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Knowledge Proof. Dannewitz et al. proposed an Information 
Centric networking method [13] . The aim of this procedure is 
to develop an authenticated network infrastructure service for 
today’s users. Bartram et al. proposed PGP (Pretty Good 
Privacy) [14]. The author asserts that PGP is an authentication 
and reliable information exchange in P2P networks. 

For the PGP, the trusted database is used to authenticate every 
other node in the network. Additionally, Jayaraj et al. 
proposed an Efficient, RR based Password-Authentication key 
protocol [15]. This protocol is used to authenticate the peers in 
RR protocol. The nodes can send the information when they 
know the password of particular nodes since the password 
information is stored in a trusted database. Another study by 
Wright et al. investigated the attackers by the damaged group 
members that disgrace the anonymity of all protocols over 
time [16] . Based on this analysis, they have proved that when 
an exacting initiator continues to communicate with an 
exacting responder, the attacker can easily identify the source 
and responder nodes. Hence, the attackers can take the valid 
information from those nodes and consequently degrade the 
network performance. 

Bi et al. examined the idea of employing split manufacturing 
method in Radio Frequency (RF) circuit protection and also 
developed qualitative security evolution method [17–19]. The 
exploration conducted by Bi et al. revealed that Intellectual 
Property (IP), piracy, and hardware Trojans are becoming the 
main hardware security threats. They have designed three 
sample circuit structures namely; camouflaging gates, power 
regulators and polymorphic gates. They have also proved the 
high-efficiency IP piracy deterrence and circuit protection with 
the help of the designed circuit structures. 

It is noteworthy to mention a very recent and relevant work by 
Wahab et al., [23] in which authors have proposed a SVM 
based distributed classification framework in clustered 
Vehicular Networks (VANETS) for the detection of malicious 
nodes in a cooperative manner. Selected monitoring vehicles 
exchange their observations about the credibility of inter-
cluster relay nodes and use these observations to learn a SVM 
classifier in an incremental and online fashion. Final class 
labels are propagated among cluster heads to take required 
action. 

III. PROPOSED WORK 

A. Overview of ANN 

In the ANN prediction model, a multilayer feed forward 
network with one hidden layer is used. The input layer has ݊ 
nodes, the hidden layer has ܪ nodes and the output layer has ܱ 
nodes. The transfer function for the hidden node is the sigmoid 
function, and the output transfer function is a linear activation 
function. The output of the ݆݄ݐ hidden node is computed as 
follows: 

exp(−(∑ n+1)/1 = (݆ݕ)
i 1  j= 1, 2…, H         (1) ,(((݆ߠ− ݅ݔ

Where ݆݅ݓ is the weights that connect the ݄݅ݐ input node to the 
 is ݅ݔ ,is the threshold of the hidden layer ݆ߠ ,hidden node ݄ݐ݆
the ݄݅ݐ input, and ݆ݕ is the output of the hidden layer. The 
output from the ݄݇ݐ output layer is computed as follows: 

∑ = ݇ݖ H
j 1  k  = 1,2,…….,ܱ (2)  (݆ݕ)   

Where ݆݇ݓ is the weights that connect the ݆݄ݐ hidden node to 
the ݄݇ݐ output node. The maximum number of hidden nodes 
in the network is computed using (2݊ +1), where ݊ is the 
number of input nodes in the network, which corresponds to 
the features of the dataset. The accuracy based on the learning 
error ܧ is computed as follows: 

 = ݇ܧ


O

i

K
i

k CZ
1

2
1 )(

  
(3) 

Where ݖ K
i  is the obtained output from the network and ܥ K

i  is 

the target output. ܧ is the difference between the target output 
and the obtained output. The fitness value of the training 
sample is computed as follows: 

 (4) ݇ܧ = (݅ܺ) ݏݏ݁݊ݐ݅ܨ

The gradient error in the network with respect to the weight 
increment and weight update is computed using equation (5) 
and (6). 

 (5) (݅ܿ− ݅ݖ) = ݆݅ݓ∆

 ݆ݓ∆+ ݈݀݋݆݅ݓ = ݓ݆݁݊݅ݓ∆  (6) 

Where ∆݆݅ݓis the change in weight that connect the hidden 
node and the input node. The bias (݆ߠ) in the network is 
incremented and updated using equation (7) and (8). 

Δ(7) (݅ܿ− ݅ݖ) = ݆ߠ 

 Δ  (8) +݆ߠ = ݆ߠ

Where Δ݆ߠ is the change in bias and ߟ is the learning rate. 

 

B. Particle Swarm Optimization 

In PSO, particles placed at random positions in the search 
space is d- dimensional and the particle ݅ of the swarm can be 
represented by a d-dimensional position vector ܺ݅ = (ܺ݅1 +ܺ݅2 + 
 The velocity of the particle can be represented as .(ܦ݅ܺ,.……
ܸ݅ = (V݅1 +ܸ݅2 + ……,). During the search process, the position 
of a particle is guided by two factors. That is, local best (ܲ݅,) 
and global best (ܾܲ݃݁ݐݏ). The best visited position for the 
particle by itself is ܲ݅, = (ܲ݅1,2,…….,ܲ݅ܦ) The ܲ݅, of the particle 
can be updated in the next generation as given inequation (9). 

ܲ݅,,t(1+ݐ)=












elsetx

PftXfifP

i

bestiibesti

)1(

)())1(( ,,
  (9) 

Where ܰܲ is the size of the swarm. The position of the best 
particle in the swarm is denoted by ܾܲ݃݁(ܦ݃ܲ,……,1,2݃ܲ) = ݐݏ, 
and is computed using equation (10) 

 (10)  … (best,݅ܲ) = ݐݏܾ݁݃ܲ

For each generation the position of the particle and its velocity 
in a PSO can be updated using the following equations: 

 (11) (݅ܺ− ݐݏܾ݁݃ܲ)2߮2ܥ+ (݅ܺ− ݐݏܾ݁,݅ܲ)1߮1ܥ+(ݐ)V.߱ = (1+ ݐ)

 (12)  (1+ ݐ)ܸ݅+(ݐ) X= (1+ ݐ)

Where ܸ (1+ ݐ)  is the velocity of the particle. ܺ݅(1+ ݐ) is the 
position of the particle, 1ܥ and 2ܥ are the cognitive and social 
learning parameter, ߱ is the inertia weight, ߮1and߮2are 
random numbers uniformly distributed in [0,1], ݅ = 1,2,….,ܰܲ. 
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The linearly decreasing inertia weight is computed using 
equation (13). 

 )(݊݅݉߱−ݔܽ݉߱)− ݔܽ݉߱ = ߱
maxiter

iter
)    (13) 

Where ݅ݎ݁ݐ denotes the current iteration number and ݅ݔܽ݉ݎ݁ݐis 
the maximum number of iterations. The value of ߱ is between 
0.9 to 0.3. Larger inertia weight is assigned to the particle 
during the initial search which gradually reduces as the search 
proceeds in further iterations. 

In this research work, the best mutation operation is computed 
using the linearly non- increasing weight values instead of 
random weights. The linearly non-increasing weight values 
improves exploration in search space. The modified best 
mutation strategy is computed using equation (14). 

 (14)  (݊݁݃,3ݐݏܾ݁ܺ− ݊݁݃,2ݐݏܾ݁ܺ)ܨ+ gen,1ݐݏܾ݁ܺ = ,ܻ݅

where ܨ is a scaling factor which is used in controlling the 
amplification of the differential variation 2ݐݏܾ݁ܺ ,1ݐݏܾ݁ܺ .[0,1] א, 
 .are linearly non-increasing particles in the population 3ݐݏܾ݁ܺ

= (ܺ)ali݉ݎ݋ܰ
minmax

min

E

E-V

E
 ݊݅݉_ݓ݁݊ܧ+(݊݅݉_ݓ݁݊ܧ− ݔܽ݉_ݓ݁݊ܧ)

 (15) 

where ݊݅݉ܧ and ݔܽ݉ܧis the minimum and maximum values of 
an attribute, ܣ. The normalized ݔܽ݉_ݓ݁݊ܧ,_݉݅݊ within the range 
of [0,1]. 

C. Improved Prediction strategy using Particle Swarm 
Optimization based ANN Classifier for Malicious Node 
Detection Model for Hybrid p2p Networks  

The IPS-ANN algorithm is proposed to train the ANN 
classifier to improve the prediction accuracy. The given ܳ 
number of training samples with ݊ dimensional input patterns 
are mapped onto the corresponding target output ݇ݖ. The input 
patterns are represented as ݔ} = ݇ݔ k

i  = 1,2…݊}. The objective 

is to find the function ݂ with a global optimum ݐݏܾ݁ܩ at a 
faster convergence rate. The total number of nodes in the 
hidden layer ܪ is computed as follows: 

 (16)      (1+ 2݊) = ܪ 

 In the IPS-ANN algorithm, the NN weights are considered as 
particles. The weights from ݆݅ݓ and ݆݇ݓ and two biases from 
input layer and hidden layer take part in the IPS-ANN process. 
The group of particles is called a swarm. The size of the swam 
 :is computed using (17) [0,1] אܲܰ

  (17)            ܲܰ…1,2 = ݅׊ܱכ(1+ ܪ)+ ܪכ(1+ ݊) = ܲܰ

where ݊ is the total number of inputs. ܪ is the total number of 
hidden nodes. O is the  total number of output nodes. 

Step 1: Initialize the parameters learning rate (ߟ), maximum 
generations (ݔܽ݉݊݁ܩ), minimum error (ߝ), swarm size (ܰܲ), 
mutation rate (ܨ),inertia weight (߱݉ܽݔ,߱݉݅݊),cognitive and 
social learning parameter(2ܥ,1ܥ),maximum velocity(ܸ݉ܽݔ). The 
weights are initialized randomly to a value between 0 and 1. 

Step 2: The any training pattern from the normalized dataset 
with ݊ number of features is applied to the input layer ܺ, 
whose size is equal to ݊. Then the data from each input (݅ݔ, = 
1,2…݊) node of that pattern propagates to the hidden layer. 

Step 3: Linearly non increasing weights are assigned on the 
link connecting input layer to the hidden layer (݆݅ݓ) and the 
hidden to the output layer(݆݇ݓ). The weights are obtained from 
the modified best mutation operation. 

Step 4: The feed forward operation is performed using 
equation (1-4) to find the local best (݈ܾ݁ݐݏ) values. Among the 
local best values {݈݅,, = 1,2…ܳ} the minimum fitness value is 
the global best ݐݏܾ݁ܩ = min(݈݅,ܾ݁ݐݏ). After finding the global and 
local best, for each generation the particles’ position and 
velocity are updated. 

Step 5: The gradient descent BP algorithm is applied to the 
global best, when it is greater than the fitness value. The 
network propagates back to change the weights (∆݆݇ݓ∆,݆݅ݓ) 
and bias (∆݆ߠ) to minimize the error. The change in weights 
and bias values are computed. 

Step 6: Compute the fitness of the weight tuned, back 
propagated network. If the fitness value is less than 10, it 
terminates the process. Otherwise, the following steps are 
carried out. 

Step7: The back propagated weight values and bias values 
 are {ܲܰ … ݆ߠ∆,݆݊݇ݓ∆…2݆݇ݓ∆,1݆݇ݓ∆,݆݊݅ݓ∆…2݆݅ݓ∆ ,1݆݅ݓ∆}
stored and used for the next generation process. The procedure 
presented from step 4 to step 6 is repeated. 

Step8: If the global best value for the current iteration is 
greater than that of the previous iteration ([݊݁ܩ] <[1+ ݊݁ܩ]ܩ), 
then the training process is terminated as it may tend to 
overfit. Otherwise, the following step is carriedout. 

Step 9: The above steps (3-7) belongs to the training 
procedure. Train the ANN till the global best value is reached. 
At the end of the training, the test set is used to test the 
generality of the IPS-ANN classifier. 

IV. SIMULATION RESULTS 

Simulations are carried out using MATLAB. Each simulation 
runs 10 times, and the average value is reported as the 
simulation result. Without the loss of generality, commonly 
used false positive rate (FPR, i.e. the ratio of peers that are 
normal but considered as malicious to all the normal peers) 
and false negative rate (FNR, i.e. the ratio of peers that are 
malicious but considered as normal to all the malicious peers) 
as the criterion [20, 21] to assess the performance of our 
model.True positive is the normal activity correctly identified 
as normal activity. False positive is the attack behavior 
incorrectly identified as normal activity. True negative is the 
attack behavior correctly identified as attack behavior. False 
negative is the normal activity incorrectly identified as attack 
behavior. The simulation has been performed with three 
different attack scenario in 500 nodes deployed for hybrid P2P 
network. 

FPR = FP / (FP + TN) 

FNR = FN / (FN + TP) 

Attacks Number of injected attacks

Collusion attacks 1846 
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Sybil attacks 713 

File polluter attacks 1264 

 
 

 
 
 
 
 
 

Table1. Performance Analysis of False Positive Rate, False Negative Rate and Accuracy 

 

 TP TN FP FN FPR FNR Detection 

Accuracy 

Collusion attacks  

PeerMate [20] 1204 216 221 205 50.57 14.55 76.92 

SMART [21] 1286 185 184 191 49.86 12.93 79.69 

Outlier Mining [22] 1399 162 133 152 45.08 9.80 84.56 

IPS-ANN 1445 178 102 121 36.43 7.73 87.92 

Sybil attacks  

PeerMate [20] 337 213 91 72 29.93 17.60 77.14 

SMART [21] 342 232 78 61 25.16 15.14 80.50 

Outlier Mining [22] 361 242 58 52 19.33 12.59 84.57 

IPS-ANN 379 244 41 49 14.39 11.45 87.38 

File Polluter attacks  

PeerMate [20] 822 147 114 181 43.68 18.05 76.66 

SMART [21] 854 171 98 141 36.43 14.17 81.09 

Outlier Mining [22] 896 182 87 99 32.34 9.95 85.28 

IPS-ANN 912 199 71 82 26.30 8.25 87.90 
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Figure1. Performance Analysis – Accuracy 

 

Figure 2. Performance Analysis – False Positive Rate 
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Figure 3. Performance Analysis – False Negative Rate 

  
 

From the results it is evident that the proposed IPS-ANN 
classifier correctly detected collusion attacks, Sybil attacks and 
file polluter attacks with the accuracy 87.92%, 87.38% and 
87.90% respectively. Also the false positive ratio is reduced 
upto 36.43%, 14.39% and 26.30% for the collusion attacks, 
Sybil attacks and file polluter attacks respectively. In addition 
to that the false negative ratio is reduced to 7.73%, 11.45% 
and 8.25% respectively. The results showed that the proposed 
IPS-ANN classifier outperforms than that of the existing 
mechanisms namely PeerMate [20], SMART [21], Outlier 
mining [22] mechanisms. The matlab results are also presented 
for the same in Fig.1, Fig.2 and Fig.3. 

V. CONCLUSIONS 

Data mining nowadays expanded its scope to discover hidden 
information / knowledge from the network datasets. In real 
time scenario like hybrid P2P networks the intrusion is 
prevailing as a common one. This research aim to propose a 
classifier that would detect the several attacks such as 
collusion attacks, Sybil attacks and file polluter attacks. Hence 
an improved prediction strategy using particle swarm 
optimization based artificial neural network (IPS-ANN) 
classifier for malicious node detection for hybrid P2P 
Networks. Simulations are carried out using MATLAB and the 
obtained results prove that the proposed IPS-ANN performs 
better detection in terms accuracy, false positive ratio and false 
negative ratio. 
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