
DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5424

Volume 9, No. 1, January-February 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 499

ISSN No. 0976-5697

CHALLENGES OF REGRESSION TESTING: A PRAGMATIC PERSPECTIVE

Sandeep Dalal
Assistant Professor,

Maharshi Dayanand University,
Rohtak, India

Sudhir
Research Scholar,

Maharshi Dayanand University,
Rohtak, India

Kamna Solanki
Assistant Professor,

Maharshi Dayanand University,
Rohtak, India

Abstract: The prevailing scenario of ever increasing dependency of human beings on software applications has built pressure on software
organizations to produce quality software. The quality of software is determined by many factors. One of the vital factors in deciding the
software quality is optimized usage of testing tools and techniques employed during regression testing. Extremely high complexity of regression
testing makes it necessary to utilize optimized way of running a selected and minimized test suite. Still, various challenges like redundancy,
repetition ratio, Recurrence ratio or missing functionalities during regression testing are common. This paper discusses about the problems and
challenges encountered during regression testing.

Keywords: Regression Testing; Test Case Prioritization; Software testing

I. INTRODUCTION

The significance of software can be easily perceived as it
emerged as a powerful tool which finds its application in every
field ranging from mobile phones to medical treatment
covering almost all electronic gadgets on earth up to space i.e.
satellite communication. Thus, the software has made a way of
changing and facilitating the life of humans. If it has such an
involvement, it must be developed in a well-defined and
sequential way; otherwise, its quality will be compromised
leading to an unreliable software. The software is thus
developed after undergoing various phases of SDLC.

To ensure the quality of a software, testing is performed.

The various testing techniques find numerous faults/errors,
which are thus removed by various debugging approaches. One
of the approaches to testing is exhaustive testing. It has a
limitation that it can be performed only on very small
programs. Running exhaustive testing on large programs
keeping in mind time and cost constraint is not a feasible idea.
Regression testing is about running the entire test ensemble
again to ensure that amendments do not negatively affect the
system.

Verification and validation of a software product is an essential
step towards building quality software. Verification and
validation process is also known as software testing. Software
testing is performed both statically (verification) and
dynamically (validation) to ensure that the software meets the
customers’ demands and expectations. [1][2][3]. “Software
testing is a process of executing a program with the intent of
finding the software bugs”.

Test cases are executed during software testing to find the
failures (bugs). A test case is a collection of set of input,
behavior and output conditions. A test case with same expected
and observed output is considered as “pass”. Any mismatch or

discrepancy between expected and observed output makes a
test case “fail”[4][5][6]. To manage abundant test cases in
software, related test cases are often clubbed together as a

single test suite. A test suite is a collection of related test cases
as shown in figure1.

Fig 1: Test Cases and Test Suite

Software testing phase consumes the highest resources in

terms of time, resources and efforts. It is the most critical and
time consuming process during software development. The
testing of software is necessary evil for verifying the software
quality[7][8]. Software testing typically requires 40 - 50% of
development efforts. It is the most significant phase of the
software development life cycle [9][10]. Software testing still
can show the presence of bugs or software failures, but it can
never confirm regarding the absence of bugs because it is
nearly impossible to completely test a software exhaustively
due to resource and time constraints.

A. Regression Testing

Regression Testing is necessary during software
development as the developers alter the code to rectify the bugs
that have been reported during software testing; and regression

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,499-503

© 2015-19, IJARCS All Rights Reserved 500

testing ensures to capture and mitigate the undesired side-
effects of code amendments.

Fig 2: Regression Testing of Modified Build

Figure 2 describes the importance of regression testing and

depicts that the testing team needs to re-run the test suite after
code amendments to make sure that the previously failed test
cases are now passed after bug fixation (or code change) and
status of previously passed test cases is still “pass” so as to
capture the undesired side effect of software code change
[5][9]. Regression Testing makes sure that “fixing one bug do
not introduce several new bug” due to code change as shown in
fig. 3 [11][12][13][14][15][16].

Fig. 3. Need of Regression Testing

“Regression testing is selective retesting of a system or
component to verify that modifications have not caused
undesirable effects and that the system or component still
complies with its specified requirements” [4] [5].

Test case prioritization approach increases test feasibility in

the testing of software [3]. Software evolves with time, so the
size of software test suite also increases which often makes it
costly to execute. Numerous researchers have shown that
regression testing is a costly process and therefore it requires
most of the collective expenditure of the software.

A.1 Test suite minimization

This approach intends to eliminate the test cases, which
becomes redundant with regard to coverage of some set of
program requirement and therefore decreasing the number of
test cases in a regression test suite. It clearly states that only a
subset of the test suite is actually economical to use.
Minimization is at times called “test suite reduction” denoting
that the exclusion of test cases are everlasting.

A.2. Test case selection

This approach targets to pick the test cases from the original
test suite, that focuses on testing the customized part of the
software program. It does not remove test cases, rather it filters
the test cases which are related to the customized portion of
source code.

A.3. Test case prioritization

Prioritization approach is followed because execution of all the
test cases is not feasible due to resource constraints. In this, the
test cases are ordered such that those with higher priorities are
run earlier than those with lower priorities based on some
criterion [10]. Prioritization techniques are usually preferred
because prioritization deals with the original test suite and no
test cases are eliminated from the initial test suite.

B. Complexity of Regression Testing

The complexity of regression testing can be understood
from the fact that it is impossible to completely test a software
using a test suite collection even once due to resource
constraints. Regression testing requires to re-run the entire
ensemble of the test suite after every new build of software
code is launched due to code change for fixing software bugs.
Hence, one can easily judge that running the entire test suite
again for every build is not feasible.[17][18][19][20]

Hence, optimization of test suite is greatly required for

regression test suite execution. There are three ways of
optimizing a test suite for regression testing: selection,
minimization and prioritization. Many researchers have
developed techniques for regression test optimization

II. CHALLENGES IN REGRESSION TESTING

Regression testing is often performed to capture the “Return
of a bug”. A number of challenges are associated with
regression testing. Some of them are listed below

 Fairly large size of test suite after every successive
regression run is a big challenge which needs to be
optimized using different tools and techniques.

 Deciding the frequency of the regression test suite run is
a major challenge. A regression test suite can run after a
group of bug fixes, or after every new build, or after
every modification.

 Minimization or optimization of the original test suite
for regression can decrease the fault detection capacity
or can negatively affect the code coverage achieved and
many other factors. So, optimization is still an open
issue.

 Determining the “Stoppage Criteria”/”Entry and Exit
Criteria” for a regression test suite is still an open
challenge. As almost all the software’s are released with
known bugs due to market pressure, deciding the
stopping criteria plays an important
role[21][22][23][24].

 Maintaining a balance between the ever-growing test
suite size and limited constraints it-self is the biggest
challenge in regression testing.

 Choosing a right automation tool based upon the nature
of software application and availability of resources is
one of the common challenges [25][26][27][28].

A. Minimizing Recurrence Ratio

This metric is used to measure the quality of the regression
testing procedure. Value of this metric depicts the percentage
of those bugs (failures) whose fixation introduced some
“newer” bugs in the software system that were not present
earlier.

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,499-503

© 2015-19, IJARCS All Rights Reserved 501

It measures the level of quality of the regression testing as

how well the bugs have been fixed in response to the bug
reports. Fixing a bug must be performed by altering software
code in such a way that it introduces least or no negative
impact on rest of the “passed” test cases. Recurrence ratio
determines the degree to which previously correct functionality
is being negatively affected by the altered software code for
bug fixation [29][30][31][32][33].

B. Minimizing Repetition Ratio

Most of the test cases that constitute a test suite are
actually testing some kind of functionality. The basic
challenge during regression testing is that there are many test
cases that are testing the same functionality or path again and
again. This leads to drastic wastage in the time and resources.
Hence, utmost care must be taken to ensure that redundancy in
terms of repetition of functionality test must be avoided by
removing un-necessary test cases [34][35][36].

Fig. 4. Example1 for Repetition Ratio

Fig. 5. Repetition Ratio

C. Maximizing Functionality Coverage

Test cases are executed again during regression testing
after every new build is launched. Optimization of the test
suite to be executed can cause loss of functionality coverage or
code coverage or can minimize the defect detection capability
of a test suite [37][38][39][1][2]. So, it must be made sure that
a regression test suite that has been optimized does not
compromise with functionality coverage of the original test
suite as shown in fig. 6.

Fig. 6. Untested Functionality

D. Focusing Defect Cluster Based Testing

This is one of the most important factor which can play a
vital role in regression testing. As per the Pareto Rule of
software testing: “Not all the software modules are equally
buggy. There are nearby 20 percent of software modules
which contributes towards 80 percent of the software bugs.”
Therefore, regression test suite optimization must ensure to
focus on the modules where defect clusters are
highest[2][3][4][5].

E. Avoid Pesticide Paradox

New test cases must be added to the existing original test
suite to avoid the “pesticide paradox” rule for software testing
which states that if the same type of test cases is executed
repeatedly, then they can no longer find new bugs or defects.
So, test case optimization during regression testing must
ensure to enhance the fault detection capacity by exercising
focus on different parts of software system.

F. Context Based Regression Optimization

Every software application is different from other software
application. Testing different types of application requires
different type of skills, tools, technology and strategy. So,
testing is actually context dependent. Testing a safety critical
application requires completely different strategy than testing
a commercial website[5][6][8].

G. Absence of Defects Fallacy

Software having least number of defects or bugs can still
becomes useless for end user as it does not provide the
intended functionality intended to user. Therefore, testers must
make sure that focus for testing must be utilized constructively
for testing only the correct functionalities[5][7][8].

H. Update Regression Pack Regularly

Test suite collection which is executed after every software
build or update is known as regression pack. Test cases in a
regression pack must be updated regularly as per the changing
user requirement.

I. Performance Measurement

Time to time measurement of the performance of the test
procedures or tools employed for regression testing is a big

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,499-503

© 2015-19, IJARCS All Rights Reserved 502

challenge as there are not sufficient metrics available to
measure the performance of a regression technique. Most
commonly used metrics are APFD (“Average Percentage of
Faults Detected”), PTR (“Percentage of Test Suite Executed
for Complete Fault Coverage”) etc. [24][26].

J. Balancing Between Large Test Suite Size and Limited
Resources

The major challenge in regression testing is to maintain a
balance between the ever-increasing size of the test suite and
the limited resources as shown in fig. 7. As the size of the test
suite keeps on growing at a faster pace with every new build
and the time to achieve the quality testing keeps on decreasing
due to hard deadlines [27][22].

Fig. 7. Balancing Resources and Test Suite

III. CONCLUSION

The paper discussed about the major challenges and issues
during regression testing in a pragmatic way. Any regression
testing technique or tool does not provide any golden solution
to all the challenges associated with regression process. The
study of literature related to regression testing revealed some of
the critical and vital challenges and issues, which have been
described in detail in the paper.

IV. REFERENCES

[1] K. Onoma, W.T. Tsai, M. Poonawala and H. Suganuma.
"Regression testing in an Industrial Environment".
Communications. Of ACM, Vol.41, No. 5, pp 81–86, 1988.

[2] B. Beizer. "Software Testing Techniques". Van Nostrand
Reinhold, New York, NY, 1990.

[3] H. Leung and L. White. "Insights into Regression Testing".
Proceedings of IEEE International Conference on Software
Maintenance, pp 60–69, 1989[Online].

[4] G. Myers. "The Art of Software Testing", NY,USA: John
Wiley, 1979

[5] A. P. Mathur. "Foundations of software testing". China
Machine Press, 2008.

[6] C. Kaner, J. Bach, and B. Pettichord,. “Lessons Learned in
Software Testing”. John Wiley & Sons, 2008. Paul C.
Jorgensen.” Software Testing:A Craftsman’s Approach”,
CRC Press, 4th Edition..

[7] http://www.softwaretestinggenius.com/
[8] http://www.cs.swan.ac.uk/~csmarkus/CS339/presentations/2

0061124_Schlingloff_Testing_Introduction.pdf
[9] https://venkatreddyc.wordpress.com/2007/03/24/taking-on-

testing-triangles-a-classic-excercise/
[10] W Wong, J. Horgan, S. London and H. Agrawal. "A study of

effective regression testing in practice". Proceedings of IEEE
Eighth International Symposium on Software Reliability
Engineering. pp. 264-274, 1997.

[11] S. Yoo and M. Harman. "Regression Testing Minimisation,
Selection and Prioritization : A survey". Journal of software
testing , Verification and Reliability, Vol. 22, No. 2, pp. 67-
120, 2012.

[12] Z. Li, M. Harman and R. M. Hierons. "Search algorithms for
regression test case". IEEE Transactions on Software
Engineering, San Francisco, CA, USA, pp. 225-237, 2007.

[13] Y. Singh, A. Kaur and B. Suri. "Regression Test Selection
and Prioritization Using Variables: Analysis And
Experimentation", New Age International Publishers, New
Delhi, pp. 1-15, 2008.

[14] P.R. Srivastava, A. Vijay, B. Barukha, P. S. Sengar, and R.
Sharma. "An Optimized technique for Test Case Generation
and Prioritization Using Tabu Search and Data Clustering".
Source available on DBLP and SCOUPS.

[15] D. Jayamala and V. Mohan. "Quality Improvement and
Optimization of Test cases- A hybrid genetic algorithm
based approach". ACM SIGSOFT Software Engg. Notes,
Vol. 35, No. 3, pp. 1-14, 2010

[16] S. Elbaum, A. Malishevsky and G.Rothermel. "Test case
prioritization: A family of empirical studies". IEEE
Transactions on Software Engineering, Vol. 28, No. 2, pp
159-182, 2002

[17] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp.
159–182, 2002.

[18] S. Raju, G.V. Uma,"Factors oriented test case prioritization
technique in regression testing using genetic algorithm",
(2012)

[19] Gaurav Duggal and Bharti Suri, "Understanding regression
testing techniques ", (2008)

[20] Hareton and Lee White, "Insights into regression testing",
(1989)

[21] Hyuncheol Park, Hoyeon Ryu, Jongmoon Baik "Historical
value-based approach for cost cognizant test case
prioritization to improve effectiveness of regression testing",
(2008)

[22] Alexey G. Malishevsky, Gregg Rothermel, and Sebastian
Elbaum, "Modelling cost-benefits tradeoffs for regression
testing techniques", (2002)

[23] A. Askarunisa, L.Shanmugapriya, N. Ramaraj, ” Cost and
Coverage Metrics for Measuring the Effectiveness of Test
Case Prioritization Techniques”, (2009)

[24] K. Solanki, Y. Singh, S. Dalal.”Test Case Prioritization: An
approach based on modified ant colony optimization”.
Proceedings of IEEE International Conference on Computer,
Communication and Control. 2015 Sept; Indore: India
.Available at IEEE-xplore Digital Library and SCOPUS.

[25] K. Solanki, Y. Singh, S. Dalal.”Experimental Analysis of m-
ACO Technique for Regression Testing”. Indian Journal of
Science and Technology, vol. 9, no. 30, DOI:
10.17485/ijst/2016/v9i30/86588.

[26] Dalal S, Chhillar, RS. Empirical study of root cause analysis
of software failure. ACM SIGSOFT Software Engineering
Notes. 2013 Jul, 38 (4), pp. 1-7.

[27] Dalal S, Chhillar RS. Software Testing-Three P Paradigm
and Limitations. International Journal of Computer
Applications. 2012 Sep, 54 (12), pp. 49-54.

[28] Thangavel Prem Jacob and Thavasi Anandam Ravi, "A
novel approach for test suite prioritization",(2013)�

[29] J. Albert Mayan and T. Ravi,"Structural software testing:
Hybrid algorithm for optimal test sequence selection during
regression testing”, (2015)

[30] Y. Singh, “Systematic Literature Review on Regression Test
Prioritization Techniques Difference between Literature
Review and Systematic Literature”, (2012)

[31] Catal and D. Mishra, “Test case prioritization: a systematic
mapping study,” Software Quality Journal, vol. 21, no. 3,
pp. 445–478, 2012.

[32] A. Kumar and K. Singh, “A Literature Survey on test case
prioritization,” Compusoft, 2014.

[33] J. Anderson, S. Salem, H. Do, “Improving the Effectiveness
of Test Suite through Mining Historical Data”, (2014)

Sandeep Dalal et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,499-503

© 2015-19, IJARCS All Rights Reserved 503

[34] S. Elbaum, G. Rothermel, J. Penix, “Techniques for
Improving Regression Testing in Continuous Integration
Development Environments”, (2014).

[35] P. Kiran and K. Chandraprakash, “A Literature Survey on
TCP-Test Case Prioritization using the RT- Regression
Techniques,” Global Journal of, 2015.

[36] K. Solanki, Y. Singh, S. Dalal, and P. Srivastava, “Test Case
Prioritization: An Approach Based on Modified Ant Colony
Optimization,” Emerging Research in, (2016).

[37] K. Solanki, Y. Singh, S. Dalal, “ A Comparative Evaluation
of “m-ACO” Technique for Test Suite Prioritization”, Indian
Journal of Science and Technology, Vol 9(30), (2016).

[38] A. Labuschagne, L. Inozemtseva, R. Holmes. “Measuring
the Cost of Regression Testing in Practice- A Study of Java
Projects Using Continuous Integration",(2017).

[39] I. Alagoz, T. Herpel, R. German, “A selection method for
black box regression testing with a statistically defined
quality level”, (2017)

