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Abstract: Hundreds of different mobile devices are on the market, produced by different vendors, and with different software features and 
hardware components. Mobile applications, while running on different devices, may behave differently due to variations in the hardware or O.S. 
components.  Since mobile applications are expected to be deployed and executed on diverse mobile platforms, they must be validated on 
different mobile platforms and devices. Due to the peculiarities of mobile application development, there is a need for a quality assurance 
approach that focuses on its challenges. Moreover, mobile test executions take long time because all the tests were executed on different 
environments and developers had to create complex tear down procedures. Such procedures were lengthy and far from perfect, leading to 
unpredictable failures.  Regression testing is a crucial part of Mobile app development and it checks that software changes do not break existing 
functionality. In every regression test execution, the final results are expected either always pass or always fail for the same code.  But, in real 
time project release cycles, some of the tests will be non-deterministic, in other words called flaky tests.  It reduces the importance of regression 
testing cycle and it is very difficult to trust on these results. These results significantly reduced the trust in the tests and thus undermined the 
whole mobile app test automation effort.  We trained machine learning classifiers separately on each test result dataset and compared 
performance across datasets. The proposed model predicts result types as Non-Deterministic orDeterministic tests from the regression suite 
results executed in various release cycles.  
 
Keywords: Mobile App Testing, Regression Testing, Non-Deterministic Tests, Machine Learning Algorithms, Decision Tree, Random Forest 
Algorithms.  
 
1. INTRODUCTION 

 
Software Testing represents an important part of a software 
development Life Cycle process. It is a stage where the 
errors and issues still presented in the system should be 
discovered and fixed. It is also a very costly process. 
Resources — time and people — are spent to prepare the 
test case scenarios and to execute them. Its cost is estimated 
to be between 40% and 80% of the total cost of development 
[1]. Mobile devices such as smartphones and tablets have 
become the de facto computers in our daily lives [2].As 
authors, Rajkumar J Bhojan, et.al.,described in [3] the 
mobile applications and mobile users are growing rapidly, it 
is indeed for researchers and testing experts to come up with 
effective verification techniques to ensure reliability of these 
mobile applications.  Authors also mentioned that mobile 
applications are becoming increasingly sophisticated, they 
significantly increase the requirement for functional and 
non-functional tests. [3] 
The rest of this paper is organized as follows. In Section II, 
we review related work in identifying Non-Deterministic 
tests using different methods.  In Section III, we proposed 
Data Collection and Random Forest algorithm for test 
results. In Section IV, we evaluated the performance of our 

algorithms over large set of rows of simulated data, 
followed by discussions and concluding remarks in Section 
V. 
 
2. RELATED WORK 
Authors Alex Gyori, et.al., in "Reliable Testing: Detecting 
State-Polluting Tests to prevent Test Dependency” proposed 
a technique, called PolDet, for finding tests that pollute the 
shared state.  Their findings in a nutshell, PolDet finds tests 
that modify some location on the heap shared across tests or 
on the file system; a subsequent test could fail if it assumes 
the shared location to have the initial value before the state 
was modified. They also stressed to aid in inspecting the 
pollutions, PolDet provides an access path through the heap 
that leads to the polluted value or the name of the file that 
was modified. Finally they implemented a prototype PolDet 
tool for Java and evaluated it on 26 projects, with a total of 
6105 tests. PolDet reported 324 polluting tests, and our 
inspection found that 194 are relevant pollutions that can 
easily affect other tests. [4] 
Authors ArashVahabzadeh, et.al., did a thorough research 
work on Non-Deterministic test.  In their research paper "An 
Empirical study of Bugs in Test Code", they presented the 
first empirical study of bugs in test code to characterize their 
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prevalence and root cause categories.  They mined the bug 
repositories and version control systems of 211 Apache 
Software Foundation (ASF) projects and found 5,556 test-
related bug reports.  They also compared properties of test 
bug with production bugs, such as active time and fixing 
effort needed and qualitatively study 443 randomly sampled 
test bug reports in detail and categorize them based on their 
impact and root causes.  (1) Compare properties of test bugs 
with production bugs, such as active time and fixing effort 
needed, and (2) qualitatively study 443 randomly sampled 
test bug reports in detail and categorize them based on their 
impact and root causes.  
Their results are listed below 

• Around half of all the projects had bugs in their 
test code; 

• The majority of test bugs are false alarms, i.e., test 
fails while the production code is correct, while a 
minority of these bugs result in silent horrors, i.e., 
test passes while the production code is incorrect; 

• Incorrect and missing assertions are the dominant 
root cause of silent horror bugs; 

• Semantic (25%), Non-Deterministic (21%), 
environment related(18%) bugs are the dominant 
root cause categories of false alarms;  

• The majority of false alarm bugs happen in the 
exercise portion of the tests, and 

• Developers contribute more actively to fixing test 
bugs and test bugs are fixed sooner compared to 
production bugs. [5] 

 
In another research work “Detecting Assumptions on 
Deterministic Implementations of Non-deterministic 
Specifications”, authors August Shi, et.al.found a technique 
called NONDEX for detecting Non-Deterministic tests due 
to ADINS (Assumes a Deterministic Implementation of a 
method with a Non-Deterministic Specification) code.  They 
implemented NONDEX for Java and found 31 methods with 
non-deterministic specification in the Java Standard Library, 
manually built non-deterministic models for these methods, 
and used a modified Java Virtual Machine for these 
methods, and used a modified JVM to explore various non-
deterministic choices.  They also evaluated NONDEX on 
195 open-source projects for GitHub and 72 student 
submissions from a programming homework assignment.   
NonDEX detected 60 Non-Deterministic test in 21 open-
source projects and 110 Non-Deterministic tests in 34 
student submissions. [6] 
 
3. MACHINE LEARNING 
 
Authors in [7] describe that Machine learning is an exciting 
area that is seen significant advances lately in both theories 
and practices.  As the machine learning tools and techniques 
getting more mature, they are increasingly applied to many 
different field for both research and business needs. 
However, the amount of data that is generated in today’s 
world has being grown exponentially. In machine learning 
algorithms, variable and feature selection is nothing but 
trivial. A set of carefully chosen features can make the 
prediction more accurate; make the calculating process 
faster; and can lead to better understanding between the 
process and the data it generated. In addition, if only a 
subset of the variables are useful to construct learning 

features, it can reduce storage requirements and simply data 
visualization results. Traditionally, finding the dominating 
sets of variables relies on the experts’ domain knowledge of 
the system. However, as pointed in the survey study [8], a 
variable that is deemed useless by itself can provide 
substantial performance improvement if it is paired with 
other variables. Or put it differently, two non-contributing 
variables can be useful if they are both included in the 
features of a machine learning algorithm. Likewise, it is 
possible to gain better performance if a presumably 
redundant variable is included in the learning process. In 
this research paper, we propose Decision Tree Algorithm 
and Random Forest Algorithm for identifying Non-
Deterministic Tests from pool of Results/Reports files.  As 
noted by authors [9], in real-world data are often represented 
on multiple manifolds. Examples of this can be usually 
found in machine learning, signal and image processing, 
pattern recognition, computer vision and information 
retrieval. 
In our research work, Decision Tree Algorithm will 
identifyNon-Deterministic tests in Mobile application 
testing results based on DT algorithm prediction. Decision 
tree learning is a type of algorithm which maps observations 
about an item to conclusions about the items' target value.  
Every node is denoted asa Non-Deterministic Test and 
trimming method is used for each node in the tree.  The 
trimming method is otherwise known as pruning technique 
which reduces the complexity of the classifier and boosts the 
predictive accuracy.  This algorithm stops removing Non-
Deterministic tests when no further selection can be made. 
As there are some issues like “overfitting” with Decision 
tree algorithm, we further extended our finding with 
Random Forest Algorithm.   Random Forest (RF) [10, 11, 
12] is an ensemble classification and regression trees 
(CARTs) that are grown in a random subspace of data. Each 
tree in the forest is grown using a bootstrap sample of 
instances from the data. One third of samples are left in out-
of-bag (OOB) to estimate the prediction error. The attributes 
in the tree are chosen using random feature selection. A 
binary split is represented as a node, which terminates at a 
leaf. The data is recursively split into distinct subsets using 
appropriate splitting rules. Each subset of child nodes is 
purer than the corresponding parent node. Finally, the 
subjects are classified by majority votes over all trees in the 
forest. RF outperforms the prediction when the trees do not 
exhibit a correlation with each other. It can estimate the 
importance (Gini) of each attribute in the training data. It 
can also determine the pairwise proximity among the 
samples. These features of RF uncover the interactions 
between genes in the absence of main effect. The algorithm 
is implemented in a number of open source software 
packages, such as R [13], Rapid miner [14], Weka [15] and 
Willows packages [16]. RF can be very suitable for handling 
large p-value problems.   
As shown in the Table -1, the non-deterministic dataset has 
been created for training after cleaning the dataset.    The 
training data set has both True (1) and False labels (0) and it 
has five attributes.  The first step will be to find the partition 
with the least entropy.  Then, the minimum-entropy partition 
for the whole data set was found.   
Based on our previous experience, we found the following 
reasons for non-deterministic test failures as shown in the 
below list. 
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[a] Not having a framework [b] Hardcoded Test data [c] 
Using X,Y Coordinates or Xpath for element  
recognition [d] Using Shared Test Environments [e] 
Having test that are dependent on one another [f] Test not 
starting in a known state [g] Test no managing their own 
test data[h] Failure to use proper synchronization [i] Badly 
written test scripts [j]Network [k]Time [l]  Floating point 
Operations [m]Async Wait [n] Resource Leak and [o] 
Unordered Collections 

From the above list, important attributes / features are 
filtered for the training the model.  In order to find the 

subset of correct attributes from the dataset, feature selection 
process is used.   Similarly, all possible combinations of 
attributes will be selected from the dataset.  The good 
combination will enhance the performance over selecting all 
attributes.  The important benefits of feature selection are as 
follows: 

• Overfitting Problem will be resolved 
• Improves model accuracy  
• Training time will be reduced, so that training will 

be faster 

 
   

Table –1 Feature Selection 
  

Test 
Results 

Test 
Data 

TE_Shared Test 
Dependent 

Sync 
Issue 

Test 
Scripts 

Long 
Time 

Floating 
Point 
Operation 

Selection 

Yes No  Yes Yes No No Yes No 1 
No Yes No No Yes No Yes Yes 0 
Yes No No Yes Yes Yes No No 1 
No Yes Yes No Yes No Yes Yes 0 
No No Yes No No Yes No No 0 
Yes No Yes Yes No No Yes No 1 
Yes Yes No No Yes No Yes Yes 1 
Yes Yes No Yes Yes Yes No No 0 
Yes Yes Yes No Yes No Yes Yes 1 
Yes No Yes Yes No No Yes No 1 

The above table (Table-1) shows the sample training set data for constructing a model. 
 
 

4. IMPLEMENTATION  
 
As shown in the Figure -1, a model has been implemented to 
detect Non-Deterministic tests from mobile testing results in 
our research POC. As a first step in our implementation, we 
collected all the mobile testing results from different 
devices, work stations, online results and stored them in a 
separate repository.   
 

 
Fig – 1 Flow chart for the Model 
 

In preprocess step, all other data like test steps, test 
descriptions, expected results, etc., are removed from the 
results. The next step is to extract only non-deterministic 
failed / passed results for training dataset for the model. 
Then dataset normalization is done before Machine 
Learning algorithm is used for mining the data and detecting 
Non-Deterministic tests.  In this research POC, ten sets of 
sample results were taken from five different iterations.  All 
the results were generated as ‘Pass’ or ‘Fail’ and it was 
named “1” for Pass and “0” for Fail for the calculations 
purposes.  Similarly, the attributes are divided based on its 
presence.   
 

 
Fig. 2. Graph for different Features 

 
Though there are more number of algorithms available in 
machine learning area for predictions, Decision Tree and 
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Random Forest Algorithms are selected in this research 
paper.  Decision tree and Random Forest algorithms 
stopremoving devices when no further selection can be 
made.  Based on our Proof Of Concept (POC) data, the 
following steps are derived.    

 If the list of attributes like “No Framework”, “Test 
Data”, “XY coordinates”, etc., is empty, i.e., there 
are no more possible questions to ask, then create 
a leaf node that predicts the most common label 
and then stop.  

 Otherwise, try partitioning the data by each of the 
attributes 

 Choose the partition with the lowest partition 
entropy 

 Add a decision node based on the chosen attribute 
 Recur on each partitioned subset using the 

remaining attributes. 

 Decision Tree Algorithm is used to split dataset 
into subset,  

 Are they all pure?  
 If it is “Yes” stop or if all “No” stop;  
 Else repeat.     
 The lowest entropy comes from splitting on first 

attribute “No Framework”, so it will need to make 
a subtree for each possible No Framework value.  
When attribute comes pure “Yes” or “No”, it stops 
further classifications. As part of research, we used 
100 records for decision tree as shown in the Fig.3. 
In this way, Non-Deterministic test selection will 
be narrowed down and a logical decision is arrived 
based on attributes which test set has to be selected 
for testing and which one should not be selected. 

 
Fig-3.  DT Classification Result 

 
A. Prediction Results:  

The following tables Table2 & 3 display prediction results 
derived from Decision Tree Algorithm and Random Forest 
Algorithm.  As shown in the Table -2, the model will predict 
whether the given data is Non-Deterministic or not.  If it is a 
Non-Deterministic or Flaky test, the same test will be sent 
back for either correction or rerunning the execution.   
 

Table –2 Prediction Results 
Inputs for  Prediction Predicted 

Result 
Description 

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic 

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic 

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic 

clf.predict([[1,0,1,1,0,0,1,0]]) [0] Deterministic 
clf.predict([[1,0,1,1,0,0,1,0]]) [0] Deterministic 
 
 
Random forests is currently one of the most used machine 
learning algorithms in the non-streaming (batch) setting. 
This preference is attributable to its high learning 
performance and low demands with respect to input 
preparation and hyper-parameter tuning.[17]  The Random 
forest algorithm is an ensemble learning method that takes 
average results of several decision trees to classify its 
samples.  As the name denotes, each decision tree is trained 
on a random training data subset, perhaps using random 
features as well. Random forest is a collection of many 
decision trees. If we use many trees in the forest, many or all 
of the features will be included. This inclusion of many 
features will help limit our error due to bias and error due to 
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variance. If features weren’t chosen randomly, trees in the 
forest could become highly correlated. This is because a few 
features could be particularly predictive and thus, the same 
features would be chosen in many of the trees. The 
following table shows predicted results found by random 
forest classifier.   
 

Table – 3 Random Forest Classifier 
 

Different Inputs for 
Prediction 

Predicted 
Result 

Description 

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Determi-

nistic 
clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-

Determi-
nistic 

clf.predict([[1,0,0,1,1,1,0,0]]) [0] Deterministic 
clf.predict([[0,0,1,0,0,1,0,0]]) [1] Non-

Determi-
nistic 

clf.predict([[1,1,0,0,1,0,1,1]]) [1] Non-
Determi-

nistic 
 
5. CONCLUSION 
 
We have proposed a model to classify Non-Deterministic 
test based on several results derived from multiple 
executions. We found that feature set are sufficientto 
classify Non-Deterministic tests. We also did in-depth 
analysis on the performance of two Machine Learning 
algorithms with respect to identifying Non-Deterministic 
tests. The future works will include performance 
enhancement by examining and comparing the classification 
accuracy of Non-Deterministic Tests with other 
classification algorithm using deep learning. 
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