
DOI:

© 201

Abstr
defec
this p
which
techn
issue
proce
regul
softw
comp

Keyw

Mod
grow
adop
quali
indu
quali
appli
is ca
[1].
that
quali
been
softw
bug
defec
revie
analy
cost-

Thes
the
diffe
comp
level
purp
perfo
techn
softw
phas
using
techn
featu
Featu

: http://dx.doi.

15-19, IJARCS A

SOFTW

Associa
PE

ract: Software
ct prediction, id
process, previou
h identifies the

niques and mach
e, in this work w
ess for feature s
larization schem

ware defect data
pared with state

words: Software

dern software
wing rapidly.
pted in real-tim
ity and reliab

ustries and the
ity of softwa
ications are co

aused due to c
In order to de
early predictio
ity of the soft

n carried out f
ware defect pr

prediction,
ctive area in
ewers to alloc
yzing complet
-effective proc

se techniques
software met

erent levels
ponent-level,
l and method-

pose. Further
ormed by usi
niques, artific
ware defect p
ses: feature ex
g machine
niques are ba
ure extraction
ures can be M

.org/10.26483/

Interna

All Rights Reserve

WARE DEF
L1

Manju
ate Professor,
ESIT- BSC, K

defect predictio
dentifies the bug
us archives of s
e faults in soft
hine learning te

we have present
subspace reduc
me resulting in
abase. An exten
e-of-the-art soft

e Metrics, Softw

1. INTR

modules and
Software ba

me & daily li
bility is a cr
e growth of i
are application
omplex and fa
code defect/bu
eal with this i
on of bugs or
tware applicat
for early bug p
rediction [2].
classifiers ar

n the code w
cate their effor
te code. This
cess of softwa

of software d
trics which
of the sof
process-leve

-level, which
r, software
ing statistical
cial intelligenc
prediction te

xtraction and c
learning alg

ased on the de
n technique f

McCabe featur

/ijarcs.v9i1.547

Volu

ational Jou

Av

ed

FECT PR
1-REGUL

ula C
MCA Depart

Karnataka,India

on is considere
g during autom

software module
ftware modules
echniques but a
ted a new appro
tion and deep b
better learning

nsive experime
ware defect pre

ware Quality, S

ODUCTION

d development
ased applicati
fe scenarios.
ritical issue i
industry also
ns. Generally,
failure –prone
ugs during co
issue, research
code defects

tion. Various
prediction wh
According to

re built whi
which can he
rt for defected
process is con

are quality ma

defect predicti
can be comp
ftware such
el, class-leve
are used for
defect pred

l methods, m
ce techniques
chnique cont
classifier mod

gorithm. Fea
evelopment o
for better de
res, Halstead f

76

ume 9, No.

urnal of Ad

RESE

vailable On

REDICTI
LARIZAT

tment,
a

ed as most inter
mated testing pr

es are considere
. Several techn

achieving desire
oach deep lear
belief network f
g process by red
ental study is ca
ediction techniq

oftware Defect

N

t techniques a
ions are wide
Maintaining t
in the softwa
depends on t
, huge softwa
in nature whi

ode developme
hers have fou
can improve t
researches ha

hich is known
o this process
ich predict t
elp to the co
d part instead
nsidered as mo
anagement.

ion are based
puted from t

as: file-lev
el, quantitati
software testi

diction can
machine learni

etc. In gener
tains two ma
del developme
ature extracti
of discriminati
efect predictio
features and C

 1, January

dvanced Re

EARCH PA

nline at ww

ION USIN
TION BA

resting area for
rocess which pr
ed for analyzin
niques have be
ed accuracy in p
rning for softwa
for pattern learn
ducing the over
arried out whic
ques.

t Prediction, De

are
ely
the
are
the
are
ich
ent

und
the
ave

as
of

the
ode

of
ost

on
the
vel,
ive
ing
be

ing
ral,
ain
ent
ion
ive
on.
CK

fe
m
M
(D
de
te
pe
de
pr
cl
re
fo
ba
pr
bu
ge
So
de
m
te
co
al
cl
ac
te
an
w
H
de

In
da
an
N
co

y-February

esearch in C

APER

ww.ijarcs.in

NG DEEP
ASED OPT

 Ad

r researchers in
revents the dev
g the quality ba
een presented f
performance is
are defect predi
ning. Deep beli
rfitting error. T
ch shows that p

eep Belief Netw

eatures for ob
machine learnin
Machine) [3],
Decision Tree
eveloped for s
echniques suff
erformance a
egraded perf
rediction. U
lassification te
esearchers. In
ocused on the
ased on the m
resented softw
ug prediction
enetic algori
oftware defe
efective ide

misclassificatio
echnique is us
ost sensitive l
l. [6] also i
lassifiers Near
chieving local
echniques pos
nd validation

which may lead
Hence, a gene

efect predictio

n order to dev
ata mining te
nalysis, open

NASA softwar
ontains variou

y 2018

Computer

nfo

P BELIEF
TIMIZAT

Lilly
Professor, M

diyamman Col
Tamil N

the field of so
velopment of fau
ased on data mi
for software de
a challenging t

ction by combi
ief networks ar

This combined
proposed approa

work, Genetic A

bject-oriented
ng algorithms
ANN (Artifi

e) [4] and
software defec
fer from multi
and dataset tr
formance an
Unfortunately
echniques stil

n order to ov
development

machine learni
ware defect pr
n where part
thm are us
ct prediction

entities and
on rate. For be
sed where in
learning are i
introduced a
rest –Neighbo
l and global
se various ch
of sophisticat
d to improper
eral and effi
on is required.

velop the sof
chniques hav
source softw

e defect datas
us metrics valu

 Science

ISSN No

F NETWO
TION

Florence
MCA Departme

llege of Engin
Nadu,India

ftware enginee
ulty software m
ining and mach
efect prediction
task for researc
ning genetic alg

re further impro
model is imple
ach achieves h

Algorithm, L1-re

programs. M
s such as SVM
icial Neural N
Naïve Bayes

ct prediction.
iple issues suc
raining error
nalysis for

y, performa
ll remain unad
vercome this,
of new sophi
ing. Recently
rediction tech
ticle swarm
ed for optim

n identifies d
attempts

etter performa
feature select
ncorporated.

hybrid appr
or and Naïve B
information o

hallenges such
ted techniques
r identification
icient framew

ftware defect
ve been adopt
ware defect re
sets [8] are us
ues such as LO

 86

o. 0976‐5697

ORK WIT

ent,
neering,

ring. This proc
module. Accord
ine leaning con
n using data m
chers. To addres
gorithm optimi

oved by applyin
emented on SPI
igher accuracy

eguralization

Meanwhile, va
M (Support V
Network) [3]
s etc. have
However, exi

ch as classific
. resulting in

software d
ance of
ddressed issue
, researchers
sticated techn
y, Mussa et a

hnique for soft
optimization

mization pro
defective or

to reduce
ance, sophisti
tion and two-
 Similarly, R
roach where
Bayes are use
of the data. T
h as configur
s, optimization
n of software
work for soft

prediction m
ted widely an
epositories suc
sed. These dat
OC (Line of c

64

7

TH

cess of
ding to
ncepts,
mining
ss this
zation

ng L1-
IE lab
when

arious
Vector

, DT
been

isting
cation
n the
defect
these

es for
have

niques
al. [5]
ftware
n and
ocess.

non-
the

icated
-stage

Ryu et
two

ed for
These
ration
n etc.
bugs.

ftware

model,
nd for
ch as
tasets
code),

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 865

program length and number of blank lines etc. Based on
these attributes, a machine learning approach is
implemented which learns the complete pattern and returns
a trained datasets which is further used for testing purpose.
By considering data mining technique as base, Arar et al. [9]
developed a new approach for software defect prediction
using Naïve Bayes classification scheme. To improve the
analysis, feature dependent naïve Bayes classifier model is
developed where features are computed based on the
dependency on the other features.

For software defect prediction artificial intelligence also
plays important role. Quah et al. [10] discussed about the
software quality assessment using neural network modeling
by focusing on software maintenance and reliability. To
achieve this objective, ward neural network and general
regression neural network are presented. Similarly, Kanmani
et al. [11] also presented neural network based approach for
software defect prediction where two neural network models
are used along with object-oriented metrics. This study
shows that neural networks achieve better performance in
terms of defect prediction accuracy. Further, performance
of neural network can be enhanced by applying deep neural
network techniques. However, deep neural network models
are considered as prone to the overfitting error which may
lead to the inaccurate performance of software defect
prediction. These studies show that considerable amount of
research work has been carried out in this field of software
defect prediction but still prediction accuracy remains a
challenging task along with the development of general
framework for software defect prediction.

In order to overcome these issues, here we present an
improved technique of software defect prediction. As
discussed before neural network gives better performance
which can be further improved by using Deep Neural
Network (DNN) or Deep Belief Networks (DBN) due to its
significant learning scheme. However, DBN suffers from
the issue of overfitting. Hence, to deal with this issue, we
present L1-reguralization scheme. First we present a
classification study using DBN. Next, Genetic algorithm is
applied for feature optimization. The optimized features are
further processed through DBN using L1-regularization
scheme.

Rest of the article is organized as follows: Section
2describes recent studies in the field of software defect
prediction, proposed model is presented in section 3,
experimental analysis is demonstrated in section 4and
finally concluding remarks are given in section 5.

2. LITERATURE REVIEW
In this section we review the studies based on the software
defect prediction techniques. The problem of software
defect prediction can be considered as learning problem in
software engineering. Several researches have been
reported on this topic. He et al. [2] discussed about the
software defect prediction techniques. Generally, software
defect prediction techniques utilize the historical data for
further software bug prediction but due to insufficient
dataset the desired performance cannot be achieved. This
issue can be addressed using metric set based evaluation for
training and testing dataset. First of all, authors created

predictor model based on the six classifiers which are later
validated using Top-k metrics using statistical measurement.
A general framework is needed for software defect
prediction which can be used as benchmark for SDP.
Lessmann et al. [12] discussed about this issue and
presented an experimental study using 22 classifiers which
are tested for 10 publicly available databases. This technique
of software defect prediction depends on the feature
extraction techniques. Along with feature extraction, feature
selection and optimization plays important role. Several
studies have been presented on feature selection and
optimization techniques. In [13], Chen et al. presented a
combined model for software defect prediction where
feature selection and optimization are performed. Optimal
feature selection is considered as most challenging task.
Hence authors presented search based feature selection
techniques. Further, optimization process is carried out by
formulating a multi-objective optimization problem.
Similarly, Hosseini et al. [14] also focused on the feature
selection process for improving the Optimization. In this
work, nearest neighbor filtering scheme is implemented
along with genetic algorithm which helps to generate the
accurate validation sets. These sets can be considered for
training and testing dataset.

However, various techniques have been discussed for
software defect prediction but time and complexity remains
challenging and unaddressed issues. Sabharwal et al. [15]
presented a low complex technique for feature selection for
long search space. For this purpose, feature ranking based
scheme is implemented which performs search space
reduction and selection of feature subset. This process
performs both the tasks simultaneously which reduces the
computation time. Maua et al. [16] discussed about feature
optimization scheme using multi-population genetic
algorithm. In this process, multi-level selection algorithms
are involved which require additional optimization process.
To overcome this, authors presented multi-level genetic
algorithm for SDP by using different stages of selection. In
this process, colonization and migration operators are
considered along with multi-objective evolutionary
algorithm. Afzal et al. [17] focused on benchmarking the
feature extraction technique and reviewed feature subset
selection techniques. In this work, defect prediction
experiments are conducted by using information gain
attribute ranking (IG); Relief (RLF); principal component
analysis (PCA); correlation-based feature selection (CFS);
consistency-based subset evaluation (CNS); wrapper subset
evaluation (WRP); and an evolutionary computation
method, genetic programming (GP) for PROMISE dataset
where C4.5 and naïve Bayes (NB) classifiers are used for
measuring the classification performance.

Other than feature selection and feature optimization
techniques, machine learning is also important stage for
software defect detection and prediction. Researchers have
presented various promising techniques for software defect
prediction using machine learning techniques. Li et al. [18]
presented convolutional neural network based scheme for
using effective feature generation and learning scheme.
According to this technique, initially tokens are generated
and encoded into numerical vectors. Later, these encoded
vectors are fed to the convolutional network for learning
process. According to Wang et al. [19] software defect

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 866

prediction also depends on the historical dataset and
software structure pattern analysis. Sometimes, software
datasets suffer from class imbalance problem where learning
becomes a very complex task. This issue is addressed by
using multiple kernel learning algorithm which helps to map
the historical defect data into a higher dimensional feature
space and express better and later ensemble learning can be
implemented which uses series of weak classifiers to reduce
the majority class and helps to achieve better prediction
performance. In [20], authors presented metric learning
based model for software defect prediction. Tomar et al.
[21] studied about software defect prediction and found that
efficient software defect predictor model is needed for
improving the software defect prediction which can identify
the bugs in the software modules without affecting the
overall performance and working of the software module.
As discussed before, learning becomes a crucial step where
data distribution is random and imbalanced in nature.

Computational complexity and implementation cost is a
challenging task for researchers. Conventional techniques
require more time and human effort for software testing.
Hryszkoet al. [22] discussed about complexity issues in
software defect prediction in industries and presented a
comprehensive study on cost effectiveness for software
defect prediction. An extensive experimental study is carried
out for defect prediction and cost effectiveness is analyzed.
Study shows that early prediction can avoid the degraded
software development and can reduce the implementation
cost for software defect prediction model.

Above discussed studies are mainly focused on the feature
extraction, feature selection, optimization and learning
techniques. Feature extraction process includes the analysis
of all metrics for pattern learning. Feature extraction and
selection schemes are discussed which shows improvement
in software defect prediction by selecting optimal features
during computation. Finally, machine learning schemes are
discussed which are used for pattern learning and
classification. Various techniques have been presented in the
literature to improve the software defect prediction
performance, but, development of techniques with
significant accuracy, performance, less-complexity still
remain as challenging task. There is a need to develop an
efficient model to deal with these issues. Next section
discusses an approach proposed by the authors for
addressing these issues.

3. PROPOSED MODEL

This section presents details about the proposed model for
software defect prediction. From the previous section it is
clear that artificial intelligence is a promising technique for
software bug prediction. Hence, we focus on an improved
artificial intelligence model known as Deep Belief Neural
network (DBN).The process of DBN suffers from the
overfitting issue which may lead to improper classification.
To overcome this, we use L1-regularization scheme which
helps to reduce the overfitting error. Moreover, proposed
model also includes genetic algorithm optimization process.
The complete proposed approach can be categorized as: (a)
Genetic algorithm optimization (b) DBN implementation (c)
L1- regularization modeling in DBN. .

3.1 Genetic Algorithm:

First of all, we study about genetic algorithm and its
implementation for software defect dataset. Genetic
algorithm is widely adopted for various optimization and
feature selection problems.

Fig..1 Genetic algorithm

Genetic algorithm is described as heuristic search and
optimization approach which is inspired by nature.
Development of genetic algorithm contains various stages.
In this section we briefly describe various stages of genetic
algorithm. This technique is evolutionary optimization
technique which initiates with the initial population and
tends to achieve global optimal solution for the given
problem and stops when the desired optimal criteria
parameters are achieved.

A basic architecture model of genetic algorithm is depicted
in Fig 1. GA contains multiple stages to achieve the optimal
solution which are as follows: (a) initialization (b) fitness
assignment (c) selection (d) crossover (e) mutation.

(a) Initialization:

This is the first step of genetic algorithm where individuals
are initialized and an initial population is generated. At these
stage, all initial individual and randomly generated and
considered as initial population which is used for further
analysis.

(b) Fitness assignment

After generating the initial population, next task is to assign
fitness value to each individual. In order to perform this, we
apply rank based method for fitness computation which
helps to sort the selection error. This sorting process is
useful for identifying the lowest selection error and its
corresponding individual. Fitness assignment can be denoted
as:

߮ሺ݅ሻ ൌ ݇. ࣬ሺ݅ሻ ݅ ൌ 1,2,3, … . . ܰ (1)
Here ݇ denotes selective pressure whose values are fixed
between 1 to 2. Generally, greater value will result in fittest
solution and ࣬ሺ݅ሻ denotes the rank of individuals.

(c) Selection

In next phase, selection operation is performed where
selection operator selects the individuals which can be

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 867

combined and used for next generation formulation.
According to this process, individuals which are have good
fitness values, are considered to survive as they are more
fitted to the environment. Hence, this section is made based
on the individual’s fitness level. Here, half of the population
is selected for further operation.

(d) Crossover

In previous stage, half of the population is selected which is
used in this process where crossover is performed.
Crossover operator recombines the best selected population
and generates new population. In this process, randomly two
individuals are considered and combinedto generate four
off-springs for new population. This process continues until
the size of new population is equal to the old one.

(e) Mutation

Crossover generates offspring which may be very similar to
the parents. This may result in low diversity in the process
of mutation. Mutation operator randomly changes some
feature parameters of offspring to avoid the diversity issues.

These steps are performed until the best optimal solution is
achieved for given problem. In this work we have
considered, software metrics as input parameter. These
metrics are processed through the above mentioned process
and optimal solution is obtained. Here, it is assumed that a
priori information of potential areas of the given feature set
is already known based on the assumption initial population
can be generated such that it shall cover all points and areas
of given input set. At this stage, our main aim is to reduce
the search space during computation. The process of search
space reduction is divided into two main categories: (a)
initial solution generation and (b) reduced feature subset
generation. In order to improve the performance, initial
solutions are generated using filtering techniques as
information gain, Gini index, correlation and gain ratio. This
process of filtering and feature subset reduction is presented
in Fig 2.

Fig.2 Filtering and Feature Subset Reduction

3.2 Deep belief network for learning

After feature selection and dimension reduction, we apply
Deep Belief Network (DBN) for pattern learning. In this
section, we discuss about DBN along with Restricted
Boltzmann Machines (RBMs).

3.2.1 Restricted Boltzmann Machines

RBM are considered as a part of neural networks which is
composed by two neuron layers as visible and hidden layer.
In these layers, learning phase is conducted by using
unsupervised learning. In RBM, connections between
neurons and same layer are not allowed unlike classical
Boltzmann Machine. The architecture of RBM contains a
visible layer ݒ with ݉ units and a hidden layer ݄ with ݊
number of units. The input data matrix ܹ is ݉ ൈ ݊ which
models the weight between hidden and visible layer where
 ௜, where it isݒ ௜௝ denotes the weights between layers ௝݄ andݓ
assumed that hidden layers are denoted by ݄ and visible
layers denoted by ݒ. For this machine, energy function can
be given as:

,ݒሺܧ ݄ሻ ൌ ෍ ෍ ௜ݒ ௝݄ݓ௜௝

௡

௝ୀଵ

െ ෍ ௝ܾ ௝݄

௡

௝ୀଵ

௠

௜ୀଵ

െ ෍ ܽ௜ݒ௜

௠

௜ୀଵ

(2)

Where ܽ and ܾ denotes biases for visible and hidden layers.
The probability of visible and hidden layer is computed as:

ܲሺݒ, ݄ሻ ൌ
݁ିாሺ௩,௛ሻ

∑ ݁ିாሺ௩,௛ሻ
௩,௛

 (3)

With the help of this modeling, deep belief network learning
is presented. RBM parameters can be optimized by applying
gradient scaling on the training pattern’s log-likelihood data.
Let us consider that a training sample is given in the form of
visible unit, it probability can be computed as follows:

ܲሺݒሻ ൌ
∑ ݁ିாሺ௩,௛ሻ

௛

∑ ݁ିாሺ௩,௛ሻ
௩,௛

 (4)

Weights and biases varies for each iteration, hence it is
necessary to compute the updated weights and biases with
the help of following derivatives:

߲ ݃݋݈ ܲሺݒሻ

௜௝ݓ߲
ൌ ൣܧ ௝݄ݒ௜൧

ௗ௔௧௔
െ ൣܧ ௝݄ݒ௜൧

௠௢ௗ௘௟

ሻݒሺܲ ݃݋݈ ߲

߲ܽ௜
ൌ ௜ݒ െ ௜ሿ௠௢ௗ௘௟ݒሾܧ

߲ ݃݋݈ ܲሺݒሻ

߲ ௝ܾ
ൌ ൣܧ ௝݄൧

ௗ௔௧௔
െ ൣܧ ௝݄൧

௠௢ௗ௘௟

(5)

Where ܧሾ. ሿ Denotes the expectation operations, ܧሾ. ሿௗ௔௧௔
denotes data driven probability and ܧሾ. ሿ௠௢ௗ௘௟ denotes
reconstructed data driven probability. In general,

ൣܧ ௝݄ݒ௜൧
ௗ௔௧௔

 can be computed as:

ሿௗ௔௧௔ݒሾ݄ܧ ൌ ܲሺ݄|ݒሻ(6) ்ݒ
ܲሺ݄|ݒሻ denotes the probability of training data vector ݒ as
ܲ൫ ௝݄ ൌ ൯ݒ|1 ൌ ∑൫ߪ ௜ݒ௜௝ݓ ൅ ௝ܾ

௠
௜ୀଵ ൯ this denotes logistic

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 868

sigmoid function . Similarly, testing data can be denoted as
ܲ൫ ௝݄ ൌ 1|݄൯ ൌ ∑൫ߪ ௜ݒ௜௝ݓ ൅ ௝ܽ

௡
௜ୀଵ ൯. Various studies show

that DBN suffer from overfitting error which may lead to
faulty prediction during classification. In order to deal with
this issue, here we include L1-regularization model to
improve the learning by reducing overfitting error. Let us
consider that a learning task is given with ܯ training
sequences whose training instances are ൛൫ݔሺ௜ሻ, ,ሺ௜ሻ൯ݕ ݅ ൌ
1, … . , ሺ௜ሻݔ ൟ whereܯ א Թே denotes the ܰ dimensional
feature vector and ݕሺ௜ሻ א ሼ0,1ሽ denotes class label. For these
feature vectors and classes, logistic regression model can be
expressed as:

ݕሺ݌ ൌ ;ݔ|1 ሻߠ ൌ ሻݔ்ߠሺߪ ൌ
1

1 ൅ expሺെݔ்ߠሻ
 (7)

 denotes the l1 regularized regression model parameters ߠ
and ߪሺ. ሻdenotes sigmoid function. Furthermore, maximum a
posteriori (MAP) estimate of the parameters of ߠ can be
given as:

݉݅݊
ߠ

෍ െ݈݌ ݃݋൫ݕሺ௜ሻหݔሺ௜ሻ; ൯ߠ ൅ ԡଵߠԡߚ

ெ

௜ୀଵ

 (8)

This optimization problem can be referred as L1
regularization which can be further solved by using
following L1 regularization solution:

݉݅݊
ߠ

෍ െ݈݌ ݃݋൫ݕሺ௜ሻหݔሺ௜ሻ; ൯ߠ

ெ

௜ୀଵ

ԡଵߠԡ ݋ݐ ܾݑݏ ൑ ܥ

 (9)
The above given optimization problem provides the minimal
error in training by reducing overfitting error. The complete
proposed model can be used for better classification
performance which can be obtained by using genetic
algorithm for dimensionality reduction, DBN and L1
regularization for better learning and reduced error.

Input: total number of attributes, number of hidden layer,
Boltzmann machine configuration parameters
Output: optimal weights, learned attribute set, probability
model and logistic regression optimal function set.
Step 1: input the visible and hidden layer units with initial
weights corresponding to the hidden and visible layer unit.
Step 2: Construct an initial energy function using
Bernoulli’s RBM given in (2)
Step 3: Based on this energy function, find the probability of
hidden and visible layers which can be used for weight
estimation given in (3)
Step 4: Initiate the learning process by for given input
samples by computing the probability function of hidden
units.
Step 5: apply weight update computation by applying
logarithmic derivative computation for hidden layer and
visible layer units
Step 6: establish the logistic regression model using sigmoid
function as (7)
Step 7: maximum a posteriori (MAP) computation for best
probability function

Step 8: construct the optimization problem as (8) and iterate
until the desired value is obtained

4. EXPERIMENTAL STUDY

In this section we present complete experimental study for
software defect prediction using proposed approach. In
order to perform this operation, we have considered dataset
obtained from SEIP Lab [23] where eclipse dataset is
provided with subsequent release of the data. These two
datasets are named as (a) Eclipse JDT (release
2.0,2.1,3.0,3.1 and 3.2) and Eclipse PDE (release 2.0, 2.1,
3.0, 3.1, 3.2) b) Private Dataset ABC.

4.1 Dataset description

These datasets are obtained in .csv format with comma and
points as decimal mark. First row of the csv data file
contains the description of metrics: column 1 denotes file
path and columns 2-49 denotes the independent software
metrics variable which are given with the software metric
abbreviations and final column number 50 denotes the total
number of defects. A brief description about these datasets
[24] is provided in the Table 1given below.

Table.1. Database Description

 4.2 Performance measurement

Performance of proposed approach is measured in terms of
classification accuracy which can be computed by using
confusion matrix. Table 2 shows a sample representation of
confusion matrix.

Table 2. Confusion Matrix

 Actual
class

Predicted class

Non defective Defective
Non Defective False negative

(FN)
True Positive (TP)

Defective True Negative
(TN)

False Positive (FP)

With the help of this, accuracy of the proposed model is
computed and compared with other state of art models.
Moreover, first experiment is conduced only using DBN,
next experiment contains DBN and genetic algorithm and

Database Total
Class

Total
versions

Transactions Post
release
defect

Eclipse JDT
core

997 91 9135 463

Eclipse PDE
UI

1562 97 5026 401

Equinox
framework

439 91 1616 279

Mylyn 2196 98 9189 677

ABC private
Dataset

779 99 1915 403

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 869

finally, DBN, genetic algorithm and L1 regularization
scheme is also incorporated.

4.3 Comparative analysis

Based on this approach, we present a comparative analysis
where various parameters such as precision, recall, false

positive rate, F-measure and AUC (Area under curve)
have been computed and compared.

4.3 Comparative Analysis

Measurement
Parameter

Approaches Eclipse JDT core Equinox
framework

Eclipse PDE UI Mylyn ABC
Private
Dataset

Precision DBN 0.47 0.63 0.28 0.21 0.21

 GA+DBN 0.8 0.89 0.62 0.75 0.66

 GA+DBN+L1 0.86 0.93 0.78 0.83 0.77

False Positive rate DBN 0.17 0.24 0.2 0.17 0.13

 GA+DBN 0.69 0.88 0.83 0.89 0.81

 GA+DBN+L1 0.76 0.87 0.91 0.93 0.85

F-Measure DBN 0.52 0.62 0.35 0.34 0.26

 GA+DBN 0.91 0.9 0.77 0.81 0.85

 GA+DBN+L1 0.93 0.92 0.81 0.83 0.92

AUC DBN 0.76 0.78 0.7 0.68 0.69

 GA+DBN 0.91 0.86 0.88 0.94 0.81

 GA+DBN+L1 0.94 0.92 0.9 0.94 0.85

This comparative analysis is presented in Table 3 where
existing system performance are compared with proposed
approach. This comparative analysis shows that proposed
approach achieves better performance when compared with
conventional software defect technique.

5 ACKNOWLEDGEMENT

I would like to thank the organization who has provided me
the ABC private data set for my research work.

6 CONCLUSION

In this work, we have focused on software defect prediction
techniques using deep learning technique and presented a
novel approach for early bug prediction. In order to perform
this task, we have considered deep learning techniques along
with feature selection and overfitting error reduction in deep
belief networks. First of all, genetic algorithm is
implemented for dimensionality reduction from considered
feature subset. In next stage, deep belief network is applied
for pattern learning which is further improved by solving an
optimization problem using L1-regularization model.
Performance study of the proposed model is carried out
using SPIE lab dataset repository and private dataset ABC.
Proposed approach performance is compared with existing
models in terms of classification accuracy. This
experimental analysis shows that proposed approach is
capable of achieving enhanced classification performance.

REFERENCES

[1] Hryszko, Jaroslaw, and Lech Madeyski. "Assessment of
the Software Defect Prediction Cost Effectiveness in an
Industrial Project." In Software Engineering: Challenges
and Solutions, pp. 77-90. Springer International
Publishing, 2017.

[2]

[3] He, P., Li, B., Liu, X., Chen, J. and Ma, Y., 2015. An
empirical study on software defect prediction with a
simplified metric set. Information and Software
Technology, 59, pp.170-190.

[4] Arora, I. and Saha, A., 2018. Software Defect Prediction:
A Comparison Between Artificial Neural Network and
Support Vector Machine. In Advanced Computing and
Communication Technologies (pp. 51-61). Springer,
Singapore.

[5] Mohanty, R. and Ravi, V., 2017. Machine Learning
Techniques to Predict Software Defect. In Artificial
Intelligence: Concepts, Methodologies, Tools, and
Applications (pp. 1473-1487). IGI Global.

[6] Moussa, R. and Azar, D., 2017. A PSO-GA approach
targeting fault-prone software modules. Journal of
Systems and Software, 132, pp.41-49.

[7] Liu, M., Miao, L. and Zhang, D., 2014. Two-stage cost-
sensitive learning for software defect prediction. IEEE
Transactions on Reliability, 63(2), pp.676-686.

[8] Ryu, D., Jang, J.I. and Baik, J., 2015. A hybrid instance
selection using nearest-neighbor for cross-project defect
prediction. Journal of Computer Science and
Technology, 30(5), pp.969-980.

[9] Shepperd, M., Song, Q., Sun, Z. and Mair, C., 2013. Data
quality: Some comments on the nasa software defect
datasets. IEEE Transactions on Software Engineering,
39(9), pp.1208-1215.

[10] Arar, Ö.F. and Ayan, K., 2017. A Feature Dependent
Naive Bayes Approach and Its Application to the

Manjula C et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,864-870

© 2015-19, IJARCS All Rights Reserved 870

Software Defect Prediction Problem. Applied Soft
Computing.

[11] Quah, T.S. and Thwin, M.M.T., 2003, September.
Application of neural networks for software quality
prediction using object-oriented metrics. In Software
Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on (pp. 116-125). IEEE.

[12] Kanmani, S., Uthariaraj, V.R., Sankaranarayanan, V. and
Thambidurai, P., 2007. Object-oriented software fault
prediction using neural networks. Information and
software technology, 49(5), pp.483-492.

[13] S. Lessmann, B. Baesens, C. Mues and S. Pietsch,
"Benchmarking Classification Models for Software
Defect Prediction: A Proposed Framework and Novel
Findings," in IEEE Transactions on Software
Engineering, vol. 34, no. 4, pp. 485-496, July-Aug. 2008.

[14] Chen, X., Shen, Y., Cui, Z. and Ju, X., 2017, July.
Applying Feature Selection to Software Defect
Prediction Using Multi-objective Optimization. In
Computer Software and Applications Conference
(COMPSAC), 2017 IEEE 41st Annual (Vol. 2, pp. 54-
59). IEEE.

[15] Hosseini, S., Turhan, B. and Mäntylä, M., 2017. A
benchmark study on the effectiveness of search-based
data selection and feature selection for cross project
defect prediction. Information and Software Technology.

[16] Sabharwal, S., Nagpal, S., Malhotra, N., Singh, P. and
Seth, K., 2018. Analysis of Feature Ranking Techniques
for Defect Prediction in Software Systems. In Quality, IT
and Business Operations (pp. 45-56). Springer,
Singapore.

[17] Maua, G. and Galinac Grbac, T., 2017. Co-evolutionary
multi-population genetic programming for classification
in software defect prediction. Applied Soft Computing,
55(C), pp.331-351.

[18] Afzal, W. and Torkar, R., 2016. Towards benchmarking
feature subset selection methods for software fault
prediction. In Computational Intelligence and
Quantitative Software Engineering (pp. 33-58). Springer
International Publishing.

[19] Li, J., He, P., Zhu, J. and Lyu, M.R., 2017, July.
Software Defect Prediction via Convolutional Neural
Network. In Software Quality, Reliability and Security
(QRS), 2017 IEEE International Conference on (pp. 318-
328). IEEE.

[20] Wang, T., Zhang, Z., Jing, X. and Zhang, L., 2016.
Multiple kernel ensemble learning for software defect
prediction. Automated Software Engineering, 23(4),
pp.569-590.

[21] Wang, S., Ping, H. and Zelin, L., 2016. An enhanced
software defect prediction model with multiple metrics
and learners. International Journal of Industrial and
Systems Engineering, 22(3), pp.358-371.

[22] Tomar, D. and Agarwal, S., 2016. Prediction of defective
software modules using class imbalance learning.
Applied Computational Intelligence and Soft Computing,
2016, p.6.

[23] Hryszko, J. and Madeyski, L., 2017. Assessment of the
Software Defect Prediction Cost Effectiveness in an
Industrial Project. In Software Engineering: Challenges
and Solutions (pp. 77-90). Springer International
Publishing.

[24] http://www.seiplab.riteh.uniri.hr/?page_id=834
[25] D'Ambros, M., Lanza, M. and Robbes, R., 2010, May.

An extensive comparison of bug prediction approaches.
In Mining Software Repositories (MSR), 2010 7th IEEE
Working Conference on (pp. 31-41). IEEE.

[26] Zhang, F., Mockus, A., Keivanloo, I. and Zou, Y., 2014,
May. Towards building a universal defect prediction
model. In Proceedings of the 11th Working Conference
on Mining Software Repositories (pp. 182-191). ACM.

