem of 
answering queries using views. Finally, the problem arises in data 
integration systems, where data sources can be described as 
precomputed views over a mediated schema. This article surveys the 
state of the art on the problem of answering queries using views, and 
synthesizes the disparate works into a coherent framework. We 
describe the different applications of the problem, the algorithms 
proposed to solve it and the relevant theoretical results. 
Data integration is the problem of combining data residing at 
different sources, and providing the user with a unified view of these 
data[2]. The problem of designing data integration systems is 
important in current real world applications, and is characterized by a 
number of issues that are interesting from a theoretical point of view. 
This document presents on overview of the material to be presented 
in a tutorial on data integration. The tutorial is focused on some of the 
theoretical issues that are relevant for data integration. Special 
attention will be devoted to the following aspects: modeling a data 
integration application, processing queries in data integration, dealing 
with inconsistent data sources, and reasoning on queries. 
 The problem of answering tree pattern queries using views was 
revisited[3].They first show that, for queries and views that do not 
have nodes labeled with the wildcard *, there is an alternative to the 
approach of query rewriting which does not require us to find any 
rewritings explicitly yet which produces the same answers as the 
maximal contained rewriting. Then, using the new approach, they 
give a simple criterion and a corresponding algorithm for identifying 
redundant view answers, which are view answers that can be ignored 
when evaluating the maximal contained rewriting. Finally, for queries 
and views that do have nodes labeled *,they provide a method to find 
the maximal contained rewriting and show how to answer the query 
using views without explicitly finding the rewritings. 
       View-based query processing requires answering a query posed 
to a database only on the basis of the information on a set of views, 
which are again queries over the same database[4].This problem is 
relevant in many aspects of database management, and has been 
addressed by means of two basic approaches: query rewriting and 
query answering. In the former approach, one tries to compute a 
rewriting of the query in terms of the views, whereas in the latter, one 
aims at directly answering the query based on the view extensions. 
They study view based query processing for the case of regular-path 
queries, which are the basic querying mechanisms for the emergent 
field of semi structured data. Based on recent results, They first show 
that a rewriting is in general a co-NP function wrt to the size of view 
extensions. Hence, the problem arises of characterizing which 
instances of the problem admit a rewriting that is PTIME. A second 
contribution of the work is to establish a tight connection between 
view based query answering and constraint satisfaction problems, 
which allows us to show that the above characterization is going to be 
difficult. As a third contribution, we present two methods for 
computing PTIME rewritings of specific forms. The first method, 
which is based on the established connection with constraint 
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satisfaction problems, gives us rewritings expressed in Data log with 
a fixed number of variables. The second method, based on automata-
theoretic techniques, gives us rewritings that are formulated as unions 
of conjunctive regular-path queries with a fixed number of variables. 

 
The problem of query rewriting for TSL, a language for querying 
semi structured data is addressed [5]. They develop and present an 
algorithm that, given a semi structured query q and a set of semi 
structured views V, finds rewriting queries, i.e., queries that access 
the views and produce the same result as q. The algorithm is based on 
appropriately generalizing containment mappings, the chase, and 
unication techniques that were developed for structured, relational 
data. We also develop an algorithm for equivalence checking of TSL 
queries. We show that the algorithm is sound and complete for TSL, 
i.e., it always finds every TSL rewriting query of q, and we discuss its 
complexity. They extend the rewriting algorithm to use available 
structural constraints (such as DTDs) to find more opportunities for 
query rewriting. We currently incorporate the algorithm in the 
TSIMMIS system. 
The problem of maintaining materialized views of graph structured 
data was studied [6]. The base data consists of records containing 
identifiers of other records. The data could represent traditional 
objects (with methods, attributes, and a class hierarchy), but it could 
also represent a lower level data structure. They define simple views 
and materialized views for such graph structured data, analyzing 
options for representing record identity and references in the view. 
We develop incremental maintenance algorithms for these views. 
[7]Developers of rapidly growing applications must be able to 
anticipate potential scalability problems before they cause 
performance issues in production environments. A new type of data 
independence, called scale independence, seeks to address this 
challenge by guaranteeing a bounded amount of work is required to 
execute all queries in an application, independent of the size of the 
underlying data. While optimization strategies have been developed 
to provide these guarantees for the class of queries that are scale-
independent when executed using simple indexes, there are important 
queries for which such techniques are insufficient. Executing these 
more complex queries scale-independently requires precomputation 
using incrementally-maintained materialized views. However, since 
this precomputation effectively shifts some of the query processing 
burden from execution time to insertion time, a scale-independent 
system must be careful to ensure that storage and maintenance costs 
do not threaten scalability. In this paper, we describe a scale 
independent view selection and maintenance system, which uses 
novel static analysis techniques that ensure that created views do not 
themselves become scaling bottlenecks. Finally, we present an 
empirical analysis that includes all the queries from the TPC-W 
benchmark and validates our implementation’s ability to maintain 
nearly constant high quantile query and update latency even as an 
application scales to hundreds of machines. 
[8]To make query answering feasible in big datasets, practitioners 
have been looking into the notion of scale independence of queries. 
Intuitively, such queries require only a relatively small subset of the 
data, whose size is determined by the query and access methods 
rather than the size of the dataset itself. This paper aims to formalize 
this notion and study its properties. We start by defining what it 
means to be scale-independent, and provide matching upper and 
lower bounds for checking scale independence, for queries in various 
languages, and for combined and data complexity. Since the 
complexity turns out to be rather high, and since scale-independent 
queries cannot be captured syntactically, we develop sufficient 
conditions for scale independence. We formulate them based on 
access schemas, which combine indexing and constraints together 
with bounds on the sizes of retrieved data sets. We then study two 
variations of scale independent query answering, inspired by existing 
practical systems. One concerns incremental query answering: we 
check when query answers can be maintained in response to updates 
scale-independently. The other explores scale independent query 
rewriting using views. 

The design and the evaluation of the ADMS optimizer was 
described[9]. Capitalizing on a structure called Logical Access Path 
Schema to model the derivation relationship among cached query 
results, the optimizer is able to perform query matching coincidently 
with the optimization and generate more efficient query plans using 
cached results. The optimizer also features data caching and pointer 
caching, different cache replacement strategies, and different cache 
update strategies. An extensive set of experiments were conducted 
and the results showed that pointer caching and dynamic cache 
update strategies substantially speedup query computations and, thus, 
increase query throughput under situations with fair query correlation 
and update load. The requirement of the cache space is relatively 
small and the extra computation overhead introduced by the caching 
and matching mechanism is more than offset by the time saved in 
query processing. 
The prevalent use of XML highlights the need for a generic, flexible 
access-control mechanism for XML documents that supports efficient 
and secure query access, without revealing sensitive information to 
unauthorized users 10]. A novel paradigm for specifying XML 
security constraints and investigates the enforcement of such 
constraints during XML query evaluation is introduced. The approach 
is based on the novel concept of security views, which provide for 
each user group (a) an XML view consisting of all and only the 
information that the users are authorized to access, and (b) a view 
DTD that the XML view conforms to. Security views effectively 
protect sensitive data from access and potential inferences by 
unauthorized users, and provide authorized users with necessary 
schema information to facilitate effective query formulation and 
optimization. We propose an efficient algorithm for deriving security 
view definitions from security policies (defined on the original 
document DTD) for different user groups. We also develop novel 
algorithms for XPath query rewriting and optimization such that 
queries over security views can be efficiently answered without 
materializing the views. Our algorithms transform a query over a 
security view to an equivalent query over the original document, and 
effectively prune query nodes by exploiting the structural properties 
of the document DTD in conjunction with approximate XPath 
containment tests. Our work is the first to study a flexible, DTD-
based access-control model for XML and its implications on the 
XML query-execution engine. Furthermore, it is among the first 
efforts for query rewriting and optimization in the presence of general 
DTDs for a rich class of XPath queries. An empirical study based on 
real-life DTDs verifies the effectiveness of our approach. 
[11] Graph pattern matching is typically defined in terms of subgraph 
isomorphism, which makes it an np-complete problem. Moreover, it 
requires bijective functions, which are often too restrictive to 
characterize patterns in emerging applications. They  proposed a class 
of graph patterns, in which an edge denotes the connectivity in a data 
graph within a predefined number of hops. In addition, we define 
matching based on a notion of bounded simulation, an extension of 
graph simulation. We show that with this revision, graph pattern 
matching can be performed in cubic-time, by providing such an 
algorithm. We also develop algorithms for incrementally finding 
matches when data graphs are updated, with performance guarantees 
for dag patterns. We experimentally verify that these algorithms scale 
well, and that the revised notion of graph pattern matching allows us 
to identify communities commonly found in real-world networks. 
[12]They presented algorithms for computing similarity relations of 
labeled graphs. Similarity relations have applications for the 
refinement and verification of reactive systems. For finite graphs, we 
present an O(mn) algorithm for computing the similarity relation of a 
graph with n vertices and m edges (assuming m  n). For effectively 
presented infinite graphs, we present a symbolic similarity-checking 
procedure that terminates if a finite similarity relation exists. We 
show that 2D rectangular automata, which model discrete reactive 
systems with continuous environments, define effectively presented 
infinite graphs with finite similarity relations. It follows that the 
refinement problem and the 8CTL model-checking problem are 
decidable for 2D rectangular automata. 
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Describing social positions and roles is an important topic within 
social network analysis. One approach is to compute a suitable 
equivalence relation on the nodes of the target network [13]. One 
relation that is often used for this purpose is regular equivalence, or 
bisimulation, as it is known within the field of computer science. In 
this paper we consider a relation from computer science called 
simulation relation. Simulation creates a partial order on the set of 
actors in a network and we can use this order to identify actors that 
have characteristic properties. The simulation relation can also be 
used to compute simulation equivalence which is a less restrictive 
equivalence relation than regular equivalence but is still computable 
in polynomial time. This paper primarily considers weighted directed 
networks and we present definitions of both weighted simulation 
equivalence and weighted regular equivalence. Weighted networks 
can be used to model a number of network domains, including 
information flow, trust propagation, and communication channels. 
Many of these domains have applications within homeland security 
and in the military, where one wants to survey and elicit key roles 
within an organization. Identifying social positions can be difficult 
when the target organization lacks a formal structure or is partially 
hidden. 
 

III. METHODLOGY 

Determining Pattern Containment 
 

To do this, we first propose a sufficient and necessary 
condition to characterize pattern containment. We then develop a 
cubic time algorithm based on the characterization. Sufficient and 
necessary condition. To characterize pattern containment, we 
introduce a notion of view matches. Consider a pattern query Qs and 
a set V of view definitions. For each V 2 V, let VðQsÞ ¼ fðeV; SeVÞ 
j eV 2 Vg, by treating Qs as a data graph. Obviously, if V E Qs, then 
SeV is the nonempty match set of eV for each edge eV. We define the 
view match from V to Qs, denoted by MQsV , to be the union of SeV 
for all eV in V. 
Minimal Containment Problem: 

Given a pattern query Qs and a set V of view definitions,it 
returns either a nonempty subset V0 of V that minimally contains Qs, 
or ; to indicate that Qs 6v V. 
Algorithm minimal initializes (1) an empty set V0 for selected views, 
(2) an empty set S for view matches of V0,and (3) an empty set E for 
edges in view matches. It also maintains an index M that maps each 
edge e in Qs to a set of views. Similar to algorithm contain, minimal 
first computes MQsVi for all Vi 2 V. In contrast to contain that 
simply merges the view matches, it extends S with a new view match 
MQsVi only if MQsVi contains a new edge not in E, and updates M 
accordingly. The for loop stops as soon as E ¼ Ep, as Qs is already 
contained in V0. If E 6¼ Ep after the loop, it returns, since Qs is not 
contained is V . The algorithm then eliminates redundant views, by 
checking whether the removal of Vj causes MðeÞ¼ ; for some e2 
MQsVj. If no such e exists, it removes Vj from V0. After all view 
matches are checked, minimalreturns V0. 
The algorithm is denoted as minimum. Given a pattern Qs and a set V 
of views, 
minimum identifies a subset V0 of V such that (1) Qs v V0 ifQs v V 
and (2) cardðV0Þ _ log ðjEpjÞ _ cardðVOPTÞ, whereVOPT is a 
minimum subset of V that contains Qs. That is, the approximation 
ratio of minimum is OðlogjEpjÞ, where jEpj is typically small. The 
algorithm iteratively finds the “top” view whose 
view match can cover most edges in Qs that are not yet covered.To 
do this, we define a metric aðVÞ for a view V, whereaðVÞ ¼ jMQsV 
n EcjjEpj:Here Ec is the set of edges in Ep that have been covered 
byselected view matches, and aðV Þ indicates the amount 
ofuncovered edges that MQsV covers. We select V with the largesta 
in each iteration, and maintain a accordingly. Similar to minimal, 
algorithm minimum computes the view match MQsVi for each Vi 2 
V, and collects them in a set S. It then does the following. (1) It 

selects view Viwith the largest a, and removes MQsVifrom S. (2) 
Itmerges Ec with MQsViif MQsVicontains some edges that arenot in 
Ec, and extends V0 with Vi. During theloop, if Ec equals Ep, the set 
V0 is returned. Otherwise,minimum returns indicating that Qs 6v V. 
Maximally Contained Rewriting 
 

A pattern query Qs0 is a subquery of Qs, denoted as Qs0 _ 
Qs, if it is an edge induced subgraph of Qs, i.e., Qs0 is a subgraph of 
Qs consisting of a subset of edges of Qs, together with their endpoints 
as the set of nodes. Query Qs0 is called a contained rewriting of Qs 
using a set V of view definitions if_ Qs0 _ Qs, i.e., Qs0 is a subquery 
of Qs, and_ Qs0 v V, i.e., Qs0 can be answered using V. Such a 
rewriting Qs0 is a maximally contained rewriting ofQs using V if 
there exists no contained rewriting Qs00 such that Qs0 Qs00, i.e., 
there exists no larger contained rewritingQs00 with more edges than 
Qs0.Query-driven approximation scheme. When Qs is not contained 
in V, we can still efficiently answer Qs in a (possibly 
big) graph G following two approaches. (1) One may firs tidentify a 
maximally contained rewriting Qs0 of Qs using V,and then compute 
Qs0ðGÞ as approximate answers to Qs, bysimply invoking the 
algorithm MatchJoin. (2) Alternatively, one may compute exact 
answers QsðGÞ by using Qs0ðGÞ and by accessing a small fraction 
GQs of G, such thatQsðGÞ ¼ Qs0ðGÞ [ fðGQs Þ. Here fðGQs Þ first 
locates thematches of Qs0ðGÞ in the original graph G and then 
verifies the matches for Qs by visiting neighborhood of those 
matches, a small number of nodes and edges in G that constitute GQs 
; this is the approach suggested, referred 
to as scale-independent query answering using views there. Due to 
the space constraint, we focus on approximate answersQs0ðGÞ in this 
paper. That is, when limited views are available, we can still 
approximately answer pattern queries in 
big graphs by relaxing Qs to maximally contained rewritingQs0, 
using those views. Accuracy. Given a graph G, we measure the 
quality of the approximate answers Qs0ðGÞ versus the true matches 
in the exact answers QsðGÞby following the F-measure: 

 
Acc ¼ 2 _ ðrecall _ precisionÞ=ðrecall þ precisionÞ; 

 
where recall = #true matches found #true matches , and precision 
=#true matches found # matches . Here #matches is the number of all 
(edge)matches found by Qs0ðGÞ using views, #true matches is the 
number of all matches in QsðGÞ; and #true matches found is the 
number of all the true matches in both Qs0ðGÞ and QsðGÞ. 
Intuitively, a high precision means that many matches inQs0ðGÞ are 
true matches, and a high recall means Qs0ðGÞcontains most of the 
true matches in QsðGÞ. The larger Acc that can be induced by Qs0, 
the better. If Qs0 is equivalent toQs, i.e., Qs0ðGÞ = QsðGÞ for all G, 
Acc takes the maximum value 1:0. Observe that for any edge e in Qs, 
if e is covered by Qs0, then for any G, the match set Se of e in QsðGÞ 
is asubset of the match set S0eof e in Qs0ðGÞ; that is, Qs0ðGÞ finds 
all candidate matches of e in G. 

   

IV. RESULTS AND DISCUSSIONS 

            The criteria for comparing the methods of XML queries and 
graph pattern queries 

• Accuracy − Accuracy of classifier refers to the ability of 
classifier. It predict the class label correctly and the 
accuracy of the predictor refers to how well a given 
predictor can guess the value of predicted attribute for a 
new data. 

• Speed − This refers to the computational cost in generating 
and using the classifier or predictor. 



S.T.Deepa et al., International Journal of Advanced Research in Computer Science, 9 (Special Issue 1), February 2018,82-85 

Conference Paper: International Conference on “Recent Advances in Computing and Communication” 
Organized by: Department of Computer Science, SSS Shasun Jain College for Women, Chennai, India       85 

• Robustness − It refers to the ability of classifier or 
predictor to make correct predictions from given noisy 
data. 

• Scalability − Scalability refers to the ability to construct 
the classifier or predictor efficiently; given large amount 
of data. 

Interpretability − It refers to what extent the classifier or 
predictor understands 

 
The performance of the both the queries are analysed. 

 
Method Performance % 

25 queries 50 queries 100 
queries 

XML 
queries 85         90 91 

Graph 
pattern queries  91 96 97 

 

 
 

V. CONCLUSION 

We have proposed a notion of pattern containment to 
characterize what pattern queries can be answered using views, and 
provided such an efficient matching algorithm. We have also 
identified three fundamental problems for pattern containment, 
established their complexity, and developed effective 
(approximation)algorithms. When a pattern query is not contained in 
available views, we have developed efficient algorithms for 
computing maximally contained rewriting using views to get 
approximate answers. Our experimental results have verified the 
efficiency and effectiveness of our techniques. These results extend 
the study of query answering using views from relational and XML 
queries to graph pattern queries. Finally, to find a practical method to 
query “big” social data, one needs to combine techniques such as 
view-based, distributed, incremental, and compression methods. The 
efficiency and effectiveness of the technique are verified through 

experimental results. The study of query answering is extended from 
These results extend the study of query relational to graph pattern 
queries.  
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