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computation models it is appropriate to give the basic 
definitions for fuzzy sets and fuzzy numbers. 

A fuzzy set can be defined as a pair (A, μ) where A is a set 
and μ: A → [0, 1] is a function. For each x  A, μ(x) is called 
grade of membership of x in (A, μ) or membership function of 
x in (A, μ). Here we define a trapezoidal fuzzy number which 
is given with a membership function  which is defined 
as follows: 

 ,              

,                           

 ,                 

0,                             

 

 
and the trapezoidal member function is as given in Fig. 1. 
 

 
Linguistic Computation Models or Computing with words 

and their applications has been widely used in decision making 
problems [11]. Initial models were based on membership 
functions and ordinal scales. The drawbacks of such models 
were in terms of accuracy due to loss of information. Hence 
the linguistic model [10] with symbolic translations aimed at 
improving accuracy was computed. Computations were 
performed on the index of the linguistic terms. In our approach 
also we performed the symbolic translations based on the 
index of the linguistic terms. Here we deal with a single term 
set which is also considered as the Basic Linguistic Term Set 
(BLTS). Typically we select values with odd number of terms 
such as 3,5,7,9 etc. The midterm represents an assessment of 
value 0.5 and rest of the terms is placed symmetrically around 
it. For example for a set of 7 terms we can select the term set 
as  

, , , , , ,
 

 
      EL        VL           L           M            H          VH            EH 

 
 

Fig. 2. Example of a term set with 7 labels for translation. 

Consider the linguistic assessment of a case whose  
membership functions are triangular,ie, a case where a=b  in 
Fig. 1. The membership functins can be represented by a 3-
tuple (a,b,c). Fig. 2. shows an example whose functions are 
defined as follows. 

0,0,0.17   0,0.17,0.33  0.17,0.33,0.5    
0.33,0.5,0.67  

0.5,0.67,0.83  0.67,0.83,1       0.83,1,1  

Each numerical attribute is aggregated with a linguistic 
attribute generated in the Basic Linguistic term set using the 
rules, functions and computations involving fuzzy linguistic 
term. Following definitions give the special functions used in 
the computation procedure used in the fuzzy framework. 
Definition1. Let ν  R be the set of numerical attributes and 
S S , … , S  be the linguistic term set defined, ν is 
aggregated with S by function T    as  
T (ν) =  s  ,w  , … . . , s  ,w   ,  s   S and  w   [0, 1], 
such that  w  μ

 ,
ν  where  μ is the fuzzy membership 

function defined [11]. 
T (ν) =  s  ,w  , … . . , s  ,w    be the aggregation 
representation of the numerical value ν  R over the linguistic 
term set  S , … , S  , a numerical value in the interval [0, g] 
by means of the function Ψ is obtained as follows. 

Ψ (T (ν)) = Ψ    s  , ω   j 0, … , g   
∑ ω

∑ ω
  β  

Definition 2: Let S S , … , S  be a linguistic term set and 
β 0, g  be a value representing the result of a symbolic 
aggregation operation, then we can generate the 2-tuple that 
expresses the equivalent information to β using the following 
function: 

Δ: 0, g S x  0.5,0.5  

Δ  β S  , α , where  
S ,                   
α  β i ,   α 0.5,0.5  

Where round is the usual round operation, S  has the closest 
index label to "β" and α is the value of the symbolic translation 
[11].  Δ Is a one to one mapping and Δ : 0, g  is defined by  

Δ S  , α i α β. 
Let us suppose a symbolic aggregation operation over 

labels assessed in , , , ,  that obtains as its 
result  1.6 , then the representation of this counting of 
information by means of a 2-tuple will be  

Δ  1.6 S  , 0.4  
Graphically, it is represented as in Fig. 3.  
 

     -
0.4 

    

     

     
0 1 2 3 4  

 
 Fig. 3. Example of a symbolic translation computation. 

III.  CUSTOMER SEGMENTATION MODEL  IN CREDIT 

ANALYSIS 

In data mining models segmentation plays a major role in 
predictions related to function and value analysis, risk analysis, 
promotional features and various other tasks. In any of these 
cases the major components in the segmentation model are the 
customer attributes, their conceptual definition, the data mining 
models selected and the tasks defined in the prediction process. 
These segmentation strategies completely support the customer 
acquisition, profiling, validation, satisfaction, promotion and 
other dynamic management strategies. 

Concept definitions aid in mapping the attributes to the 
rules in a more effective manner. Rules can be created more 
effectively with segment models associated. Trained segments 
or models can be used further in redefining the rules created for 
more accurate functional or value assessments.  
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A general model using segmentation rules and functions 
that is to be applied on the customer attributes is presented with 
focus on credit analysis. The segmentation model is formed 
based on the rules created in segmenting the customers using 
their attributes. An expert knowledge background will aid in 
creating rules and functions in such situations. The segments 
thus formed will play major role in various customer value 
assessments. This model shown in Fig. 4.is used as the base for 
our proposed fuzzy linguistic framework in segmentation for 
credit analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Customer segmentation model in credit analysis 

IV.  FUZZY COMPUTATIONAL FRAMEWORK FOR 

SEGMENTATION MODEL IN CREDIT ANALYSIS 

The proposed model with basic linguistic terms and fuzzy 
membership functions segment the customers based on their 
attributes. A fuzzy model with linguistic approach and 
computations involving numeric and linguistic attributes are 
combined with the segmentation rules and the associated 
member functions. The framework is formed with a series of 
steps involved in transforming the customer attributes to rules, 
membership functions and function and value analysis. The 
steps involved in the computational framework to develop the 
model are as follows: 

1) Select the customer data attributes relevant to the credit 
analysis. This is performed after an interaction and detailed 
discussion and analysis with knowledge experts at managerial 
level  who are in the forefront of business. Datapreprocessing 
can remove the irrelevant attributes from the dataset. Manual 
intervention can also be done for the removal of attributes with 
less significance as per expert’s observation, since our plan is 
to focus on real numerical attributes of the customers in the 
proposed framework. 

2) Generate the Basic Linguistic Term Sets for the customer 
attributes. The term sets generated should fall within the 
defined segments. For each of the attributes, term sets are 
defined and as mentioned eralier in our linguistic approach we 
select values with odd number of terms such as 3,5,7,9 etc. 

3) Perform Segmentation of the selected customer data 
attributes based on the generated BLTS. Here the limits are set 
so as to clearly distinguish each of the defined segments. The 
membership functions are defined based on the limits set in 
each of the segments.The rules for segmentation can be varied 
based on the feedback from knowledge experts.  

4) Define the membership functions for each term in the 
BLTS. We can use an appropriate membership function for the 
definition as per our requirement. A triangular member 
function in general yields better outcome of results and with 
more accuracy. 

5) Generate membership degree for each term in the term 
set. Membership degree values are assumed to be between 0 
and 1. Greater the membership degree of an instance in a given 
segment , greater is the confidence in assigning that instance to 
the segment. It represents the level of uncertainty or vagueness 
with which each instance belongs to the segment. 

6) Aggregate the value generated. Aggregation function is 
used to represent the linguistic information by a linguistic 2-
tuple which consisted of a pair of values  , .   , is the  
linguistic term and   is the numeric value representing the 
symbolic translation [10]. The symbolic translation of a 
linguistic term,  , is a numerical value assessed in [ 0.5, 0.5) 
that supports the “difference of information” between a 
counting of information 0,  obtained after a symbolic 
aggregation operation and the closest value in  0, . . ,  that 
indicates the index of the closest linguistic term in  

. 
To illustrate the steps mentioned above we consider the 

attribute age from our bank customer dataset under study. As 
per experts analysis rules are formulated so as to form the 
required segments. Limits are defined by the experts to 
categorize them into young age, middle age and old age. It is 
possible to categorize the age into more number of term sets 
like 5, 7, 9 etc. Initially we have applied the rules to a 
subsection of the entire dataset for study purpose. This can be 
extended to the entire dataset with slight modifications in the 
range of values selected for defining the membership functions. 

For example the old age category in our dataset can be 
defined as customers who falls within the range 40 and 60. A 
triangular membership function as shown below is used in our 
study to define the membership function for old_age. 
 

0,                  40 , 60
40

10
,                 40 50

60
10

,                 50 60

 

 
According to our definition of age, a customer of age 46 

will be considered under the category old_age, linguistic term 
 and membership degree computed for each of the linguistic 

term will be   ,0 ,0.4 ,0.6  ,0 represents the 
linguistic 2-tuple, betavalue (  Δ  computed as  ,0.6  and 

 of the  numeric 2-tuple , 0.4 . 
Fig.5. shows the fuzzy computational framework for customer 
segmentation in credit analysis. 
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Fig.5. Fuzzy computational framework for customer segmentation model in 
credit analysis 

 
The model generated can be used with any membership 

function that supports the semantics of the linguistic terms. We 
have used triangular membership functions in our example as it 
produces more accurate results. The main application field of 
this model is decision analysis and decision making [10]. This 
model has associated computational models and several 
aggregation functions based on the previous 
functions Δ and Δ . 

V. CONCLUSION 

Fuzzy computational framework offers a better solution in 
areas where human perceptions and ideas play a major role. 
The ideas can be formulated as rules and functions with experts 
aid in this framework. In the segmentation approach, the rules 
are framed by experts in the organization who have better 
insight into the customer attributes. This results in more 

reliable segments which will give better outcome for 
computing the desired values of the customers. Even though 
customer segments are formed with defined range or values as 
selected by the experts, membership function definitions and 
the aggregation values provide us basic methods to compute the 
equivalent real values. There exists a series of computation 
steps and methods to select our preference order to compute 
these real values to be used in decision making problems. 
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