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Abstract: Computer Aided Diagnosis (CAD) is an important pattern recognition application in the field of medical sciences. Such systems assist 
(not replaces) doctors in the interpretation of medical image. Computerized system for automated chromosome analysis is amongst popular CAD 
systems which have attracted the attention of numerous researchers, making it a thrust area for further investigations. In last 25 years, 
extensiveinvestigations have been contributed to designAutomated Karyotyping Systems (AKS). This paper presents a comprehensive survey of 
the developments and current trends in the field of AKS. The survey details the overall advancements in AKS since its origin and presents an 
effective review of pre-processing and image enhancement techniques, segmentation methods, feature extraction algorithms and the classifiers 
used in AKS. Few unaddressed issues and challenges that have comparatively received meagre attention are discussed highlighting the future 
prospects of AKS and providing pointers to the further research. 
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I. INTRODUCTION 
 

In cellular images, chromosomes are the constructions that 
contain hereditary information. Every cell in a normal human 
being has around 6 × 109 bits of information. These 
informative structures also called as information carriers of our 
body are located in the nucleus of the cell and are composed of 
genes that constitute the genome and genetic information of an 
individual. Genes control the physical characteristics of a 
species. Chromosomes are the key factors carrying valuable 
information regarding the health of an individual and therefore 
important to the doctors for detecting genetic syndromes [1].  
Individuals belonging to a particular species or generic have 
exactly the same count of chromosomes in their nuclei [2]. A 
normal human being cell has 46 number chromosomes which 
are classified as belonging to either an autosomes category or 
sex /gender chromosomes. A standard human cell contains 22 
pairs of autosomes and one pair of gender chromosomes, the X 
or Y. A female cell has a pair of X chromosome and having a 
combination of X and Y chromosome confirms the gender as 
male.   

Process of cell cycle includes cell division as an 
important task. Normally, human chromosomes are 
particularly stretched and slender and are fundamentally 
invisible. However, during the metaphase stage of cell 
division, they become relatively much shorter and wider [1, 3]. 
During metaphase stage, chromosomes differ from each other 
in their morphology. The neck of the chromosome, centromere 
connects its shorter and the larger arm. The position of the 
centromere and the Centromeric Index (CI) which is also 
called as arm ratio (ratio between the lengths of the two 
chromosome arms) are the most prominent morphological 
features used for chromosome classification. Staining 
processes are used to separate chromosomes that are similar in 
size and centromere position [3].Ideogram is a standard 
representation for chromosomes which indicate it’srelative 

size and banding pattern [4, 5, 6]. These features are used in 
manual and automated karyotyping.  

 
II. KARYOTYPING 

 
 In the process of reproduction, each parent (father 
and mother) contributes in formation of 22 homologous 
autosomes and a pair of gender chromosomes (23 pairs in a 
normal human being). A standard representation of these 23 
pairs of chromosomes is known as a Karyogram. A normal 
karyogram has chromosomes belonging to three major groups 
(Metacentric, Submetacentric and Accrocentric) and seven 
sub-groups (A to G). Such a nomenclature is referred to as 
Denver Classification in the literature [7].   Karyotyping is the 
process of classifying the chromosomes in its respective 
groups or classes as per the ISCN standard (International 
Standard for Chromosome Nomenclature, 1997) [7] illustrates 
the karyogram of human cell based on Denver Group, 
detailing the subclasses, size and relative position of 
centromere for each group. Figure1 depicts a sample of 
metaphase image and its ordered karyotype from the publically 
available database [8]. The karyogram or the process of the 
karyotyping is the first fundamental step in identification of 
genetic disorders. It authenticates the exact count of the 
chromosomes in the cell which immediately confirms the 
possibility of up-syndrome or down-syndrome genetic 
disorders and thus provides the pointers to further diagnostic 
path.  
 
A. Manual Karyotyping: 

Traditional chromosome karyotyping is performed 
manually. A cytogenetic analyst uses high end microscope to 
capture an image during the metaphase stage of the cell 
division and identifies each chromosome in that image. The 
chromosomes are initially classified in the broader groups 
based on size and position of centromere. The next step of 
fine-detailing in 23 smaller groups needs expert knowledge 
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and tremendous experience. The manual karyotyping methods 
are laborious, lengthy and tedious, dependent on trained 
cytogenetics and expert knowledge, time consuming, prone to 
human erroneous, have storage problem and are expensive, 
thus demanding automation [9]. 
 

 
(a) 

 
(b) 

Figure 1 : (a) A metaphase plate for a normal female cell; 
(b) The corresponding respective karyotype. 

 
B. Automated Karyotyping Systems [AKS] 

The idea of using computers to automate the manual 
process of karyotyping was initially presented in the year of 
1964 by Ledley. Casperson et al., in later 1970s, added a 
major dimension to this idea by proposing the features (size, 
length, CI, band patterns) for the development of Automated 
Karyotyping systems [AKS]. This marked an exponential 
increase in the scientists designing AKS. Such systems were 
obviously expected to offer countless clinical advantages such 
as, swift screening of genetic specimens, interactive and 
graphical environment, faster in the completion of the 
karyogram, allowing eminence publishing, improved 
understanding and analysis of the image, decrease labour costs 
and enable long-term storage [10].  

 
C. Commercial Software for AKS 

Marketable systems for AKS were introduced as early as 
1964 to classify chromosomes. In past few years, most of the 
commercial AKS have been developed claiming encouraging 
success rates (60-90 % accuracy) however, do not perform 
significantly when deployed practically in the genetic labs and 
fail to successfully karyotype images with touching 
overlapping and occluded chromosomes. In such cases, the 
performance is restricted to mere 10-15 % of accuracy [11]. 

A rudimentary AKS system designed and developed at the 
Medical Research Council (Scotland) and Lawrence Berkeley 
Laboratory (California, USA) delivered encouraging 
performance but suffered from serious limitation of high false-
positive rate of 5.5. The AKS  developed by Cancer Research 
Centre of Pathology laboratory, University of Missouri-
Columbia faced challenges in acceptance by the cynotgenetists 
due to inability of the software to segment touching and 
overlapping chromosomes. VISUSIMAGING developed by 

Russian institute addresses this limitation delivering 
acceptable performance and leading to the extension 
CYTOVISION System presented by British Applied Imaging 
Corporation. Integrate d CAD scheme was another noteworthy 
contribution by Xingwei Wang from University of Oklahoma 
[12]. Few systems for automated karyotyping are also used as 
learning aids for the beginners in the genetic labs. Regardless 
of the momentous investigations and contributions in AKS and 
in spite of the progress made, genetic and the clinical 
laboratories still have inhabitations in easy acceptance and 
practical deployment of fully automated systems, thus still 
keeping this as an open area of research. 
 
D. Databases Used in the Devlopment of AKS 

Wide availability of the databases has geared up the 
ongoing research in the automation of chromosome analysis 
[12]. Some of the popularly used typical databases (gray 
images) in the literature are Copenhagen, Edinburgh, 
Philadelphia, Bioimlab, LK1 and MFISH .Table IIdescribes 
and compares the image characteristics of three public datasets 
(Copenhagen, Edinburgh, and Philadelphia) [7]. 
 Recently, a new dataset developed by Enea Poletti 
(BioImLab) [6] has been made publically available for the 
research community. This dataset set is composed of huge 
number of both overlapping and touching chromosomes thus 
helping the experimentations to prove the efficacy of the 
algorithms developed by researchers. It also contains 
segmented individual chromosomes. Artem K. et al.  created 
another chromosome dataset LK1 [13] of relatively low 
quality chromosomes. This dataset was developed in in 
association with the IMM, Lisbon (Institute of Molecular 
Medicine) and has been widely used to test the classification 
and pairing algorithms. The MFISH chromosome Imaging 
Database was developed by former Laboratory of Imaging and 
Video Engineering. The image set contains 200 M-FISH 
Images [14]. 
 
E. Block Diagram and Basic Steps in AKS 

A typical AKS usually includes four fundamental handing 
out steps: pre-processing, segmentation, feature extraction and 
chromosome classification. Figure  demonstrates these basic 
building blocks along with the results of the intermediate 
processes. Figure (a) depicts original metaphase (BioImlab 
developed by Enea et al.) Figure 2(b) illustrates the 
segmentation of metaphase images to obtain individual 
isolated chromosomes after appropriate image enhancement 
techniques. Figure 2(c) shows the computation of one such 
feature, band profile (horizontal bands which are present along 
the longer axis of the chromosomes) that enable the further 
classification of the chromosomes. Figure 2(d) shows an 
example of classifier, ANN used to produce a karyotyped 
image at the output as seen in 2(e).  Some other operations 
involved in a fully automatic or semi-automated chromosome 
analysis include identification of isolated, touching and 
overlapping clusters and disentanglement of the clusters before 
their classification.  
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(a) (b) (c) (d) (e) 

Figure 2: AKS  for classification of banded chromosomes. The components include:  (a) Input metaphase image (b) Segmented chromosomes (c) Feature 
Extraction(d) Classifier (ANN as an example of classifier) (e) Final Karyotyped output. 

 
 

III. SURVEY OF IMAGE ENHANCEMENT / 
PREPROCESSING TECHNIQUES IN AKS 

 
Image enhancement is the first step in the design and 

development of AKS. Images captured during the metaphase 
stage of cell division are prone to various types of noise. 
Algorithms for image enhancement improve the quality of the 
images and increase the possibility of extracting better features 
for improved classification and karyotyping of the 
chromosomes [15]. Effective algorithms are proposed in the 
literature for improving signal to noise ratio, for background 
suppression and increasing the quality of low contrast band 
features, ultimately leading to effective automated systems for 
chromosome classification.  

A wide assortment of image pre-processing algorithms 
are explored and examined for improving the metaphase 
spreads. Smoothening and sharpening filters implemented 
using Sobel, Roberts, campus operators, Laplacian pyramids 
have been popularly used and are proved effective [14,15]. 
 A novel technique based on cubic spline wavelet 
transform was devised by Wu et al. [16], whereas Wang et al. 
[15,17] applied a family of differential wavelet for 
enhancement of chromosome images. Both these methods 
have limitations in terms of being shift and rotation invariant 
and requires additional memory because of over-complete 
representation. Seyed et al. [18] proposed another 
methodology based on plotting histograms and utilizing 
histogram matching techniques using iterative and adaptive 
approaches to enhance the contrast ratios of the chromosomes 
in metaphase images. The results were encouraging and 
acceptable, however adaptive choice of the executing 
parameters proved to be a major hindrance considering 
atomisation of manual karyotyping.   
 MFISH imaging picked up momentum in genetic lab. 
Pre-processing operations included operations like back 
ground correction, feature normalization and color 
compensation [19]. Due to the non-uniform illumination there 
are intensity variations which result into non-flat background 
surfaces. The observed signal at pixel y is modelled using the 
equation as detailed in eq 2.1  
y = E*{C*x + b} + n (2.1) 
Where, x = 6 X 1 vector of the true signal, 

b= dc offset of the CCD and various factors       
     causing background elevation, 
n= Noise of the imaging device such as white and   
     shot noise 
E= 6 X 6 diagonal matrix of exposure times, 
C= 6 X 6 colour spread matrix, 

It is necessary to develop additional image enhancement 
models that enhance the medical information and explore their 
utility to assist clinicians in diagnosis and further research. 
Techniques for removing low frequency shading components, 
staining debris and microscopic noise will also lead to 
improvement in the overall performance of AKS and such 
techniques need to be devised to intensify the overall 
performance measures of chromosome classification and 
therefore is an important step in computerized AKS. 
 
IV. SURVEY OF CHROMOSOME SEGMENTATION 

TECHNIQUES 
 

Segmentation is the process of separating individual 
chromosome (object of interest, foreground) from a metaphase 
spread (background) [19]. All the pixels belonging to sae 
chromosome or enclosed by the boundary of a particular 
chromosome are assigned the same label using region 
growing, region merging or thresholding operations [20]. A 
metaphase image has either an isolated chromosome or a 
cluster of touching /overlapping chromosomes. Segmentation 
and feature extraction of an isolated chromosome is relatively 
simple when compared to touching, occluded and overlapping 
chromosomes. The segmentation approaches need to be 
specifically devised to disentangle the overlapping and 
touching chromosomes in the metaphase image before the 
technician proceeds for the extraction of the features [21]. 
Some of the widely reported successful methods include use of 
Histogram, edge / region based and combination of various 
techniques (hybrid) [21]. 
A. Segmentation of Isolated Chromosomes: 

Similarity based methodologies utilizing global 
thresholding techniques are widely reported for the 
segmentation of isolated chromosomes in a metaphase image 
[22]. The chromosomes of various classes largly differ in the 
size and length. Due to this watershed based segmentation 
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algorithms have limited success for the segmentation of the 
chromosomes in group E and F. Presence of noise in low 
contrast chromosomes make the process further challenging 
[23]. Grisan et al. [24] presented a space-variant thresholding 
scheme with very high segmentation accuracies for simple 
cases. But the algorithm substantially fails when the 
chromosomes are bent or clusters. A hybrid approach for 
segmentation was proposed by Nemanje et al. [25]. The 
method automatically determines background colour, 
chromosome colour and tolerance values but requires user 
interaction. This is not favourable when designing an efficient 
AKS.  

Active shape models, active counters have also been 
explored, however the need further investigation due to 
concavity of chromosomes [26]. Recently, Enea et al. [27] 
explored thresholding strategies to report serious limitation 
imposed by appearance variability and background 
inhomogeneity. Researchers also explored usefulness of 
entropy and watershed segmentation and ultimately reported 
its limited success in cases of artefacts in MFISH images [21].  
 
B. Separation of Touching and Overlapping 

Chromosomes: 
Automated segmentation techniques for efficient 

disentanglement of touching and overlapping clusters and blob 
of chromosomes are the most crucial issue in AKS. This issue 
has gained most attention of the researchers. Chromosomes are 
non-rigid structures floating in the nucleoplasm of the nucleus. 
They therefore exhibit numerous possibilities of touching and 
overlapping forming clusters of multiple chromosomes. Many 
researchers have contributed in the development of 
segmentation algorithms for AKS.  

Charters [20] demonstrated a hybrid approach based 
on trainable shape models and classification indication on 
synthesized overlaps of X and T-shape and reported 
improvement in the performance. Synthetic patterns are 
considered and the investigation is limited only to two 
overlaps. The same evidence could in principal be used for 
larger complex cluster but its analysis is still unexplored. Even 
two overlaps X and T may be practically composed of 
multiple chromosomes. There still remained outsized scope to 
consider other types of overlaps like K shape, D shape which 
will certainly make the system flexible and robust.  

Agam et al. [22] and Lerner et al. [28] presented 
another novel approach comprising of unique banding 
characteristics of the chromosome to disentangle the cluster.  
Popescu et al. [29] utilized an effective methodology of 
analysing the boundary and axis and the approach delivered 
comparable results. However, in some approaches using 
genetic algorithms [30] quantitative and qualitative analysis of 
this approach is yet unexplored from AKS prospective.  

Shunren et al. [31] devised smart algorithms 
exploiting the contour characteristic for chromosome incision. 
Hybrid approach by Gunter et al. [32] combining rule based 
system and  constrained discriminant analysis provided 
acceptable results but had limitations in terms of speed and 
choice of parameters. Similar algorithm devised by Sahar et 
al.[33] failed in cases where chromosomes touch end to end, 
which are quite probable in a metaphase image, whereas 
algorithm presented by Srisang et al. [34] fails considerably to 
locate the centre of overlapping areas in few cases.  

In mid 1990s, MFISH technique was developed. 
Karvelis et al. [35] and Schwartzkopf et al. [14] have 

demonstrated maximum likelihood based methods and entropy 
estimation methods for separation of touching and overlapping 
cluster. Table I compares the performance of few best methods 
for separation of chromosome overlaps.  

Most of the researchers contributing in the 
development of algorithms for extrication of overlapping 
chromosomes have considered single overlaps restricted to 
only two overlaps. Considering natural variability of shape it 
is extremely important to devise additional algorithms that 
increase segmentation accuracies and thus classification 
accuracies. Addressing this issue and providing an acceptable 
and encouraging performance in the genetic labs is still a 
challenging task and needs further investigations from the 
perspective of practically deployable AKS.  
 
C. Automated Identification of Single and Overlapping   

Chromosomes: 
             Isolated and overlapping chromosomes demand 
execution of different segmentation algorithms. Another issue 
which has received meagre attention is automated 
identification of an isolated chromosome and a blob of 
touching/overlapping chromosome in a metaphase spread.  
Rahimi et al. [37] proposed a neural network based approach 
to deliver just satisfactory results.  
 

Table I: Performance comparison of the methods reported in the 
literature for separation of overlapping chromosome cluster 

Reference 
No.  

Data 
Set 

(No. of 
images) 

Data Set 
Composition 

 (no. of chromosome 
in the overlap and 
type of overlap ) 

Accuracy 
(%) 

[20] NA 2 (T- shaped) 84.8 
2 (X-shape) 92.3 

[22] 25 2  88 
[23] 162 5  90 
[28] 46 2 (1 overlap) 82.6 
[29] 219 NA 89  
[31] 40 NA 92 
[34] 35 2 (1 overlap) 80 
[36] 46 2 (1 op) 94.6 

[84] 60 

2 (1 overlap) 
2, 3,4(2,3,4 
overlaps)  
5,6 (5, 6 overlaps)  

100 
85 
75 

 
From the perspective of a fully automated chromosome 
analysis, it is therefore necessary to identify and distinguish 
between a chromosome cluster and an isolated chromosome.  
A procedure that distinguishes between an isolated ('S' shaped) 
chromosome, touching chromosome (' L' chromosome) and 
overlapping chromosomes ('X' shaped) is necessary before 
application of the extrication algorithm.  This problem has 
received very less attention in the literature inspite of being an 
important step in a fully automated chromosome analysis 
system.  
 
V. SURVEY OF FEATURES AND FEATURE 

EXTRACTION APPROACHES FOR AKS  
 

Features extracted and the algorithms used for 
extraction of the features play a substantial role in the 
performance of the developed AKS.  A metaphase image 
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imposes numerous challenges on the task of karyotyping. 
Some of these challenges include resolutions of the metaphase 
image, quality of the image, number of overlapping and 
touching chromosomes, bend and highly curved chromosomes 
[38]. Developing efficient algorithm to extract appropriate 
features irrespective of the challenges imposed demand great 
research efforts. Next sub-section details the features used in 
the development of AKS and the reported algorithms are 
detailed further. 
 
A. Features used for AKS 

The traditional features used for the computerized 
karyotyping of the metaphase image are categorized as 
dimensional, geometrical and pattern based features. Length of 
the chromosome, the area of the chromosome in terms of the 
number of pixels is popularly used at a preliminary level to 
decide the group of the chromosomes. Other morphological 
features includes perimeter of the chromosomes as well. The 
category of the geometrical features includes normalized area 
and centromeric ratio or arm ration. Pattern based systems are 
of outmost importance when considering the sub-group 
classification in 23 classes. Each chromosome is categorized 
with a band pattern which is unique to a particular pair in 
respective class.  Various algorithms are reported to extract the 
sequence of the band patterns. Polarisation of the 
chromosomes is also an important consideration when 
extracting the features of the chromosomes. The extracted 
sequences of the band will match and help the process of 
pairing of chromosomes only when the chromosome position 
match each other from the perspective of the longer and the 
shorter arm. Literature reports medial axis as a fundamental 
term to extract the axis of the chromosome and consequently 
the sequence of light and dark bands in terms of varying 
intensities.  Sweeny et al [39] proposed the extrication of 
features in frequency domain and other researchers also 
examined various algorithms based on profile densities [40]. 
Literature also reports few novel features like Normalized 
Average Gray Density [NAGD], and mutual information [41], 
beyond the traditional features used manually by the 
cytogentist in genetic labs.  

         
B. Feature Extraction and Selection Methods : 
 Roshtkhari et al. [42] presented novel algorithms for 
extrication of features in highly curved chromosomes. Akila et 
al. [43] proposed a hybrid algorithm but the effectiveness and 
success is limited to only groups A, B and C.  Jau et al. [44] 
developed an efficient approach for medial axis determination 
and. Shadab et al. and Lerner Et al.  [45] developed an 
algorithm to estimate a single-line medial axis but algorithm 
failed in cases of severly bend chromosomes. Only 5 types of 
chromosomes were however classified as the part of the study. 
It is necessary to evaluate and confirm the importance of the 
features treating it as a 24 class problem. . 
 Seung et al. [47] selected some features: relative 
length, normalized Density Profile [DP] and Gunter et al. [48, 
49, 50] proposed a novel approach exploiting the dominant 
points.  Severely bent chromosomes are however not 
considered in this study. Shape variability in chromosomes is 
very natural due to its non-rigid nature. The efficiency of the 
algorithm in such cases needs to be further examined. The 
method formulated by Enea et al.  [51] finally lead to good 
classification accuracies,whereas approach by Wang et al. [52] 
to detect the centromere position for chromosome polarization 

has been examined only on limited types of chromosomes. In 
another approach shape representors have been examined 
using wavelet [53, 54] and ANN [55] but even these methods 
have limited success.  
 Accurate feature vector formed with efficient 
extraction algorithms may lead to (but not necessarily 
guarantee) improved classification accuracy and thus enhance 
the overall performance of AKS, demanding further research 
in AKS [56].  
  
VI. PAIRING AND CLASSIFICATION OF 

CHROMOSOMES 
 Pairing and the classification of chromosomes, using 
the extracted features is the last step in AKS. A wide 
assortment of approaches including neural networks, fuzzy 
based approaches and artificial intelligent algorithms are 
explored and reported in the literature. Various fuzzy based 
approaches [57, 58,59], Expert systems [60],  transportation 
algorithm [61], sub-region search iteration [62] and space 
prototyping algorithm [63], Hidden Markow Models [64 ,65 ] 
are experimented for pairing and classification of human 
chromosomes [66,67,68] considering database of  gray and 
MFISH images.   

Among the reported approaches, statistical algorithms 
and artificial intelligence approaches have delivered 
appreciable performances. Xingwei et al. [69] proposed a 
novel two-layer classification approach using ANN, whereas a 
standard genetic algorithm based approach is proposed by 
Munot et al. [70] explored unique approach incorporating use 
of rough set theory for the segmentation of chromosomes and 
further experimented use of genetic algorithms to achieve 
appreciable results.  
Table II compares the classification accuracies of few methods 
reported in the literature. It must be acknowledged that this 
comparison is only being indicative, because of the different 
datasets used.  It gives an over-view about the usability and 
modularity of the classifiers. MFISH imaging is proved to be 
extremely useful in cytogenetics, attracting many researchers 
to contribute in development of AKS. First paper on MFISH 
technique was published in 1996 by Speicher et al. and further 
in 1996, he proposed semi-automated image analysis 
consisting of Segmentation, thresholding and classification 
stages. These efforts revolutionized chromosome imaging.  
MFISH Image analysis was fully automated by modelling the 
task as a 5 feature 24 class pattern recognition problem and 
using region merging process. Schwartzkopf et al. [71] 
experimented a segmentation algorithm for MFISH images 
that minimizes the entropy of classified pixels. The method 
successfully decomposed the clusters of touching and 
overlapping chromosomes. But due to its poor 
computationally complexity, he further exploited maximum 
likelihood technique. Their approach outperformed the 
previously reported classification methods. Sampat et al. [72] 
explored pixel - by pixel classification for non-overlapping 
chromosomes and achieved 95 % accuracy and further 
proposed supervised parametric and non -parametric 
classification of chromosome images. They reported to 
success of k-nearest neighbor method with k=7 for achieving 
highest classification accuracy.    
 Wang et al. [73] presented a novel algorithm that 
utilizes Fuzzy C means clustering to achieve improved 
classification accuracy. Karvelis et al. [74, 75] reported 
watershed based method for segmenting the chromosomes. A 
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region based classifier was implemented to classify the 
segmented chromosomes. The method achieved overall 
accuracy is of 82.4%. Choi et al.[ 76, 77] explains joint 
segmentation of MFISH images to report an overall 
segmentation accuracy of 98% . Choi et al. [78] explains the 
algorithm for removal of non-flat background from the 
MFISH images and reports an improvement in classification 
accuracy by a factor of 10 after background correction.               
Petros et al. [79] devised an approach based on Bayes 
classifier and verified the efficacy of the algorithm using 
MFISH image database. 
  
Table IIError! No text of specified style in document.: Comparisons of the 

classification accuracies reported in the literature 

Method-
ologies 

Accuracy 
(%) 

Observations 

Dynamic 
time warping 

81 Heavy computation load 

Hidden 
Markow 
Model 

≤ 97 Dependency on parameter 
estimation 

Artificial 
Neural 

Network 

94 
67 - 97 

98 

Need of  optimization 
Relatively low accuracy of 

group  C  
Experimented only on group E 

Genetic 
Algorithm 

91  - 95 
Unable to handle incomplete 
cells and bend chromosomes Sub space 

prototype 
≤ 95 

Similarity 90 Shape dependability 
The results obtained were superior due to use of vector median 
filtering. A combination of other sophisticated classifier with 
other feature extraction algorithms is expected to further 
improve the results. 

MFISH technology has seen major advancements in 
last few decades leading to significant contributions in the 
development of highly efficient AKS.  However, few 
challenges in terms of cost, misclassifications and 
misinterpretations are reported by Lee et al [80]. Another very 
important limitation which seems to have received 
comparatively less attention in the literature is the 
computational complexity of the overall process.  
 The problem of MFISH image classification is 
formulated as a five feature 24 class pattern recognition 
problem. Processing a multispectral set of five images, each 
one corresponding to a particular dye, increases the overall 
computational complexity by five times as compared to gray 
scale imaging. Recently, Hua et al. [89] introduced embedded 
M-FISH image coding (EMIC) to reduce the issue of memory 
requirements, transfer and computational cost. Goienetxea et 
al. [81] explored a pipeline approach for image analysis in 
AKS.  

Building intelligent classifiers with expert knowledge 
for karyotyping of MFISH and Gray images is major 
impediment in the development of AKS.  A fully automated 
and highly effective chromosome analysis system which can 
be directly deployed in clinical environment, made available 
as commercial package for genetic lab and that is a facilitating 
tool for doctors still need further investigations and additional 
experimentations.  

 
VII. DISCUSSION AND CONCLUSION 
 

  Despite the scrupulous efforts to develop a fully 
automatic chromosome classification system, it has limited 
success in comparison with the performance and results 
delivered by an expert in genetic laboratories. One of the 
possible areas of further expansion for improved performance 
includes adequate utilization of the expert knowledge and 
experience to develop decision making ability. Enormous 
efforts to develop automatic chromosome classification 
techniques have been made so far. AKS is an attempt to 
completely circumvent or minimize the human effort in the 
process of karyotyping. The system must therefore have both, 
expert knowledge and experience of the trained cytogeneticist 
from the clinical acceptability prospective. This makes the 
development of the AKS difficult and challenging and 
therefore demands additional research. Some of the most 
important findings, challenges and issues in the development 
of fully automatic chromosome analysis systems for 
classification of gray and MFISH images are discussed below: 
 MFISH image analysis proved to be a boon in 

development of AKS, however the complexity of the 
algorithms demands substantial memory and involve time 
intricacies that reduces the speed. In the multivariate 
analysis used in MFISH imaging, a 5-element mean 
vector is to be multiplied with 5X5 covariance matrix. 
Considering computations at pixel level, this leads to 30 
multiplications/pixel and 24 additions/pixel and class. 
Since there are 24 classes and the image size used is 517 
X 645 leading to final count of approximately 240 million 
multiplications/additions for each image. It is necessary to 
devise and explore the utility of univariate algorithm 
which addresses the issue of computational complexity 
and still delivers comparable performance index. This 
issue needs further investigations and detailed analysis 
from the perspective of AKS. . 

 MFISH Imaging brought revolution in field of AKS and 
simplified the task of extrication of overlapping 
chromosomes. Every chromosome of a particular class 
absorbs a specific dye and color information eases the task 
of separation of the cluster. But the overlap formed may 
also involve the chromosomes of the same class. The 
entire cluster would then be of same color and make the 
task of separation impossible. So this issue needs to be 
addressed in MFISH imaging. 

 In the recent past, the research community and the genetic 
laboratories have experienced a paradigm shift as the 
research is now focused on deploying intelligent and a 
fully automatic karyotyping system with ideally, 
absolutely no manual intervention. However, to ensure 
human-like, acceptable and reliable performance of such 
systems it is mandatory and indispensible to  incorporate a 
learning and a decision taking capability which is 
necessarily in consistent and in line with human learning. 
Similar to cytogenetic experts in genetic laboratories, such 
intelligent AKS should exhibit decision taking ability and 
form implication using the knowledge acquired, training 
phases and the learning from the earlier databases of 
metaphase image to be karyotyped. Human beings 
continue to learn throughout their life cycle. The process 
of learning new information continues without 
disregarding or forgetting previously learned and acquired 
information and knowledge. This however, elevates the 
stability-plasticity dilemma. The popular and extremely 
widespread use of neural networks as classifiers in AKS 
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unfortunately requires the disposal of existing classifier 
and demand time consuming. Artificial neural network 
based classifiers lying on the “stability” end of the 
spectrum, thus suffer from “Catastrophic Forgetting” 
[CF], which is the loss of all previously acquired 
information. Regardless of the huge assortment of the 
classifiers and hierarchical classifying approaches being 
analyzed in the development of AKS there still remains an 
extensive opening to investigate the expediency 
incremental learning approaches to strike the expected 
stability–plasticity balance in the classification task.  This 
concern has received very limited attention and has been 
partially attempted to very few classes for karyotyping 
[82, 83]. From the perspective of practical deployment of 
intelligent AKS with imbibed expert knowledge, it is 
indispensible to experiment incremental approach for 24 
class problem. 

 Most of the higher classification accuracies reported in the 
literature are obtained when the approaches were tested 
and examined only on few Denver groups or limited types 
of chromosomes or when only a part of dataset is used.  
The retention of the same classification accuracies 
considering the chromosome classification as 24 class 
problem needs to be examined.  Efficiency of the 
algorithm considering the variations and diversity in the 
independent data bases must also be examined. Moreover 
AKS, being an application of use in medical domains 
needs to have very high classification. There is a genuine 
need to increase upon the reported classification by 
developing better system with high classification 
accuracies.  

 Most of the karyotyping systems consider the task of 
chromosomes classification as a 24 class problem. This 
will only be applicable to normal cell containing all 46 
chromosomes. An abnormal human cell may have more or 
less number of chromosomes. So similarity based pairing 
approach and classification methods handling abnormal / 
incomplete cells (with excess or less count of 
chromosomes) needs to be further developed and fully 
experimented before bringing the automated systems to 
direct practical use in the genetic labs.  

 Researchers have carried out extensive research to analyze 
the features of the chromosomes with an objective of 
deriving an optimum feature vector for enhancing the 
classification accuracies. They have reported the most 
dominant features considering all the subgroups (24 
classes) simultaneously, i.e. overall chromosome 
classification system. But the dominant features may vary 
for every group.  To the best of our knowledge there has 
been no report on the significant features evaluated for 
every group (7 groups). This study will in particular be 
useful when two stage chromosome classification 
approaches is used. Having identified the group of the 
chromosome only the significant features of that particular 
group can be further extracted before classifying it in its 
respective subgroup or subclass.  

 Chromosomes are non-rigid in nature and therefore 
exhibit elevated shape variability. It is very common to 
have highly curved chromosomes with multiple bending 
centers. Literature reports algorithms to straighten the 
chromosome before its feature extraction. But such 
approaches only consider one bending centre (bend at the 

centromere) which may not always be the case. Most of 
the other approaches that derive the centerline of the 
chromosome fail when the chromosomes are severely bent 
(very high bending angles). It is necessary to develop 
efficient feature extraction algorithm capable of handling 
highly bend chromosomes and are computationally 
inexpensive.    

 Human interventions are reported in many automated 
systems and are thus interactive.  “Manual e-cutting” is 
required by an expert cytogenetists to guide the automated 
system towards further classifications. When dealing with 
huge number (above 200) of samples in Genetics lab, this 
manual procedure becomes very tedious, needs a trained 
expert and is time consuming.  So it of outmost 
importance to develop systems with thorough image 
understanding and with expert knowledge for complete 
automation.  

 The majority of the algorithms and approaches devised to 
disentangle the cluster of touching and overlapping 
chromosomes are tested on limited cases such as a single 
overlap or an overlap of ‘X’.  An efficient AKS must be 
able to extricate cluster of chromosomes with numerous 
overlaps and involving numerous chromosomes [84]. 
Considering the possibility of any unpredictable overlaps 
in varying degrees and varying shapes it is extremely 
important to formulate effective and efficient 
segmentation and feature extraction algorithms to build 
intelligent classifiers to function of independent of the 
count of chromosomes in the overlap and shape of the 
overlap.  

 Automated partition of touching chromosomes is also a 
major challenge in AKS because it hurdle the feature 
extraction process. Limited contributed are reported in the 
literature regarding this issue. It is essential to develop 
algorithms to separate the chromosomes that touch each 
other at varying degrees and angles. .  

 To develop and deploy a fully operational AKS with 
absolutely no human interference, it is imperative to 
imbibe expert knowledge of trained cynotgenetists to 
automatically categorize and discriminate between the 
non-overlapping, touching and the overlapping cluster in a 
metaphase. The overlapping cluster needs to be separated 
before the application of feature extraction algorithm, 
whereas features of an isolated chromosome can be 
directly extracted soon after its segmentation.  This 
important issue of AKS has been given relatively less 
consideration by the researchers.   

 The chromosome needs to be polarized as per ISCN 
standard before extracting the feature vector.  This 
problem has comparatively received less attention. Most 
of the approaches assume that the chromosomes are 
already polarized which may not be applicable from 
clinical   genetic lab perspective. Another issue is 
identifying the centromere of the chromosomes.  Though 
the task is simple when the chromosomes are vertical, it 
actually challenging when the chromosomes are bent. It is 
indispensable to address this problem with some 
supplementary research.  

 In most of the cases when testing the systems for various 
images, chromosome spreads are photographed through a 
microscope. Digitally photographed metaphase images are 
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captured with microscope.  So there is a possibility 
microscopic noise in the image. Noise due to staining, 
staining debris, Gaussian, salt and pepper noise 
interference in the images must be considered. Most of the 
developed systems are not tested and verified with these 
considerations. So research based on noise analysis is also 
required to be carried out.  It is necessary to develop 
additional algorithms that eliminate the effect of staining, 
sample defects and imaging conditions. This is of outmost 
importance when applying the AKS in clinical 
environment.  Real and practical database with such 
defects must also be made available for the research 
community for further experimentation.   
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