DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5407
ISSN No. 0976-5697

Volume 9, No. 1, January-February 2018

International Journal of Advanced Research in Computer Science

Available Online at www.ijarcs.info

IMPROVING PROTOTYPING EFFICIENCY BY USING SIMULATION IN
INTERDEPENDENT HARDWARE AND SOFTWARE PROJECTS

Prashant Mohta
Information Technology
Vidyalankar Institute of Technology
Mumbai, India

Reshma Sherugar
Information Technology
Vidyalankar Institute of Technology
Mumbai, India

Prof. Santosh Tamboli
Information Technology
Vidyalankar Institute of Technology
Mumbai, India

Abstract: Software development on an interdependent Hardware and Software project depends largely on all the specific components used in the
current project. It is therefore difficult to develop the system software before the exact details of the hardware are finalised. This forces the
developer to first prioritize the hardware prototyping during which time, there is minimal to no software development.This paper proposes a
solution that can be implemented at any stage of the project development and can parallelise the software and hardware development i.e.

decouple the two by removing the dependency of

development on the availability of testing hardware.

Keywords: common interface, prototyping, simulation, software design, virtual prototype.

l. INTRODUCTION

Development of interdependent Hardware and Software
projects usually requires the hardware to be developed and
finalised before the development on software can even
begin. This leads to an increase in project prototyping time,
which leads to an overall increase in project completion
time. The standard practice in the industry is the use of
virtual prototypes in place of the actual hardware[1].
However, these virtual prototypes involve a lot of low level
simulation that increases their complexity. By developing a
high level simulator that shares the software interface with
the hardware facing modules, it is possible to parallelise the
software and hardware prototyping without the increase in
complexity, thus reducing overall project completion time
and using the available human resources in the project more
efficiently.

1. PROBLEM STATEMENT

The traditional approach of designing hardware and
software in separate phases, results in an unnecessary delay
in beginning the software prototyping which may again take
more time. Furthermore if a hardware change is required
later into the project timeline, it may cause more delays in
the software development till the hardware changes are
finalised.

The dependency on hardware for software development
requires multiple hardware prototypes for testing, in a
project with more than a few software developers. This
requires the fabrication of multiple test prototypes of the
same hardware specification every time the hardware
specifications are altered. This not only creates a delay in

©2015-19, IJARCS All Rights Reserved

the project prototyping but also increases the prototyping
cost.

I1. PROPOSED SOLUTION

A. Common Interface

The solution that this paper looks at, is to create a
common interface between the application code and the
hardware facing code i.e. the code used to interface with the
hardware. This is the only part of the software development
that is truly dependendent on the hardware components and
the circuit design. In doing so, we can successfully decouple
the two development processes till the hardware design is
finalised, after which the hardware facing components can
be implemented in a short amount of time.

B. Simulation

Furthermore, the unavailability or failure of hardware
need not affect the software development because the
common interface can be used to simulate the same kind of
input/output functionality on the machines being used to
code, as will be on the prototype hardware. This also
eliminates the need to transfer the code to the hardware for
testing the impact of code changes, as these changes can be
seen using the aforementioned simulated input/output
functionality.

V. COMMON INTERFACE AND SIMULATION BASED
SOFTWARE DESIGN

The common interface also means that, a hardware/circuit
design change need not necessarily impact the application
code or development as only the hardware facing code

851



Reshma Sherugar et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,851-854

would required to be changed in most cases.This is akin to
the virtual prototyping model already being increasingly
used[2]. However, what differentiates common interface and
simulation based software design (CISD) is that the
application code does not interact with a perfect replica
simulation i.e. emulation of the hardware, rather it interacts
with a “translator” that translates the input to a particular
component into the expected output from it, within
acceptable error boundaries. This means that CISD focuses
less on the minute details of implementation but rather on
that the more general expected results are achieved. This
makes CISD viable for rapidly prototyping project ideas for
feasibility or practicality reasons. Which is an important part
in deciding whether or not a project will be dropped[3]. In
case a project is dropped having used CISD would reduce
the losses due to pursuing an infeasible project.

C. Designing a common interface

Refer Fig. 1, Inside actual hardware facing module we
will import a hardware specific module that is only present
on actual hardware and Inside the simulated hardware facing
module we will import a simulation specific module that is
only present on simulation machine.

Then, inside the parent module, we will import them using
exception handling and only one of the two child modules
will be imported, the logic is as follows:

if (actual hardware facing module is loaded correctly):
The code is running on hardware so use actual
hardware facing module
elif (simulated hardware facing module is loaded correctly):
The code is running on simulation machine so use
simulated Hardware facing module
else:
Throw an exception that module cannot be loaded

Alternatively, the modules can simply be swapped-in
during compile time for code size reduction and compilation
purposes in languages such as C.

Hardware facing module

[--__init _.py

|--actual Hardware facing module
[--__init__.py

|--simulated Hardware facing module
[--__init _.py

Fig. 1 Python module directory structure for one
hardware component

D. Designing the simulation

The simulated hardware facing modules have the same
functions with the exact same signatures, global constants
and variables as the actual hardware facing modules. But in
addition to these, they may also have a few helper functions
to map between the implemented simulation and the
hardware device. Furthermore, the functions that are
common in both the simulated and the actual hardware
facing modules return the same values. However, the
simulated hardware facing module functions have different

©2015-19, IJARCS All Rights Reserved

code which with the help of the helper functions are able to
simulate the hardware component.

The simulation for devices like screens, LEDs, keyboards,
mouse, touchscreen, buttons, sensors, actuators, etc. can be
implemented using pygame, in python, for creating the GUI
that is used to display the output from the application code
as well as take the input for the application code.
The application code behaves as if it were running on the
hardware itself and is unaware of whether it is being
simulated or not as long as -

e The input is same as it would be from an actual
hardware device.

e The output is in the same format as expected by the
actual hardware device.

e The simulation code maps perfectly between the
input and the output as the actual hardware would.

If the above 3 conditions are fulfilled by the simulation
module, then, common interface and simulation based
design can be used throughout the project timeline for
testing of different versions of the application code on the
simulated hardware i.e. the coding machine itself, without
the need to be transferred to the hardware which will speed
up the testing process.

In the case of a modification in the hardware design of the
project, the changes must be reflected in both the actual
hardware facing module and the simulated hardware facing
module. Thus, preserving the above 3 conditions. This will
ensure the ability to use CISD in testing.

V. IMPACT OF COMMON INTERFACE AND

SIMULATION BASED SOFTWARE DESIGN ON THE TIME
TAKEN FOR PROJECT PROTOTYPING

n
T= Zti - time overlap between activities
0

ti= ithactivity in the project
T = Development time taken in typical timeline

s gloprecca T

Hardware Prototyping

Ativily

Software Protatyping

Proga

Fig. 2 Typical Timeline for Hardware and Software
prototyping



Reshma Sherugar et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,851-854

Consider Fig. 2, a typical timeline for hardware and
software prototyping.
Let,
tp = time taken for hardware prototyping
ts = time taken for software prototyping
Thus,
Development time taken in a typical timeline =t + 4

blovckporem & e

Hardware Prototyping

CIsD

Prupet Aphicdy

Software Prototyping

Fig. 3 Modified Timeline for Hardware and Software
prototyping

Consider Fig. 3, modified timeline for hardware and
software prototyping
Let,
tp = time taken for hardware prototyping
tg = time taken for software prototyping
tesp = time taken for CISD
Thus,
Tm = ts + toisp - (& 11 teisp)
T = Development time taken in modified timeline
Comparing T and T, we can infer that,
if, tersp - (s 1 tcsp) < th
then, Ty < T
Where,

teisp - (& (1 tcsp) is the time saved due to CISD.

VI. IMPACT OF INCREASING TCISD ON MODIFIED
PROJECT TIMELINE

Consider a project with 50% of its time allocated to
hardware prototyping and 50% to software prototyping .The
above graph compares the time taken to complete the project
(in percent) in the original timeline with the modified
timeline using CISD, as the time taken for common
interface and simulation design process varies from 0% to
200% of the original project time, it is assumed that
software prototyping can begin 50% into CISD i.e. the time
overlap between software and CISD is half the time taken
to complete CISD.

From the graph it can be inferred that any project which
takes less than 100% of its time for CISD can still gain some
reduction in the time taken to complete the project by using
CISD.

An interesting case is when tcisD = 0 je. the common
interface and simulation is designed in a previous project
and is only reused. This allows for full parallelization of

©2015-19, IJARCS All Rights Reserved

hardware and software prototyping leading to a 50% of
savings in project time.

100

B Tcisd B Orignal timeline Modified timeline

Fig. 4 Impact of increasing Tcisd on modified project
timeline

VII. MERITS OF USING CISD

Thus the CISD methodology also benefits from code
reuse, a standard practice in software development that
speeds up the project and reduces the cost of development
by saving a significant amount of time[4].

During the prototyping phase, the advantages of having a
CISD based process should be viewed as a hybrid approach
to system development where the prototyping takes full
advantage of the simulation capability and the final
hardware testing provides a absolute surety of correctness.
Furthermore, it is possible to simulate only the peripherals
and not the core hardware components of the system using
CISD. Ideally, this hybrid approach should yield the best
results by finding a middle ground between accuracy and
speed of testing[5].

If the system being designed is a real world physics
dependent system, then, it is also possible to ue CISD to
speed up the prototyping process by simulating all the
physics based components in a physics simulation engine
and designing a common interface with the controller
hardware which will again, comparatively be cheaper and
safer

Another advantage of CISD, is that, because the
hardware design is now happening parallely with the
software design, it is possible to iteratively add or modify
features in the hardware design based on changing software
design requirements. Which in turn,ends up improving the
end user experience as the entire project is more cohesively
developed i.e. developed as a complete package rather than
in distinct stages[6].

VIIl. REFERENCES

(11 J.C. Schaaf, F.L. Thompson, “System Concept
Development With Virtual Prototyping,” Winter
Simulation Conference Proceedings, Atlanta, Georgia,
USA, 1997, pp. 941-947.

[2] Website: https://www.twi-global.com/technical-
knowledge/faqs/faq-what-is-virtual-prototyping/



(3]

Reshma Sherugar et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,851-854

Goodman L.J. (1988) “Feasibility Analysis and
Appraisal of Projects.” In: Project Planning and
Management. Springer, Boston, MA.

R. Prieto-Diaz, P.Freeman, “Classifying Software for
Reusability,” in IEEE Software, vol. 4, no. 1, pp. 6-16,
Jan. 1987.

Tom Borgstrom, Eshel Haritan, Ron Wilson, David
Abada, Ramesh Chandra, Chuck Cruse, Andrew
Dauman, Olivier Mielo, Achim Nohl “System
prototypes: Virtual, hardware or hybrid?,” 2009 46th

© 2015-19, IJARCS All Rights Reserved

(6]

ACM/IEEE Design Automation
Francisco, CA, 2009, pp. 1-3.

Marcello Pellicciari, Alberto Vergnano, Giovanni
Berselli “Hardware-in-the-Loop Mechatronic Virtual
Prototyping of a high-speed capsule filling machine,”
2014 TIEEE/ASME 10th International Conference on
Mechatronic and Embedded Systems and Applications
(MESA), Senigallia, 2014, pp. 1-6.

Conference, San



