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Abstract: Software defect prediction is considered as most interesting area for researchers in the field of software engineering. This process of
defect prediction, identifies the bug during automated testing process which prevents the development of faulty software module. According to
this process, previous archives of software modules are considered for analyzing the quality based on data mining and machine leaning concepts,
which identifies the faults in software modules. Several techniques have been presented for software defect prediction using data mining
techniques and machine learning techniques but achieving desired accuracy in performance is a challenging task for researchers. To address this
issue, in this work we have presented a new approach deep learning for software defect prediction by combining genetic algorithm optimization
process for feature subspace reduction and deep belief network for pattern learning. Deep belief networks are further improved by applying L1-
regularization scheme resulting in better learning process by reducing the overfitting error. This combined model is implemented on SPIE lab
software defect database. An extensive experimental study is carried out which shows that proposed approach achieves higher accuracy when

compared with state-of-the-art software defect prediction techniques.
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1. INTRODUCTION

Modern software modules and development techniques are
growing rapidly. Software based applications are widely
adopted in real-time & daily life scenarios. Maintaining the
quality and reliability is a critical issue in the software
industries and the growth of industry also depends on the
quality of software applications. Generally, huge software
applications are complex and failure —prone in nature which
is caused due to code defect/bugs during code development
[1]. In order to deal with this issue, researchers have found
that early prediction of bugs or code defects can improve the
quality of the software application. Various researches have
been carried out for early bug prediction which is known as
software defect prediction [2]. According to this process of
bug prediction, classifiers are built which predict the
defective area in the code which can help to the code
reviewers to allocate their effort for defected part instead of
analyzing complete code. This process is considered as most
cost-effective process of software quality management.

These techniques of software defect prediction are based on
the software metrics which can be computed from the
different levels of the software such as: file-level,
component-level, process-level, class-level, quantitative
level and method-level, which are used for software testing
purpose. Further, software defect prediction can be
performed by using statistical methods, machine learning
techniques, artificial intelligence techniques etc. In general,
software defect prediction technique contains two main
phases: feature extraction and classifier model development
using machine learning algorithm. Feature extraction
techniques are based on the development of discriminative
feature extraction technique for better defect prediction.
Features can be McCabe features, Halstead features and CK
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features for object-oriented programs. Meanwhile, various
machine learning algorithms such as SVM (Support Vector
Machine) [3], ANN (Artificial Neural Network) [3], DT
(Decision Tree) [4] and Naive Bayes etc. have been
developed for software defect prediction. However, existing
techniques suffer from multiple issues such as classification
performance and dataset training error. resulting in the
degraded performance analysis for software defect
prediction.  Unfortunately, performance of these
classification techniques still remain unaddressed issues for
researchers. In order to overcome this, researchers have
focused on the development of new sophisticated techniques
based on the machine learning. Recently, Mussa et al. [5]
presented software defect prediction technique for software
bug prediction where particle swarm optimization and
genetic algorithm are used for optimization process.
Software defect prediction identifies defective or non-
defective identities and attempts to reduce the
misclassification rate. For better performance, sophisticated
technique is used where in feature selection and two-stage
cost sensitive learning are incorporated. Similarly, Ryu et
al. [6] also introduced a hybrid approach where two
classifiers Nearest —Neighbor and Naive Bayes are used for
achieving local and global information of the data. These
techniques pose various challenges such as configuration
and validation of sophisticated techniques, optimization etc.
which may lead to improper identification of software bugs.
Hence, a general and efficient framework for software
defect prediction is required.

In order to develop the software defect prediction model,
data mining techniques have been adopted widely and for
analysis, open source software defect repositories such as
NASA software defect datasets [8] are used. These datasets
contains various metrics values such as LOC (Line of code),
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program length and number of blank lines etc. Based on
these attributes, a machine learning approach is
implemented which learns the complete pattern and returns
a trained datasets which is further used for testing purpose.
By considering data mining technique as base, Arar et al. [9]
developed a new approach for software defect prediction
using Naive Bayes classification scheme. To improve the
analysis, feature dependent naive Bayes classifier model is
developed where features are computed based on the
dependency on the other features.

For software defect prediction artificial intelligence also
plays important role. Quah et al. [10] discussed about the
software quality assessment using neural network modeling
by focusing on software maintenance and reliability. To
achieve this objective, ward neural network and general
regression neural network are presented. Similarly, Kanmani
et al. [11] also presented neural network based approach for
software defect prediction where two neural network models
are used along with object-oriented metrics. This study
shows that neural networks achieve better performance in
terms of defect prediction accuracy. Further, performance
of neural network can be enhanced by applying deep neural
network techniques. However, deep neural network models
are considered as prone to the overfitting error which may
lead to the inaccurate performance of software defect
prediction. These studies show that considerable amount of
research work has been carried out in this field of software
defect prediction but still prediction accuracy remains a
challenging task along with the development of general
framework for software defect prediction.

In order to overcome these issues, here we present an
improved technique of software defect prediction. As
discussed before neural network gives better performance
which can be further improved by using Deep Neural
Network (DNN) or Deep Belief Networks (DBN) due to its
significant learning scheme. However, DBN suffers from
the issue of overfitting. Hence, to deal with this issue, we
present L1-reguralization scheme. First we present a
classification study using DBN. Next, Genetic algorithm is
applied for feature optimization. The optimized features are
further processed through DBN using L1-regularization
scheme.

Rest of the article is organized as follows: Section
2describes recent studies in the field of software defect
prediction, proposed model is presented in section 3,
experimental analysis is demonstrated in section 4and
finally concluding remarks are given in section 5.

2. LITERATURE REVIEW
In this section we review the studies based on the software
defect prediction techniques. The problem of software
defect prediction can be considered as learning problem in
software engineering.  Several researches have been
reported on this topic. He et al. [2] discussed about the
software defect prediction techniques. Generally, software
defect prediction techniques utilize the historical data for
further software bug prediction but due to insufficient
dataset the desired performance cannot be achieved. This
issue can be addressed using metric set based evaluation for
training and testing dataset. First of all, authors created
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predictor model based on the six classifiers which are later
validated using Top-k metrics using statistical measurement.
A general framework is needed for software defect
prediction which can be used as benchmark for SDP.
Lessmann et al. [12] discussed about this issue and
presented an experimental study using 22 classifiers which
are tested for 10 publicly available databases. This technique
of software defect prediction depends on the feature
extraction techniques. Along with feature extraction, feature
selection and optimization plays important role. Several
studies have been presented on feature selection and
optimization techniques. In [13], Chen et al. presented a
combined model for software defect prediction where
feature selection and optimization are performed. Optimal
feature selection is considered as most challenging task.
Hence authors presented search based feature selection
techniques. Further, optimization process is carried out by
formulating a multi-objective optimization problem.
Similarly, Hosseini et al. [14] also focused on the feature
selection process for improving the Optimization. In this
work, nearest neighbor filtering scheme is implemented
along with genetic algorithm which helps to generate the
accurate validation sets. These sets can be considered for
training and testing dataset.

However, various techniques have been discussed for
software defect prediction but time and complexity remains
challenging and unaddressed issues. Sabharwal et al. [15]
presented a low complex technique for feature selection for
long search space. For this purpose, feature ranking based
scheme is implemented which performs search space
reduction and selection of feature subset. This process
performs both the tasks simultaneously which reduces the
computation time. Maua et al. [16] discussed about feature
optimization scheme wusing multi-population genetic
algorithm. In this process, multi-level selection algorithms
are involved which require additional optimization process.
To overcome this, authors presented multi-level genetic
algorithm for SDP by using different stages of selection. In
this process, colonization and migration operators are
considered along with multi-objective evolutionary
algorithm. Afzal et al. [17] focused on benchmarking the
feature extraction technique and reviewed feature subset
selection techniques. In this work, defect prediction
experiments are conducted by using information gain
attribute ranking (I1G); Relief (RLF); principal component
analysis (PCA); correlation-based feature selection (CFS);
consistency-based subset evaluation (CNS); wrapper subset
evaluation (WRP); and an evolutionary computation
method, genetic programming (GP) for PROMISE dataset
where C4.5 and naive Bayes (NB) classifiers are used for
measuring the classification performance.

Other than feature selection and feature optimization
techniques, machine learning is also important stage for
software defect detection and prediction. Researchers have
presented various promising techniques for software defect
prediction using machine learning techniques. Li et al. [18]
presented convolutional neural network based scheme for
using effective feature generation and learning scheme.
According to this technique, initially tokens are generated
and encoded into numerical vectors. Later, these encoded
vectors are fed to the convolutional network for learning
process. According to Wang et al. [19] software defect
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prediction also depends on the historical dataset and
software structure pattern analysis. Sometimes, software
datasets suffer from class imbalance problem where learning
becomes a very complex task. This issue is addressed by
using multiple kernel learning algorithm which helps to map
the historical defect data into a higher dimensional feature
space and express better and later ensemble learning can be
implemented which uses series of weak classifiers to reduce
the majority class and helps to achieve better prediction
performance. In [20], authors presented metric learning
based model for software defect prediction. Tomar et al.
[21] studied about software defect prediction and found that
efficient software defect predictor model is needed for
improving the software defect prediction which can identify
the bugs in the software modules without affecting the
overall performance and working of the software module.
As discussed before, learning becomes a crucial step where
data distribution is random and imbalanced in nature.

Computational complexity and implementation cost is a
challenging task for researchers. Conventional techniques
require more time and human effort for software testing.
Hryszkoet al. [22] discussed about complexity issues in
software defect prediction in industries and presented a
comprehensive study on cost effectiveness for software
defect prediction. An extensive experimental study is carried
out for defect prediction and cost effectiveness is analyzed.
Study shows that early prediction can avoid the degraded
software development and can reduce the implementation
cost for software defect prediction model.

Above discussed studies are mainly focused on the feature
extraction, feature selection, optimization and learning
techniques. Feature extraction process includes the analysis
of all metrics for pattern learning. Feature extraction and
selection schemes are discussed which shows improvement
in software defect prediction by selecting optimal features
during computation. Finally, machine learning schemes are
discussed which are wused for pattern learning and
classification. Various techniques have been presented in the
literature to improve the software defect prediction
performance, but, development of techniques with
significant accuracy, performance, less-complexity still
remain as challenging task. There is a need to develop an
efficient model to deal with these issues. Next section
discusses an approach proposed by the authors for
addressing these issues.

3. PROPOSED MODEL

This section presents details about the proposed model for
software defect prediction. From the previous section it is
clear that artificial intelligence is a promising technique for
software bug prediction. Hence, we focus on an improved
artificial intelligence model known as Deep Belief Neural
network (DBN).The process of DBN suffers from the
overfitting issue which may lead to improper classification.
To overcome this, we use L1-regularization scheme which
helps to reduce the overfitting error. Moreover, proposed
model also includes genetic algorithm optimization process.
The complete proposed approach can be categorized as: ()
Genetic algorithm optimization (b) DBN implementation (c)
L1- regularization modeling in DBN. .
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3.1 Genetic Algorithm:

First of all, we study about genetic algorithm and its
implementation for software defect dataset. Genetic
algorithm is widely adopted for various optimization and
feature selection problems.

| Initialization |

!
| Fitness Assigmment |<7
4

| Selection |

1

| Crossover |

1

| Mutation |

Stopping criteriz=false

Stopping criteria=truie

Fig..1 Genetic algorithm

Genetic algorithm is described as heuristic search and
optimization approach which is inspired by nature.
Development of genetic algorithm contains various stages.
In this section we briefly describe various stages of genetic
algorithm. This technique is evolutionary optimization
technique which initiates with the initial population and
tends to achieve global optimal solution for the given
problem and stops when the desired optimal criteria
parameters are achieved.

A basic architecture model of genetic algorithm is depicted
in Fig 1. GA contains multiple stages to achieve the optimal
solution which are as follows: (a) initialization (b) fitness
assignment (c) selection (d) crossover (e) mutation.

(@) Initialization:

This is the first step of genetic algorithm where individuals
are initialized and an initial population is generated. At these
stage, all initial individual and randomly generated and
considered as initial population which is used for further
analysis.

(b) Fitness assignment

After generating the initial population, next task is to assign
fitness value to each individual. In order to perform this, we
apply rank based method for fitness computation which
helps to sort the selection error. This sorting process is
useful for identifying the lowest selection error and its
corresponding individual. Fitness assignment can be denoted
as:

() =k.RG i=123,....N (1)
Here k denotes selective pressure whose values are fixed
between 1 to 2. Generally, greater value will result in fittest
solution and R (i) denotes the rank of individuals.

(c) Selection
In next phase, selection operation is performed where
selection operator selects the individuals which can be
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combined and used for next generation formulation.
According to this process, individuals which are have good
fitness values, are considered to survive as they are more
fitted to the environment. Hence, this section is made based
on the individual’s fitness level. Here, half of the population
is selected for further operation.

(d) Crossover

In previous stage, half of the population is selected which is
used in this process where crossover is performed.
Crossover operator recombines the best selected population
and generates new population. In this process, randomly two
individuals are considered and combinedto generate four
off-springs for new population. This process continues until
the size of new population is equal to the old one.

(e) Mutation

Crossover generates offspring which may be very similar to
the parents. This may result in low diversity in the process
of mutation. Mutation operator randomly changes some
feature parameters of offspring to avoid the diversity issues.

These steps are performed until the best optimal solution is
achieved for given problem. In this work we have
considered, software metrics as input parameter. These
metrics are processed through the above mentioned process
and optimal solution is obtained. Here, it is assumed that a
priori information of potential areas of the given feature set
is already known based on the assumption initial population
can be generated such that it shall cover all points and areas
of given input set. At this stage, our main aim is to reduce
the search space during computation. The process of search
space reduction is divided into two main categories: (a)
initial solution generation and (b) reduced feature subset
generation. In order to improve the performance, initial
solutions are generated using filtering techniques as
information gain, Gini index, correlation and gain ratio. This
process of filtering and feature subset reduction is presented
in Fig 2.

Full feature set
I
‘ ‘Generate initial solutions

Earlier
axparience

Information

Gain Correlation GINI Index

‘ l Gain Ratio

Generate reduced
feature subsst

Reducad feature subssat Add designated

solution to initial  fe—;
solutions
Create initial population
Fitness calculation

Stopping criterion
satisfied?

no

es

Designate salution

Final criterion
satisfied?

Generabe new individuals,
and add to existing
popukslion

yes
i

Fitness calculation Designate final
solution

Select fitter individuals
to mew generation

Final feature subset

|
v

Fig.2 Filtering and Feature Subset Reduction
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3.2 Deep belief network for learning

After feature selection and dimension reduction, we apply
Deep Belief Network (DBN) for pattern learning. In this
section, we discuss about DBN along with Restricted
Boltzmann Machines (RBMs).

3.2.1 Restricted Boltzmann Machines

RBM are considered as a part of neural networks which is
composed by two neuron layers as visible and hidden layer.
In these layers, learning phase is conducted by using
unsupervised learning. In RBM, connections between
neurons and same layer are not allowed unlike classical
Boltzmann Machine. The architecture of RBM contains a
visible layer v with m units and a hidden layer h with n
number of units. The input data matrix W is m X n which
models the weight between hidden and visible layer where
w;; denotes the weights between layers h; and v;, where it is
assumed that hidden layers are denoted by h and visible
layers denoted by v. For this machine, energy function can
be given as:

m n n
j=1

i=1 j=1

@

Where a and b denotes biases for visible and hidden layers.
The probability of visible and hidden layer is computed as:

e —E(v,h)

P(v,h) = D) (3)

With the help of this modeling, deep belief network learning
is presented. RBM parameters can be optimized by applying
gradient scaling on the training pattern’s log-likelihood data.
Let us consider that a training sample is given in the form of
visible unit, it probability can be computed as follows:

Zh e—E(v,h)

S Fon (4)

the Ewh)

Weights and biases varies for each iteration, hence it is
necessary to compute the updated weights and biases with
the help of following derivatives:

P() =

dlog P
Oag (v) _ E[hjvi]data _ E[hjw]model
Wi]'
dlog P(v)
S = v - Bl e ®
a log P(U) data model
———=E[n]" " - E[n]
o,

Where E[.] Denotes the expectation operations, E|[.]%t¢
denotes data driven probability and E[.]™°9¢! denotes
reconstructed data driven probability. In  general,

E[R;v;]**** can be computed as:

E[hv]%4te = P(h|v)vT (6)
P(h|v) denotes the probability of training data vector v as
P(h; = 1|v) = o(X:, w;jv; + b;) this denotes logistic
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sigmoid function . Similarly, testing data can be denoted as
P(h; = 1|h) = o(T, w;jv; + a;). Various studies show
that DBN suffer from overfitting error which may lead to
faulty prediction during classification. In order to deal with
this issue, here we include L1-regularization model to
improve the learning by reducing overfitting error. Let us
consider that a learning task is given with M training
sequences whose training instances are {(x@,y®),i =
1,...,M} where x® € RN denotes the N dimensional
feature vector and y® € {0,1} denotes class label. For these
feature vectors and classes, logistic regression model can be
expressed as:

1
1+ exp(—0Tx) Y
6 denotes the 11 regularized regression model parameters
and o (. )denotes sigmoid function. Furthermore, maximum a
posteriori (MAP) estimate of the parameters of 6 can be
given as:

p(y =1lx;0) = 0(8"x) =

M
T ~logp(y®|x®;6) + g6l ®)

i=1

This optimization problem can be referred as L1
regularization which can be further solved by using
following L1 regularization solution:

M
mgm —log p(yV|x®; 0)

i=1

subto |||l <C

The above given optimization problem provides the minimal
error in training by reducing overfitting error. The complete
proposed model can be used for better classification
performance which can be obtained by using genetic
algorithm for dimensionality reduction, DBN and L1
regularization for better learning and reduced error.

Step 8: construct the optimization problem as (8) and iterate
until the desired value is obtained

4. EXPERIMENTAL STUDY

In this section we present complete experimental study for
software defect prediction using proposed approach. In
order to perform this operation, we have considered dataset
obtained from SEIP Lab [23] where eclipse dataset is
provided with subsequent release of the data. These two
datasets are named as (a) Eclipse JDT (release
2.0,2.1,3.0,3.1 and 3.2) and Eclipse PDE (release 2.0, 2.1,
3.0, 3.1, 3.2) b) Private Dataset ABC.

4.1 Dataset description

These datasets are obtained in .csv format with comma and
points as decimal mark. First row of the csv data file
contains the description of metrics: column 1 denotes file
path and columns 2-49 denotes the independent software
metrics variable which are given with the software metric
abbreviations and final column number 50 denotes the total
number of defects. A brief description about these datasets
[24] is provided in the Table 1given below.

Table.1. Database Description

Database Total | Total Transactions | Post

Class | versions release
defect

Eclipse JDT | 997 91 9135 463

core

Eclipse PDE | 1562 | 97 5026 401

ul

Equinox 439 91 (9) 1616 279

framework

Mylyn 2196 | 98 9189 677

ABC private | 779 99 1915 403

Dataset

Input: total number of attributes, number of hidden layer,
Boltzmann machine configuration parameters

Output: optimal weights, learned attribute set, probability
model and logistic regression optimal function set.

Step 1: input the visible and hidden layer units with initial
weights corresponding to the hidden and visible layer unit.
Step 2: Construct an initial energy function using
Bernoulli’s RBM given in (2)

Step 3: Based on this energy function, find the probability of
hidden and visible layers which can be used for weight
estimation given in (3)

Step 4: Initiate the learning process by for given input
samples by computing the probability function of hidden
units.

Step 5: apply weight update computation by applying
logarithmic derivative computation for hidden layer and
visible layer units

Step 6: establish the logistic regression model using sigmoid
function as (7)

Step 7: maximum a posteriori (MAP) computation for best
probability function

4.2 Performance measurement

Performance of proposed approach is measured in terms of
classification accuracy which can be computed by using
confusion matrix. Table 2 shows a sample representation of
confusion matrix.

Table 2. Confusion Matrix

Predicted class
Actual
class Non defective Defective
Non Defective | False negative | True Positive (TP)
(EN)
Defective True Negative | False Positive (FP)
(TN)
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With the help of this, accuracy of the proposed model is
computed and compared with other state of art models.
Moreover, first experiment is conduced only using DBN,
next experiment contains DBN and genetic algorithm and
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finally, DBN, genetic algorithm and L1 regularization
scheme is also incorporated.

4.3 Comparative analysis

Based on this approach, we present a comparative analysis
where various parameters such as precision, recall, false

positive rate, F-measure and AUC (Area under

curve)

have been computed and compared.

4.3 Comparative Analysis

This comparative analysis is presented in Table 3 where
existing system performance are compared with proposed
approach. This comparative analysis shows that proposed
approach achieves better performance when compared with
conventional software defect technique.
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6 CONCLUSION

In this work, we have focused on software defect prediction
techniques using deep learning technique and presented a
novel approach for early bug prediction. In order to perform
this task, we have considered deep learning techniques along
with feature selection and overfitting error reduction in deep
belief networks. First of all, genetic algorithm is
implemented for dimensionality reduction from considered
feature subset. In next stage, deep belief network is applied
for pattern learning which is further improved by solving an
optimization problem wusing L1-regularization model.
Performance study of the proposed model is carried out
using SPIE lab dataset repository and private dataset ABC.
Proposed approach performance is compared with existing
models in terms of classification accuracy. This
experimental analysis shows that proposed approach is
capable of achieving enhanced classification performance.
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