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program length and number of blank lines etc. Based on 
these attributes, a machine learning approach is 
implemented which learns the complete pattern and returns 
a trained datasets which is further used for testing purpose. 
By considering data mining technique as base, Arar et al. [9] 
developed a new approach for software defect prediction 
using Naïve Bayes classification scheme. To improve the 
analysis, feature dependent naïve Bayes classifier model is 
developed where features are computed based on the 
dependency on the other features.  

For software defect prediction artificial intelligence also 
plays important role. Quah et al. [10] discussed about the 
software quality assessment using neural network modeling 
by focusing on software maintenance and reliability. To 
achieve this objective, ward neural network and general 
regression neural network are presented. Similarly, Kanmani 
et al. [11] also presented neural network based approach for 
software defect prediction where two neural network models 
are used along with object-oriented metrics. This study 
shows that neural networks achieve better performance in 
terms of defect prediction accuracy.  Further, performance 
of neural network can be enhanced by applying deep neural 
network techniques. However, deep neural network models 
are considered as prone to the overfitting error which may 
lead to the inaccurate performance of software defect 
prediction. These studies show that considerable amount of 
research work has been carried out in this field of software 
defect prediction but still prediction accuracy remains a 
challenging task along with the development of general 
framework for software defect prediction.  

In order to overcome these issues, here we present an 
improved technique of software defect prediction. As 
discussed before neural network gives better performance 
which can be further improved by using Deep Neural 
Network (DNN) or Deep Belief Networks (DBN) due to its 
significant learning scheme. However, DBN suffers from 
the issue of overfitting. Hence, to deal with this issue, we 
present L1-reguralization scheme. First we present a 
classification study using DBN. Next, Genetic algorithm is 
applied for feature optimization. The optimized features are 
further processed through DBN using L1-regularization 
scheme.  

Rest of the article is organized as follows: Section 
2describes recent studies in the field of software defect 
prediction, proposed model is presented in section 3, 
experimental analysis is demonstrated in section 4and 
finally concluding remarks are given in section 5.  

2. LITERATURE REVIEW 
In this section we review the studies based on the software 
defect prediction techniques. The problem of software 
defect prediction can be considered as learning problem in 
software engineering.  Several researches have been 
reported on this topic.  He et al. [2] discussed about the 
software defect prediction techniques. Generally, software 
defect prediction techniques utilize the historical data for 
further software bug prediction but due to insufficient 
dataset the desired performance cannot be achieved. This 
issue can be addressed using metric set based evaluation for 
training and testing dataset. First of all, authors created 

predictor model based on the six classifiers which are later 
validated using Top-k metrics using statistical measurement.  
A general framework is needed for software defect 
prediction which can be used as benchmark for SDP. 
Lessmann et al. [12] discussed about this issue and 
presented an experimental study using 22 classifiers which 
are tested for 10 publicly available databases. This technique 
of software defect prediction depends on the feature 
extraction techniques. Along with feature extraction, feature 
selection and optimization plays important role. Several 
studies have been presented on feature selection and 
optimization techniques. In [13], Chen et al. presented a 
combined model for software defect prediction where 
feature selection and optimization are performed. Optimal 
feature selection is considered as most challenging task. 
Hence authors presented search based feature selection 
techniques. Further, optimization process is carried out by 
formulating a multi-objective optimization problem. 
Similarly, Hosseini et al. [14] also focused on the feature 
selection process for improving the Optimization. In this 
work, nearest neighbor filtering scheme is implemented 
along with genetic algorithm which helps to generate the 
accurate validation sets. These sets can be considered for 
training and testing dataset.  

However, various techniques have been discussed for 
software defect prediction but time and complexity remains 
challenging and unaddressed issues. Sabharwal et al. [15] 
presented a low complex technique for feature selection for 
long search space. For this purpose, feature ranking based 
scheme is implemented which performs search space 
reduction and selection of feature subset. This process 
performs both the tasks simultaneously which reduces the 
computation time.  Maua et al. [16] discussed about feature 
optimization scheme using multi-population genetic 
algorithm. In this process, multi-level selection algorithms 
are involved which require additional optimization process. 
To overcome this, authors presented multi-level genetic 
algorithm for SDP by using different stages of selection. In 
this process, colonization and migration operators are 
considered along with multi-objective evolutionary 
algorithm. Afzal et al. [17] focused on benchmarking the 
feature extraction technique and reviewed feature subset 
selection techniques. In this work, defect prediction 
experiments are conducted by using information gain 
attribute ranking (IG); Relief (RLF); principal component 
analysis (PCA); correlation-based feature selection (CFS); 
consistency-based subset evaluation (CNS); wrapper subset 
evaluation (WRP); and an evolutionary computation 
method, genetic programming (GP) for PROMISE dataset 
where C4.5 and naïve Bayes (NB) classifiers are used for 
measuring the classification performance.  

Other than feature selection and feature optimization 
techniques, machine learning is also important stage for 
software defect detection and prediction. Researchers have 
presented various promising techniques for software defect 
prediction using machine learning techniques. Li et al. [18] 
presented convolutional  neural network based scheme for 
using effective feature generation and learning scheme. 
According to this technique, initially tokens are generated 
and encoded into numerical vectors. Later, these encoded 
vectors are fed to the convolutional network for learning 
process. According to Wang et al. [19] software defect 
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prediction also depends on the historical dataset and 
software structure pattern analysis. Sometimes, software 
datasets suffer from class imbalance problem where learning 
becomes a very complex task. This issue is addressed by 
using multiple kernel learning algorithm which helps to map 
the historical defect data into a higher dimensional feature 
space and express better and later ensemble learning can be 
implemented which uses series of weak classifiers to reduce 
the majority class and helps to achieve better prediction 
performance. In [20], authors presented metric learning 
based model for software defect prediction. Tomar et al. 
[21] studied about software defect prediction and found that 
efficient software defect predictor model is needed for 
improving the software defect prediction which can identify 
the bugs in the software modules without affecting the 
overall performance and working of the software module. 
As discussed before, learning becomes a crucial step where 
data distribution is random and imbalanced in nature.  

Computational complexity and implementation cost is a 
challenging task for researchers. Conventional techniques 
require more time and human effort for software testing. 
Hryszkoet al. [22] discussed about complexity issues in 
software defect prediction in industries and presented a 
comprehensive study on cost effectiveness for software 
defect prediction. An extensive experimental study is carried 
out for defect prediction and cost effectiveness is analyzed. 
Study shows that early prediction can avoid the degraded 
software development and can reduce the implementation 
cost for software defect prediction model.  

Above discussed studies are mainly focused on the feature 
extraction, feature selection, optimization and learning 
techniques. Feature extraction process includes the analysis 
of all metrics for pattern learning. Feature extraction and 
selection schemes are discussed which shows improvement 
in software defect prediction by selecting optimal features 
during computation. Finally, machine learning schemes are 
discussed which are used for pattern learning and 
classification. Various techniques have been presented in the 
literature to improve the software defect prediction 
performance, but, development of techniques with 
significant accuracy, performance, less-complexity still 
remain as challenging task. There is a need to develop an 
efficient model to deal with these issues. Next section 
discusses an approach proposed by the authors for 
addressing these issues.  

3. PROPOSED MODEL 
 

This section presents details about the proposed model for 
software defect prediction. From the previous section it is 
clear that artificial intelligence is a promising technique for 
software bug prediction. Hence, we focus on an improved 
artificial intelligence model known as Deep Belief Neural 
network (DBN).The process of DBN suffers from the 
overfitting issue which may lead to improper classification. 
To overcome this, we use L1-regularization scheme which 
helps to reduce the overfitting error. Moreover, proposed 
model also includes genetic algorithm optimization process. 
The complete proposed approach can be categorized as: (a) 
Genetic algorithm optimization (b) DBN implementation (c) 
L1- regularization modeling in DBN. .  

3.1 Genetic Algorithm:  

First of all, we study about genetic algorithm and its 
implementation for software defect dataset. Genetic 
algorithm is widely adopted for various optimization and 
feature selection problems. 

 

Fig..1 Genetic algorithm 

Genetic algorithm is described as heuristic search and 
optimization approach which is inspired by nature. 
Development of genetic algorithm contains various stages. 
In this section we briefly describe various stages of genetic 
algorithm. This technique is evolutionary optimization 
technique which initiates with the initial population and 
tends to achieve global optimal solution for the given 
problem and stops when the desired optimal criteria 
parameters are achieved. 

A basic architecture model of genetic algorithm is depicted 
in Fig 1. GA contains multiple stages to achieve the optimal 
solution which are as follows: (a) initialization (b) fitness 
assignment (c) selection (d) crossover (e) mutation. 

(a) Initialization: 

This is the first step of genetic algorithm where individuals 
are initialized and an initial population is generated. At these 
stage, all initial individual and randomly generated and 
considered as initial population which is used for further 
analysis.  

(b) Fitness assignment 

After generating the initial population, next task is to assign 
fitness value to each individual. In order to perform this, we 
apply rank based method for fitness computation which 
helps to sort the selection error. This sorting process is 
useful for identifying the lowest selection error and its 
corresponding individual. Fitness assignment can be denoted 
as: 

߮ሺ݅ሻ ൌ ݇. ࣬ሺ݅ሻ ݅ ൌ 1,2,3, … . . ܰ (1)  
Here ݇ denotes selective pressure whose values are fixed 
between 1 to 2. Generally, greater value will result in fittest 
solution and ࣬ሺ݅ሻ denotes the rank of individuals.  

(c) Selection 

In next phase, selection operation is performed where 
selection operator selects the individuals which can be 
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combined and used for next generation formulation. 
According to this process, individuals which are have good 
fitness values, are considered to survive as they are more 
fitted to the environment. Hence, this section is made based 
on the individual’s fitness level. Here, half of the population 
is selected for further operation.  

(d) Crossover 

In previous stage, half of the population is selected which is 
used in this process where crossover is performed. 
Crossover operator recombines the best selected population 
and generates new population. In this process, randomly two 
individuals are considered and combinedto generate four 
off-springs for new population. This process continues until 
the size of new population is equal to the old one. 

(e) Mutation 

Crossover generates offspring which may be very similar to 
the parents. This may result in low diversity in the process 
of mutation. Mutation operator randomly changes some 
feature parameters of offspring to avoid the diversity issues.  

These steps are performed until the best optimal solution is 
achieved for given problem. In this work we have 
considered, software metrics as input parameter. These 
metrics are processed through the above mentioned process 
and optimal solution is obtained. Here, it is assumed that a 
priori information of potential areas of the given feature set 
is already known based on the assumption initial population 
can be generated such that it shall cover all points and areas 
of given input set. At this stage, our main aim is to reduce 
the search space during computation. The process of search 
space reduction is divided into two main categories: (a) 
initial solution generation and (b) reduced feature subset 
generation. In order to improve the performance, initial 
solutions are generated using filtering techniques as 
information gain, Gini index, correlation and gain ratio. This 
process of filtering and feature subset reduction is presented 
in Fig 2. 

 

Fig.2 Filtering and Feature Subset Reduction 

3.2 Deep belief network for learning 

After feature selection and dimension reduction, we apply 
Deep Belief Network (DBN) for pattern learning. In this 
section, we discuss about DBN along with Restricted 
Boltzmann Machines (RBMs).  

3.2.1 Restricted Boltzmann Machines 

RBM are considered as a part of neural networks which is 
composed by two neuron layers as visible and hidden layer. 
In these layers, learning phase is conducted by using 
unsupervised learning. In RBM, connections between 
neurons and same layer are not allowed unlike classical 
Boltzmann Machine. The architecture of RBM contains a 
visible layer ݒ with ݉ units and a hidden layer ݄ with ݊ 
number of units. The input data matrix ܹ is ݉ ൈ ݊ which 
models the weight between hidden and visible layer where 
 ௜, where it isݒ ௜௝ denotes the weights between layers ௝݄ andݓ
assumed that hidden layers are denoted by ݄ and visible 
layers denoted by ݒ. For this machine, energy function can 
be given as: 

,ݒሺܧ ݄ሻ ൌ ෍ ෍ ௜ݒ ௝݄ݓ௜௝

௡

௝ୀଵ

െ ෍ ௝ܾ ௝݄

௡

௝ୀଵ

௠

௜ୀଵ

െ ෍ ܽ௜ݒ௜

௠

௜ୀଵ

 

(2)  

 

Where ܽ and ܾ denotes biases for visible and hidden layers. 
The probability of visible and hidden layer is computed as: 

ܲሺݒ, ݄ሻ ൌ
݁ିாሺ௩,௛ሻ

∑ ݁ିாሺ௩,௛ሻ
௩,௛

 (3)  

With the help of this modeling, deep belief network learning 
is presented. RBM parameters can be optimized by applying 
gradient scaling on the training pattern’s log-likelihood data. 
Let us consider that a training sample is given in the form of 
visible unit, it probability can be computed as follows: 

ܲሺݒሻ ൌ
∑ ݁ିாሺ௩,௛ሻ

௛

∑ ݁ିாሺ௩,௛ሻ
௩,௛

 (4)  

Weights and biases varies for each iteration, hence it is 
necessary to compute the updated weights and biases with 
the help of following derivatives:  

߲ ݃݋݈ ܲሺݒሻ

௜௝ݓ߲
ൌ ൣܧ ௝݄ݒ௜൧

ௗ௔௧௔
െ ൣܧ ௝݄ݒ௜൧

௠௢ௗ௘௟
 

ሻݒሺܲ ݃݋݈ ߲

߲ܽ௜
ൌ ௜ݒ െ  ௜ሿ௠௢ௗ௘௟ݒሾܧ

߲ ݃݋݈ ܲሺݒሻ

߲ ௝ܾ
ൌ ൣܧ ௝݄൧

ௗ௔௧௔
െ ൣܧ ௝݄൧

௠௢ௗ௘௟
 

(5)  

 

Where ܧሾ. ሿ Denotes the expectation operations, ܧሾ. ሿௗ௔௧௔ 
denotes data driven probability and ܧሾ. ሿ௠௢ௗ௘௟ denotes 
reconstructed data driven probability. In general, 

ൣܧ ௝݄ݒ௜൧
ௗ௔௧௔

 can be computed as: 

ሿௗ௔௧௔ݒሾ݄ܧ ൌ ܲሺ݄|ݒሻ(6) ்ݒ  
ܲሺ݄|ݒሻ denotes the probability of training data vector ݒ as 
ܲ൫ ௝݄ ൌ ൯ݒ|1 ൌ ∑൫ߪ ௜ݒ௜௝ݓ ൅ ௝ܾ

௠
௜ୀଵ ൯ this denotes logistic 
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sigmoid function . Similarly, testing data can be denoted as 
ܲ൫ ௝݄ ൌ 1|݄൯ ൌ ∑൫ߪ ௜ݒ௜௝ݓ ൅ ௝ܽ

௡
௜ୀଵ ൯. Various studies show 

that DBN suffer from overfitting error which may lead to 
faulty prediction during classification. In order to deal with 
this issue, here we include L1-regularization model to 
improve the learning by reducing overfitting error. Let us 
consider that a learning task is given with ܯ training 
sequences whose training instances are ൛൫ݔሺ௜ሻ, ,ሺ௜ሻ൯ݕ ݅ ൌ
1, … . , ሺ௜ሻݔ ൟ whereܯ א   Թே denotes the ܰ dimensional 
feature vector and ݕሺ௜ሻ א ሼ0,1ሽ denotes class label. For these 
feature vectors and classes, logistic regression model can be 
expressed as: 

ݕሺ݌ ൌ ;ݔ|1 ሻߠ ൌ ሻݔ்ߠሺߪ ൌ
1

1 ൅ expሺെݔ்ߠሻ
 (7)  

 denotes the l1 regularized regression model parameters ߠ
and ߪሺ. ሻdenotes sigmoid function. Furthermore, maximum a 
posteriori (MAP) estimate of the parameters of ߠ can be 
given as: 

݉݅݊
ߠ

෍ െ݈݌ ݃݋൫ݕሺ௜ሻหݔሺ௜ሻ; ൯ߠ ൅ ԡଵߠԡߚ

ெ

௜ୀଵ

 (8)  

 

This optimization problem can be referred as L1 
regularization which can be further solved by using 
following L1 regularization solution: 

݉݅݊
ߠ

෍ െ݈݌ ݃݋൫ݕሺ௜ሻหݔሺ௜ሻ; ൯ߠ

ெ

௜ୀଵ

 

ԡଵߠԡ ݋ݐ ܾݑݏ ൑  ܥ

 (9)  
The above given optimization problem provides the minimal 
error in training by reducing overfitting error. The complete 
proposed model can be used for better classification 
performance which can be obtained by using genetic 
algorithm for dimensionality reduction, DBN and L1 
regularization for better learning and reduced error.   

Input: total number of attributes, number of hidden layer, 
Boltzmann machine configuration parameters 
Output: optimal weights, learned attribute set, probability 
model and logistic regression optimal function set.  
Step 1: input the visible and hidden layer units with initial 
weights corresponding to the hidden and visible layer unit.  
Step 2: Construct an initial energy function using 
Bernoulli’s RBM given in (2)  
Step 3: Based on this energy function, find the probability of 
hidden and visible layers which can be used for weight 
estimation given in (3)  
Step 4: Initiate the learning process by for given input 
samples by computing the probability function of hidden 
units.  
Step 5: apply weight update computation by applying 
logarithmic derivative computation for hidden layer and 
visible layer units 
Step 6: establish the logistic regression model using sigmoid 
function as (7)  
Step 7: maximum a posteriori (MAP) computation for best 
probability function  

Step 8: construct the optimization problem as (8) and iterate 
until the desired value is obtained  

 
4. EXPERIMENTAL STUDY 

  

In this section we present complete experimental study for 
software defect prediction using proposed approach. In 
order to perform this operation, we have considered dataset 
obtained from SEIP Lab [23] where eclipse dataset is 
provided with subsequent release of the data. These two 
datasets are named as (a) Eclipse JDT (release 
2.0,2.1,3.0,3.1 and 3.2) and Eclipse PDE (release 2.0, 2.1, 
3.0, 3.1, 3.2) b) Private Dataset ABC. 

4.1 Dataset description 

These datasets are obtained in .csv format with comma and 
points as decimal mark. First row of the csv data file 
contains the description of metrics: column 1 denotes file 
path and columns 2-49 denotes the independent software 
metrics variable which are given with the software metric 
abbreviations and final column number 50 denotes the total 
number of defects.  A brief description about these datasets 
[24] is provided in the  Table 1given below.  

Table.1. Database Description 

 
 4.2 Performance measurement 

Performance of proposed approach is measured in terms of 
classification accuracy which can be computed by using 
confusion matrix. Table 2 shows a sample representation of 
confusion matrix.  

Table 2. Confusion Matrix 
 

 
       Actual 
class 

Predicted class 

Non defective  Defective  
Non Defective False negative 

(FN) 
True Positive (TP) 

Defective True Negative 
(TN) 

False Positive (FP) 

 

With the help of this, accuracy of the proposed model is 
computed and compared with other state of art models. 
Moreover, first experiment is conduced only using DBN, 
next experiment contains DBN and genetic algorithm and 

Database Total 
Class 

Total 
versions 

Transactions Post 
release 
defect 

Eclipse JDT 
core 

997 91 9135 463 

Eclipse PDE 
UI 

1562 97 5026 401 

Equinox 
framework 

439 91 1616 279 

Mylyn 2196 98 9189 677 

ABC private 
Dataset 

779 99 1915 403 
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finally, DBN, genetic algorithm and L1 regularization 
scheme is also incorporated. 

4.3 Comparative analysis  

Based on this approach, we present a comparative analysis 
where various parameters such as precision, recall, false 

positive rate, F-measure and AUC (Area  under curve) 
have been computed and compared. 

4.3 Comparative Analysis 

   

Measurement 
Parameter 

Approaches Eclipse JDT core Equinox 
framework 

Eclipse PDE UI Mylyn ABC 
Private 
Dataset 

Precision DBN 0.47 0.63 0.28 0.21 0.21 

 GA+DBN 0.8 0.89 0.62 0.75 0.66 

 GA+DBN+L1 0.86 0.93 0.78 0.83 0.77 

 

False Positive rate DBN 0.17 0.24 0.2 0.17 0.13 

 GA+DBN 0.69 0.88 0.83 0.89 0.81 

 GA+DBN+L1 0.76 0.87 0.91 0.93 0.85 

 

F-Measure DBN 0.52 0.62 0.35 0.34 0.26 

 GA+DBN 0.91 0.9 0.77 0.81 0.85 

 GA+DBN+L1 0.93 0.92 0.81 0.83 0.92 

 

AUC DBN 0.76 0.78 0.7 0.68 0.69 

 GA+DBN 0.91 0.86 0.88 0.94 0.81 

 GA+DBN+L1 0.94 0.92 0.9 0.94 0.85 

 

This comparative analysis is presented in Table 3 where 
existing system performance are compared with proposed 
approach. This comparative analysis shows that proposed 
approach achieves better performance when compared with 
conventional software defect technique.  
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6 CONCLUSION 

In this work, we have focused on software defect prediction 
techniques using deep learning technique and presented a 
novel approach for early bug prediction. In order to perform 
this task, we have considered deep learning techniques along 
with feature selection and overfitting error reduction in deep 
belief networks. First of all, genetic algorithm is 
implemented for dimensionality reduction from considered 
feature subset. In next stage, deep belief network is applied 
for pattern learning which is further improved by solving an 
optimization problem using L1-regularization model. 
Performance study of the proposed model is carried out 
using SPIE lab dataset repository and private dataset ABC. 
Proposed approach performance is compared with existing 
models in terms of classification accuracy. This 
experimental analysis shows that proposed approach is 
capable of achieving enhanced classification performance.  
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