
DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5327

Volume 9, No. 1, January-February 2018

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 742

ISSN No. 0976-5697

PRIORITIZING TECHNIQUE BASED ON GENETIC ALGORITHM- AN
EXPERIMENTAL REVIEW

Garima

Computer Science Engineering
CT Institute of Engineering, Management and Technology

University: Punjab Technical University
Jalandhar,India

Sukhvir kaur
Computer Science Engineering

CT Institute of Engineering, Management and Technology
University: Punjab Technical University

Jalandhar,India

Abstract- Software testing is the system of validation and verification of the application product. Powerful program testing contributes to the
supply of dependable, nice software product, leading to low application preservation rate and satisfied users. For this reason, it is an primary
exercise of program progress approach. The importance of testing can be gauged from the indisputable fact that approximately 35% of the
whole time required for setting up the program and over 50% of the whole development price is used for trying out. Mainly, exhaustive trying
out requires colossal time and effort, making it pricey and infeasible. From the point of view of pleasant of checking out and discount of
testing fee, automation of trying out process is the necessity of the hour. This paper implements improvised prioritizing technique based on
Genetic algorithm.
Keywords – Software engineering, Software testing, Test techniques, Genetic Algorithm, Test case prioritization.

I. INTRODUCTION

Software engineering is the systematic strategy to
development, operation, upkeep, and retirement of any
software. Progress of any program follows a series of steps
often called the program development existence
cycle‘(SDLC). Application checking out is a foremost a part
of SDLC. Program testing is the major nice control measure
employed during software development. Its normal function
is to observe error within the application [1]. Trying out
consumes the best possible amount of time in the application
development lifestyles cycle.

Whilst the essential factor in trying out is to test the
performance of the application, it also ensures that the
program meets the efficiency requirement, customer
expectations, reliability, flexibility, correctness and many
others. Application testing is most often utilized in
organization with the terms verification ‘and validation ‘of
whole SDLC. Software testing is an essential but incredibly
laborious and high priced procedure [1]. Measurement of the
effort in application checking out by itself is a complex
quandary within the domain of software engineering.

Program testing is an empirical investigation carried out
to furnish stakeholders with information concerning the
quality of the product or service under experiment, with
appreciate to the context where it's supposed to function.
Software testing additionally supplies an purpose, impartial
view of the software to permit the trade to appreciate and
comprehend the hazards at implementation of the application.
It will also be recounted because the system of validating and
verifying that a program application/application/product
meets the business and technical necessities.

Test case prioritization is a method to organize and plan
test cases. The strategy is produced keeping in mind the end
goal to run test instances of higher need to limit time, cost
and exertion amid programming testing stage [12]. The
motivation behind this prioritization is to improve the
probability that if the experiments are utilized for relapse
testing in the given request, they will more firmly meet some

goal than they would in the event that they were executed in
some unique request. Some organizations prefer to run
“Smoke” or “Sanity” test every time they get a new build or
version of the developing software [15]. In this case, test
cases will be prioritize based on all the major modules of the
software and sanity will be run on them to check the basic
functionality for example, in a mobile testing, sanity test suite
will have test cases like “restarting the device”, “turning off”,

“signing in”, “updating software” etc. Whether your

organization runs regression or sanity or both, test Case

Prioritization techniques are applicable for all the cases [9]
[14]. Organizing experiments should be possible based on
necessities, expenses of bug settling, history of the parent
gadget etc.

Since prioritizing the test cases helps in detecting the
faults at an early stage, so substantial time can be saved
which can further be utilized in early start-up of debugging
activities.

In order to find out the best test case execution sequence
in test case prioritization, all the possible permutations of the
original test suite are considered as candidates [13]. Genetic
algorithms are the search heuristics which are widely used in
test case prioritization problems. The primary advantage of
utilizing hereditary calculation is that it has a place with a
more extensive class of transformative calculations which
produce answers for enhancement issues by utilizing the
systems propelled by characteristic advancement. These
incorporate legacy, hybrid, transformation and choice.

A subset of Evolutionary Algorithms, Genetic Algorithm
is used for generating optimal or near optimal solutions to
complex problems by relying on techniques inspired by
natural selection. Genetic algorithms are usually employed
for generating optimal or near optimal solutions to complex
problems by means of genetic operator’s viz., crossover,
mutation and selection [5].

Garima et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,742-745

© 2015-19, IJARCS All Rights Reserved 743

A genetic algorithm works by evolving a population of
possible solutions to a complicated problem towards an
optimal solution. Every possible solution has its own group
of characteristics (referred to as chromosomes or genotype)
that can be changed and mutated. Traditional representation
of solutions involves binary strings of 0s and 1s. However,
other representations are also viable [11].

To start with, a random pool of all possible solutions
(represented as chromosomes) to a given problem is
generated. This population is then modified time and again in
order to reach an ideal solution. At each step, one or more
chromosomes from the current population are picked up as
per some fitness function of the problem under consideration.
These best fit individuals are then used to create new off
springs, which are further added to the next generation. The
new generation of candidate solutions is then utilised in the
next iteration of the algorithm. Usually, the algorithm ceases
when largest number of generations has been reached, or an
acceptable fitness value has been achieved.

II. RELATED WORK

A modified condition/decision coverage based approach
is proposed by Jones. They presented 2 new calculations for
test suite diminishment and prioritization that join parts of
MC/DC viably like complexities of MC/DC and also the
success of test suite decline technique is evaluated on a Space
series which is implemented in C language. The proposed
approach has been proven to be more effective in terms of
fault detection. The paper additionally exhibits the
aftereffects of experimental examinations that assess these
calculations. The outcomes accomplished up to this point are
empowering in that they demonstrate the potential for
generous test-suite estimate lessening concerning MC/DC.
Such methods can altogether lessen the cost of relapse testing
for those clients of this effective testing measure. [1] Korel
proposed the to start with demonstrate based experiment
prioritization approach, which plans the request of
experiments on the basis of collected execution data of the
changed model together with the past framework display and
the adjusted framework show. Execution of the demonstrate
is reasonable when contrasted with execution of the
framework, hence the overhead connected with test
prioritization is comparatively little. This paper also
presented an expository structure for assessment of test
prioritization techniques. This system may decrease the cost
of assessment when contrasted with the current assessment
structure that depends on experimentation. The consequences
of the exploratory investigation recommend that framework
models may enhance the viability of test prioritization as for
early fault discovery. [2] Walcott presented a relapse test
prioritization system that uses a hereditary calculation to
reorder test suites in light of testing time imperatives.
Examination comes about show that this prioritization
approach regularly yields higher normal level of flaws
distinguished (APFD) values, for two contextual analysis
applications, when essential square level scope is utilized
rather than technique level scope. The investigations likewise
uncover principal exchange offs in the execution of time-
mindful prioritization. This paper demonstrates that the
prioritization system is suitable for some, relapse testing
situations and clarifies how the standard approach can be
stretched out to work in extra time obliged testing conditions.
[3] A technique for cost-conscious experiment prioritization

in light of the utilization of verifiable records is proposed by
Yu-Chi. They assemble the verifiable records from the most
recent relapse testing and afterward propose a hereditary
calculation to decide the best request. Some controlled
examinations are performed to assess the viability of the
proposed strategy. Assessment comes about demonstrate that
the proposed technique has enhanced the blame recognition
adequacy. It can likewise been discovered that organizing
experiments in light of their verifiable data can give high test
viability amid testing. [4]

P.R. Srivastava developed a variable length Genetic
Algorithm for detecting the most critical path clusters for
optimizing software testing performance. To implement this
changeable measurement lengthwise Genetic Algorithms is
developed that enhance and select the product way groups
which are weighted as per the criticality of the way.
Thorough programming testing is once in a while
conceivable on the grounds that it ends up noticeably
recalcitrant for even medium estimated programming. The
proposed method outperformed the local and exhaustive
search techniques. By investigating the most critical paths
first, it led to an extra effective manner to technique testing
which in turn, helped to perform effort and cost estimations
in a better way during testing phase. [5] Conrad introduced a
wide assortment of change, hybrid, choice and change
administrator that were utilized to reorder the test suite. An
exploratory examination was executed on 8 contextual
analysis applications, utilizing APFD as scope viability
metric and their JUnit test cases at framework level. The
outcomes are investigated with the assistance of bean plots.
On correlation of the proposed procedure with irregular
inquiry and slope climbing methods, GA yields better
outcomes. Likewise, GA is found to have comparative
execution times as that of arbitrary inquiry and slope
climbing. All things considered, GA demonstrates a more
prominent inconstancy and is likewise a forthcoming territory
of research in the field. [6] A technique of cost-cognizant test
case prioritization which was on the basis of usage of historic
records is proposed by Y.Huang. The chronological data was
gathered from the most recent regression testing after which a
genetic algorithm was proposed to decide the most effectual
order. Results proved that the proposed technique led to an
upgrading in the fault detection effectiveness. [7] Yu-Chi
proposed a cost-aware prioritization method that requested
experiments as indicated by their history data by utilizing
hereditary calculation. The system organized experiments
based on their test expenses and blame severities, without
investigating the source code. It additionally enhanced the
prioritization execution by maintaining a strategic distance
from specific situations where the experiments with
comparable capacity in the past relapse testing were given a
similar rank. The productivity of the same was assessed by
utilizing a UNIX utility program and the outcomes affirmed
the value of the proposed procedure. [8] An algorithm for
system level TCP from software requirement specification is
proposed by R.Kavitha. This was done with an aim to
enhance client fulfillment with quality programming and
furthermore to enhance the rate of serious blame
identification. The proposed calculation organized the
experiments based on three factors to be specific, client need,
changes in necessity and execution many-sided quality. The
proposed procedure was then approved with two distinct
arrangements of mechanical tasks and the outcomes showed

Garima et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,742-745

© 2015-19, IJARCS All Rights Reserved 744

that it improved the rate of fault detection. [9] Another
Genetic calculation for organizing the relapse test suite,
which organized the experiments based on add up to code
scope by A. Kaur. Here, various prioritization approaches
have been broke down, in particular: add up to blame scope
with in time obliged condition and measure of code scope on
various illustrations and their limited arrangement got,
separately. The proposed approach helped in automating the
test case prioritization process. The results denoting its
efficiency were evaluated by means of Average percentage of
Code Coverage (APCC) metric. [10]

III. EXISTING METHODS

A subset of Evolutionary Algorithms, Genetic Algorithm is
used for generating optimal or near optimal solutions to
complex problems by relying on techniques inspired by
natural selection. Genetic algorithms are usually employed
for generating optimal or near optimal solutions to complex
problems by means of genetic operator’s viz., crossover,
mutation and selection.
A genetic algorithm works by evolving a population of
possible solutions to a complicated problem towards an
optimal solution. Every possible solution has its own group
of characteristics (referred to as chromosomes or genotype)
that can be changed and mutated. Traditional representation
of solutions involves binary strings of 0s and 1s. However,
other representations are also viable.
To start with, a random pool of all possible solutions
(represented as chromosomes) to a given problem is
generated. This population is then modified time and again in
order to reach an ideal solution. At each step, one or more
chromosomes from the current population are picked up as
per some fitness function of the problem under consideration.
These best fit individuals are then used to create new off
springs, which are further added to the next generation. The
new generation of candidate solutions is then utilised in the
next iteration of the algorithm. Usually, the algorithm ceases
when largest number of generations has been reached, or an
acceptable fitness value has been achieved.

 In GAs, we have a pool or a population of possible solutions
to the given problem.

 These solutions then undergo recombination and mutation
(like in natural genetics), producing new children, and the
process is repeated over various generations. Each individual
(or candidate solution) is assigned a fitness value (based on
its objective function value) and the fitter individuals are
given a higher chance to mate and yield more “fitter”
individuals. This is in line with the Darwinian Theory of
“Survival of the Fittest”.

 In this way we keep “evolving” better individuals or solutions
over generations, till we reach a stopping criterion.

Figure 3.1 Genetic Algorithm

IV. EXPERIMENTAL RESULTS

To implement genetic algorithm, we take different number of
generations and measure execution time, APSC (average
percentage suite coverage) measure and APFD (average
percentage fault detection) measure based on the number of
generations.

Table 4.1 Number of iterations for APSC

Sr.

No.

No. of

Iterations

Genetic Algorithm

1 2nd generation 95.72

2 3rd generation 96.53

3 4th generation 96.28

4 5th generation 96.35

Figure 4.1 Graph showing APSC for number of iterations

Garima et al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018,742-745

© 2015-19, IJARCS All Rights Reserved 745

Table 4.1 Number of iterations for APFD
Sr.

No.

No. of

Iterations

Existing

Technique

1 2nd generation 97.1

2 3rd generation 96.7

3 4th generation 94.8

4 5th generation 98.9

Figure 4.2 Graph showing APFD for number of iterations

V. CONCLUSION

The major purpose of this paper is to gain knowledge of
about software testing, and scan case prioritization. On this
paper, Genetic Algorithm and repair-and-Reschedule
adaptive method is combined to perform scan case
prioritization in program trying out. Scan Case Prioritization
pursuits to organize the test cases so as to maximize the
announcement coverage or fault detection cost. In contrary to
this, a repair-and-reschedule adaptive procedure preserves
time by way of carrying out these two duties concurrently.
Nevertheless, it most effective schedules the going for walks
order of some chosen test cases that have attained some
amount of announcement insurance policy or fault detection
previously. Consequently, it does not consider the entire
experiment cases for prioritization, which implies that full
declaration coverage or fault detection has now not yet been
accomplished. In future, we can combine the genetic
algorithm with fix-and-reschedule algorithm.

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Test-suite reduction and

prioritization for modified condition/decision coverage,”
IEEE Transactions on Software Engineering, vol. 29, no.
3, pp. 195– 209, 2003.

[2] B. Korel, L. H. Tahat, and M. Harman, “Test prioritization
using system models,” in the 21st IEEE International
Conference on Software Maintenance, 2005, pp. 559–568.

[3] K.R.Walcott, M.L.Soffa, G.M.Kapfhammer and R.S. Roos.
“Time aware test suite Prioritization”, International
Symposium on software Testing and Analysis, pp. 1-12,
July 2006.

[4] H. Park, H. Ryu, and J. Baik, “Historical value-based
approach for cost-cognizant test case prioritization to
improve the effectiveness of regression testing,” The
Journal of Systems and Software, pp. 39–46, 2008.

[5] P R Srivastava, T. Kim. Application of Genetic Algorithm
in Software Testing. In: Proceedings of International
Journal of Software Engineering and its applications, 87-
96, October 2009.

[6] A. P.Conrad,R. S.Roos, "Empirically Studying the role of
selection operators during search based test suite
prioritization", In the Proceedings of the ACM SIGEVO
Genetic and Evolutionary Computation Conference,
Portland, Oregon, 2010.

[7] YC Huang, CY Huang, JR Chang. Design and Analysis of
Cost-Cognizant Test Case Prioritization Using Genetic
Algorithm with Test History. In: Proceedings of 34th IEEE
Annual Computer Software and Applications Conference,
413-418, July 2010.

[8] Y. Huang, C. Huang, J. Chang, T. Chen: “Design and
Analysis of Cost-Cognizant Test Case Prioritization Using
Genetic Algorithm with Test History.” In: Proceedings of
34th IEEE Annual Computer Software and Applications
Conference, (2010)

[9] R. Kavitha, V.R. Kavitha, Dr. N. S. Kumar: “Requirement
Based Test Case Prioritization.” In: Proceedings of IEEE
International Conference on Communication Control and
Computing Technologies (ICCCCT), (2010)

[10] A. Kaur, S. Goyal. A genetic algorithm for regression test
case prioritization using code coverage. In: Proceedings of
International Journal on Computer Science and
Engineering, 1839-1847, May 2011.

[11] S. Sabharwal, R. Sibal, C. Sharma. A Genetic Algorithm
based Approach for Prioritization of Test Case Scenarios
in static testing. In: Proceedings of International
Conference on Computers and Communication
Technology (ICCCT), 304-309, September 2011.

[12] YC Huang, KL Peng, CY Huang. A history-based cost
cognizant test case prioritization technique in regression
testing. The Journal of Systems and Software, 85(3): 626-
637, March 2012.

[13] G. Fraser, A Arcuri. Whole Test Suite Generation. IEEE
Transactions on Software Engineering. 39(2), 276-291,
February 2013.

[14] D. Hao, X. Zhao, L. Zhang. Adaptive Test-Case
Prioritization Guided by Output Inspection. In:
Proceedings of 37th IEEE Annual Computer Software and
Applications Conference (COMPSAC), 169-179, July
2013.

[15] T. B. Noor, H. Hemmati: “A similarity-based approach for
test case prioritization using historical failure data.” In:
Proceedings of 26th IEEE International Symposium on
Software Reliability Engineering (ISSRE), (2015)

