
DOI: http://dx.doi.org/10.26483/ijarcs.v9i2.5574

Volume 9, No. 2, March-April 2018

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 211

ISSN No. 0976-5697

ASPECT-ORIENTED SOFTWARE TESTING TECHNIQUES: A REVIEW

Dr. Sandeep Dalal,
Assistant Professor, Maharshi Dayanand University,

 Rohtak, Haryana, India

 Susheela Hooda
Research Scholar, Maharshi Dayanand University,

 Rohtak, Haryana, India

Abstract: Software testing is a prominent area of research as it ensures the quality and reliability of the software. Testing an aspect-oriented
software is also the latest area of research. Although, research in aspect-oriented software testing has reported a couple of new testing
techniques. But, there is no work yet indicated in the literature as studied, to focus on the relationship of aspect-oriented software testing
techniques with traditional software testing techniques. Therefore, this position paper handles this shortcoming and presents the basic concepts
of aspect-oriented programming, phases of aspect-oriented software development life cycle and testing phases for new researchers to gather the
information on the subject. This paper also presents comprehensive details about the relationship of aspect-oriented software testing techniques
with other traditional testing techniques.

Keywords: Aspect-Oriented programming (AOP), Testing Phases, Aspect-oriented software development life cycle, Aspect-oriented
programming paradigm (AOPP), Aspect-oriented software system (AOSS).

I. INTRODUCTION

Aspect-oriented programming (AOP) was started in1997 at
Xeox’s PARC laboratories with the introduction of the
“AspectJ” programming language[1].The main purpose was to
introduce AOP , to address the issues of the separation of
crosscutting concern such as security, logging, transaction
from the logic of the main application. According to Jacobson
et.al. [2], concerns reflect the system requirements.
Requirements are prioritized according to the user. For
example, in a train control system, breaks of train can be a
primary concern. Security and safety are considered as policy
concern, performance and reliability consider as quality of
service concern. Apart from primary concerns, all concerns
come under crosscutting concerns.

In traditional programming languages such as procedural and
object-oriented languages, functional and non-functional
requirements are twine together. Programs are developed
using the concept of abstraction. Main constructs of these
traditional programming paradigm are procedures and classes.
Each construct addresses the functional properties as well as
non-functional properties. But, in case of aspect-oriented
programming paradigm, application’s logic is divided into two
concerns: 1) Primary concern or functional properties and 2)
Crosscutting concern or non-functional properties. This
technique leads to advance the modular programming with a
new effective means of software development. The goal of
aspect-oriented programming is to enhance the concepts of
reusability, maintainability, security etc. Large and complex
applications can be developed easily with aspect-oriented
programming paradigm (AOPP). So, AOPP coping with
complexity and helps to achieve the quality software.

Figure 1 shows the concept of aspect-oriented programming
by considering banking information system in which
withdrawal transaction and transfer transaction are the primary
concerns. These concerns are associated with the system’s
primary purpose. Authentication, authorization and logging

are also considered as security requirements. These security
requirements are consider as crosscutting concern.

Withdraw
Transaction

Transfer
Transaction

Cross-Cutting
Concerns

Authorization

Authentication

Logging

CrossCutting Concern

Core Concern

Figure 1 Concepts of Core and Crosscutting Concerns

II. ASPECT-ORIENTED SOFTWARE DEVELOPMENT

PHASES

The main aim of aspect-oriented programming is to improve
the modularity of the software system in order to make system
easier and manageable. Therefore, aspect-oriented
programming introduces an extra abstraction mechanism
known as aspect. Various software development models have
been used in the industry in order to satisfy the need of the

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 211-216

© 2015-19, IJARCS All Rights Reserved 212

business [3].Figure 2 shows the phases of software
development life cycle (SDLC).Each phase of the SDLC
performs certain prominent activity. But, in aspect-oriented
programming (AOP), each phase of SDLC performs a
different role.

Design

Maintenance Implementation

Testing

Figure 2. Software Development Life Cycle

Various role of AOP in each phase of SDLC has been
described below [4]:-

2.1 Design phase:-
Design phase specifies the way to develop the software.
Figure 3 shows the different activities to be performed in
design phase of AOP.

• Crosscutting Concerns Recognition
• Initial Design Core Concern
• Crosscutting Concerns Designed

Design
Phase

Initial Design
Core

Concerns

Crosscutting
Concern
Design

Crosscutting
Concern

Recognization

Design The Core
Concerns Which

Simplify The
Viewing Rules

Define The
Crosscutting

Concerns

Maps
Requirements

to Modules

Figure 3. Activities of AOP in Design Phase

2.2 Implementation Phase

In the implementation phase, core and crosscutting concerns
are implemented in aspect-oriented programming based
languages such as AspectJ, AspectC++ etc. Almost all
processes and methodologies are same between OOP and
AOP in implementation phase. The following tasks have to be
performed in AOP during the implementation of crosscutting
concerns are:-

• Join points identification

Identify the places in the code where crosscutting
behaviour is needed.

• Aspect Design
Aspects are designed using consistent patterns so that
join points can be easily captured inside the aspects.

2.3 Testing Phase

After completing the design and implementation phase, testing
phase is starting to execute the algorithm with test data to
make sure that it has no logical errors. The most important
activity is performed by the tester in AOP is to consider
weaving process of aspects and imagine how a program will
behave after weaving the aspects.

2.4 Maintenance Phase

This phase is considered as a most important phase in SDLC
because much development effort goes toward maintenance.
The following tasks are handle in this phase:-

• Creating protection walls
This feature prevents the system from the new
changes.

• Implementing new features
In this task, new crosscutting concerns are
implemented.

III. ASPECT-ORIENTED SOFTWARE TESTING
PHASES

However, AOP increases the quality and reliability of the
software but it does not take alone the responsibility to
minimize the errors. Developers and programmers might make
several types of mistakes in the program such as typological
errors, wrong interpretation of user’s requirements, prepare
incorrect system design documents etc. Therefore, aspect-
oriented programming paradigm could not be error free.
Moreover, new constructs and features of aspect-oriented
programming paradigm will introduce new types of faults.
There should be a different mechanism to handle the AOP
faults. Therefore, traditional testing techniques could not be
directly applied to test aspect-oriented program. Henceforth,
there should be a different approach to test AOP.

Various activities need to be performed while testing an
aspect-oriented software system. These activities are
categorized into three steps as shown below in Figure 4.

3.1 Creating Test Cases

Test cases of the program are created with little modification
of the behavior.

3.2 Implementing Performance Testing

Many performance related problems occurred during the
software deployment but these problems never faced during
development phases. But one can able to handle these
problems by using the dynamic profiling mechanism with
AOP.

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 211-216

© 2015-19, IJARCS All Rights Reserved 213

Reporting Errors

Implementing
Performance

Testing

Creating Test Cases

Figure 4.Aspect-Oriented Software Testing Phases

3.3 Reporting Errors

Aspects are used to collect the useful context. This flexible
collection context can be used when problems may occur.

IV. TEST METHODS FOR ASPECT-ORIENTED
SOFTWARE SYSTEM

In this section, various testing methods for aspect oriented
software have been presented. Testing approaches are
classified in order to make a clear understanding of testing
approaches for AOSS. Figure 5 shows the classifications of
testing methods for AOSS [5].

4.1 Data and control flow graph based testing

Data and flow graph are basically used to represent the
structure of the software system. Thereafter, this graphical
representation of the system is used to derive the test cases.
The following testing methods are based on data and flow
graph to evaluate the test cases for AOSS.

Classification
of Testing

Methods for
AOSS

Data and
Control

Flow
Graph
Based

Testing

State
Model
Based

Testing

UML
Diagram

Based
Testing

Mutation
Testing

Random
Testing

Figure 5.Classification of Aspect-Oriented Software System
Testing Methods

Jhao[6] proposed a technique for selection of tests for two
types of units(aspects and classes) for an aspect-oriented
program which is based on control flow graph. This technique
is used to compute the pairs of an aspect or class which is
being tested. This technique is based on the concept of
traditional graph based testing. A. Lemos et.al. [7] proposed a
control and data flow model which supports structural testing

to test unit of aspect-oriented program written in AspectJ. This
paper has also proposed an approach for aspect-oriented
programs by using data and control flow graphs. F. Wedyan
et.al.[8] proposed a data flow testing approach for AOP in
which various new data flow coverage criteria have been
defined.

4.2 State model based testing

State models are used to represent the different states of the
system and conditions allow to transit from one state to
another. State based testing methods for AOSS are discussed
below:-

W. Xu [9] proposed a testing approach based upon finite state
machine to test aspect oriented program. Moreover, this
approach was applied to various AOP problems to detect
various faults in AOP. This approach identifies both kinds of
faults; traditional faults and new faults which occur in AOP.
C. H. Liu et.al.[10] also proposed a testing technique for
aspect-oriented program which was based on object state
diagram and constructed a weaving model of crosscutting
concerns D. Xu et.al.[11] proposed a framework to test aspect
oriented program. This framework also helps to detect many
aspects fault. P. Wang [12] develop a tool to select test cases
automatically. This approach applies to the basics of standard
testing technology to select test cases.

 4.3 UML diagram based testing

Test cases can be easily derived from the UML diagrams like
activity diagram, collaboration diagram, state diagram etc.
There are various testing techniques available for AOP. Some
of testing techniques based on UML diagrams have been
discussed below:-

M. Badri et. al.[13] proposed a technique based on UML state
chart diagram to test unit individually for aspect-oriented
programs(AOPs).Test cases are generated to find those faults
which occur during the weaving process(Weaving means
integrating aspects with classes).P. Massicotte et. al.[14] also
proposed a technique for integration testing to integrate
aspects with classes using collaboration diagram which covers
various coverage criteria. In aspect-oriented program,
integration of aspects with base classes. Moreover, a new kind
of faults would occur during the integration of aspects with
base classes. Therefore, P. Massicotte et.al.[15] proposed a
new integration testing approach for aspect-oriented program.
Although this approach is adopted from traditional integration
testing but it completes its testing process in two steps: 1) test
sequences are derived from the interaction of aspects with
classes and 2) then verifies these test sequences. The proposed
approach is based on collaboration diagram. One more
incremental testing technique was also proposed by D. Xu et.
al.[16] using the UML state diagram. This approach enhances
the concept of reusability.

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 211-216

© 2015-19, IJARCS All Rights Reserved 214

 Madadpour et.al.[17] also proposed a AOP testing approach
which is based on UML activity diagram. In this approach,
aspects (cross cutting concerns) are integrated with base class
(primary concern) and this approach helps to detect faults
which commonly occurred during the integration. C. Kaur
et.al.[18] was extended the work of [16]. S. Dalal et. al. [19]
was developed a tool to automate the work to detect faults
occurred during the integration process.

 4.4 Mutation testing

 Mutation testing takes the program and design various
mutants by making small changes in the original program.
Mutation based testing approaches for AOP as discussed
below:-

R. T. Alexander [20] proposed a fault model to handle the
errors which occur during weaving process of aspects with the
base class. M. Mortensen et.al. [21] also proposed a
framework for fault based testing for AOP which supported
various coverage criteria like statement, insertion, context and
def-use coverage.

C. Babu et.al.[22] proposed an approach to detect various
types of faults which occurs during the composition of aspects
in AOP. This paper also proposed a fault model which caters
to identify faults in the earlier phases of software development
life cycle process. This approach extends the concept of
modularity used in object-oriented programming paradigm.
A.A. Ghani et.al. [23] also proposed a semantic mutation
testing for aspect oriented programs which mutates the
semantic of the language in which the program is written. This
approach is considered as a complementary over syntactic
mutation testing types of faults.

C. Zhao et.al. [24] proposed an approach to test AspectJ
program which is based on fault model. Furthermore,
interaction model and dependency model help to derive fault
model. F. C. Ferrari et.al. [25] proposed automated mutation
testing for aspect-oriented programs where they designed the
mutation operators using AspectJ programming language.
This paper covers many traditional faults as well as aspect-
oriented faults.

4.5 Random testing

Random testing generates the test cases randomly and it is
very simple and less costly technique. Only a few papers have
devoted to test AOP using random testing technique. R. M.
Parizi et.al. [26] proposed a framework for random testing
technique to test an aspect-oriented program. This framework
caters to generate random input and selection strategy for
AOP.

V. DEPENDENCY OF ASPECT-ORIENTED
SOFTWARE TESTING TECHNIQUES OVER

TRADITIONAL SOFTWARE TESTING TECHNIQUES

This section describes the relationship between the traditional
approaches for traditional software development and proposed
testing approaches of aspect oriented software. However, an
aspect-oriented program (written in AspectJ) with classes,
methods, packages and interfaces is similar to object-oriented
program (written in Java). But, aspect weaving programs can
affect the types of faults commonly found in traditional
programming (i.e. object oriented programs and procedural
programs).Clearly, AOPs contain some different faults.
Therefore, fault handling mechanism could be different from
traditional programming but somewhat similar. Therefore,
according to Amman et.al.[27],four types of models 1)Graph
based 2)Code based 3) Domain Reduction and 4) Syntactic
Structure models have been used to develop the sequential
software. Moreover, test methods are also categorized into
four types based on the model on which software is based on.

5.1 Graph - based coverage

Graph-based coverage means the way to evaluate test set
according to graphical representation of the software. Graph
based coverage criteria is divided into two types:-

1) Control Flow Graph
2) Data Flow Graph

5.2 Code based coverage

Code based coverage criteria have increased in recent time.
Logic expressions are derived from the decision points of the
program, finite state machines, state charts and requirements.

5.3 Domain partitioning based coverage

Domain partitioning means to divide the input space based on
the requirement. This technique can be applied to each level of
testing like unit testing, integration testing and system testing.

5.4 Syntax based coverage

In syntax based coverage criteria, tests are derived from the
syntax of the software. Syntax is based on the programming
language‘s grammar rules in which program is developed.

Table 1 shows the dependence of aspect-oriented testing
methods over traditional testing methods and. (The symbol
“”=based on traditional methods, “ ”=not yet determined).

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 211-216

© 2015-19, IJARCS All Rights Reserved 215

Table 1.Dependency of aspect-oriented software testing techniques over traditional software testing techniques

Reference Aspect-Oriented Testing
Methods

Traditional Testing Methods
Graph Based Testing Code

Based
Testing

Domain
Reduction
Based
Testing

Syntax
Based
Testing Data Flow

Based Testing
Control Flow
Based Testing

J.
Zhao[2003]

Data-flow-based unit testing of
aspect-oriented programs

W.Xu et
al[2004]

Aspect flow graph for testing
aspect-oriented programs

D. Xu et
al[2005]

A State-based approach to testing
aspect-oriented programs

M. Badri et
al[2005]

Generating unit test sequence for
aspect-oriented programs:
Towards a formal approach using
UML state diagrams

P.
Massicotte et
al[2005]

Generalizing aspects-classes
integration testing sequences: a
collaboration diagram based
strategy

D. Xu et
al[2006]

State based incremental testing of
aspect-oriented programs

O.A.Lemos
et.al.[2007]

Control and data flow structural
testing criteria for aspect-oriented
programs

C.H.Liu
et.al.[2008]

A state-based testing approach
 for aspect-oriented
programming

C.Babu et
al[2009]

Fault model and test-case
generation for the composition of
aspects

M.Badri et
al[2009]

Automated state-based unit testing
for aspect-oriented programs: A
supporting framework

D.Xu et
al[2010]

Testing aspect-oriented programs
with finite machine

F. Wedyan
et.al.[2010]

A Data Flow Testing Approach for
Aspect-Oriented Programs”

S.
Madadpour
et.al.[2011]

Testing Aspect-Oriented Programs
with UML Activity Diagrams

 R.M. Pairzi
et al [2011]

On the preliminary adaptive
random testing of aspect-oriented
programs

C. Kaur et
al[2012]

Testing Aspect-Oriented Software
Using UML Activity Diagram

P. Wang
et.al[2012]

The Research of Automated Select
Test Cases for Aspect-Oriented
Programs

A.A.Ghani
et.al.[2013]

Towards Semantic Mutation
Testing of Aspect-Oriented
Programs

S.Dalal
et.al.[2017]

Automated Test Sequence
Generation of Aspect-Oriented
Programs based upon UML
Activity Diagram

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (2), March-April 2018, 211-216

© 2015-19, IJARCS All Rights Reserved 216

VI. CONCLUSION

This position paper briefly evaluates the significance of
aspect-oriented software paradigm, software development life
cycle, software testing phases and various testing methods of
AOSS. This paper also caters to comprehensive analyze the
relationship between aspect-oriented software testing methods
and traditional testing methods. This paper helps the testers to
choose a particular testing technique based on his /her
requirements regardless of trying all testing techniques.

REFERENCES

[1] I. Sommerville, Software Engineering, PHI, 2010
[2] I. Jacobsen and Ng, “Aspect oriented Software

Development with Use Cases”, Boston: Addison-Wesley.
[3] S. Dalal and R. Chhiller, “Software Testing Three-P’

Paradigms and Limitations,” International Journal of
Computer Applications, Vol. 54, No. 12, pp.49-54, Sept.
2012.

[4] D. Vulture, “Aspect-Oriented Programming in Design
Phases”, Available at:
https://www.todaysoftmag.com/article/1427/aspect-
oriented- programming-in-design-phases.

[5] K. Banik, “Investigation of Methods for Testing Aspect
Oriented Software,” University of Skovde, Master Degree
2013.

[6] J. Zhao, “Data-flow-based unit testing of aspect-oriented
programs,” Proc. Of Conference On Computer Software
and Applications Conference, pp.188-197, Dec. 2003.

[7] O. A. L. Lemos, A. M. R. Vincenzi, J. C .Maldonado and
P. C. Masiero, “Control and data flow structural testing
criteria for aspect-oriented programs”, Journal of System
and Software, Vol. 80, Issue 6,pp.862-882,2007.

[8] F. Wedyan and S. Ghosh, “A Data Flow Testing Approach
for Aspect-Oriented Programs”, IEEE International
Symposium on High Assurance System Engineering, pp.64-
73, 2010.

[9] W. Xu, “Testing aspect-oriented programs with state
models”, PhD Dissertation, North Dakola State University
of Agriculture and Applied Science, May 2007.

[10] C. H. Liu and C. W. Chang, “A state-based testing approach
 for aspect-oriented programming”, Journal of Information
 Science and Engineering, pp.11-31, 2008.
[11] D. Xu, O. El-Ariss, W. Xu and L. Wang, “Testing aspect-
 Oriented programs with finite machine”, Journal of

Software Testing Verification and Reliability, Vol.24, Issue
4, pp.267-293.2010.

[12] P. Wang and X. Zhao, “The Research of Automated Select
 Test Cases for Aspect-Oriented Programs”, in Proc. of
 the International Conference on Mechanical ,Industrial and
 Manufacturing Engineering, 2012. doi:

10.1016/j.ieri.2012.06.002
[13] M. Badri, L. Badri and M. Bourque-Fortin, “Generating

unit test sequence for aspect-oriented programs. In Proc .of
the 3rd International Conference on Information and

Communication Technology, IEEE Computer Society
Press,Cario,Egypt,Dec.2005.

[14] P. Massicotte, L. Badri and M. Badri, “Generalizing
aspects-classes integration testing sequences: a
collaboration diagram based strategy”, Proc. Of the 3rd
International Conference on Software Engineering
Research, Management and Applications, IEEE Computer
Society Press, Aug. 2005.

[15] P. Massicotte, L. Badri and M. Badri, “Aspects-classes
integration testing strategy: an incremental approach”,2nd
International Workshop on Rapid Integration of Software
Engineering Techniques, Lecture Notes in Computer
Science,Sept.2005.

[16] D. Xu and W. Xu, “State based incremental testing of
aspect-oriented programs”, Proc. of the 5th International
Conference on Aspect-Oriented Software Development,
pp.180-189, Mar. 2006.

[17] S. Madadpour and S. H. M. Hosseinbadi, “Testing Aspect-
Oriented Programs with UML Activity Diagram”,
International Journal of Computer Science and
Applications, Vol.33, No.8, pp.4-11, Nov. 2011.

[18] C. Kaur and S. Garg, “Testing Aspect-Oriented Software
Using UML Activity Diagram”, International Journal of
Engineering Research and Technology, Vol.1, Issue 3, May
2012.

[19] S. Dalal and S. Hooda, “Automated Test Sequence
Generation of Aspect-Oriented Programs based upon UML
Activity Diagram”, International Journal of Engineering
and Technology, Vol.9, No.2, May 2017.

[20] R. T. Alexander, J. M. Bieman and A. A. Andrews,
“Towards the systematic testing of aspect-oriented
programs,” Technical Report, Colorado State University,
Fort Collins, 2004. .

[21] M. Mortensen and R.T. Alexander, “Adequate testing of
aspect-oriented programs,” Technical Report, Department
of Computer Science, Colorado State University, USA,
Dec.2004.

[22] C. Babu and H. R. Krishnan, “Fault model and test-case
generation for the composition of aspects”, SIGSOFT
Software Engineering Notes, 2009. Vol. 34, No. 1, 2009,
pp. 1-6. http://dx.doi.org/10.1145/ 1457516.1457521

[23] A.A.A .Ghani, “Towards Semantic Mutation Testing of
Aspect-Oriented Programs”, Journal of Software
Engineering and Applications, Vol. 6, No.10 A,pp.5-
13,2013.

[24] C. Zhao and R. T. Alexander, “Testing AspectJ programs
using fault-based testing”, in proceeding of the 3rd
Workshop on Testing Aspect-Oriented Programs,
Vancouver, 12-13 pp.13-16,Mar. 2007.

[25] F. C. Ferrari, A. Rashid, E. Y. Nakagawa and J. C.
Maldonado, “Automating the mutation testing of aspect-
oriented Java programs”, in proceeding of the 5th
Workshop on Automation of Software Test (AST’10),
pp.51-58, May 2010.

[26] R. M. Parizi and A.A.A.Ghani,“On the preliminary
adaptive random testing of aspect-oriented programs”, in
proceeding of the 6th International Conference on
Software Engineering Advances(ICSEA
2011),Barcelona,Spain,Oct.2011

[27] P. Amman and J. Offut, “Introduction to Software Testing”,
Cambridge University Press, 2008. ISBN: 978-0-521-
88038-1.

