
DOI: http://dx.doi.org/10.26483/ijarcs.v9i1.5273

Volume 9, No. 1, January-February 2018

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 219

ISSN No. 0976-5697

A MACHINE LEARNING BASED APPROACH FOR DETECTING NON-

DETERMINISTIC TESTS AND ITS ANALYSIS IN MOBILE APPLICATION
TESTING

Mr. Rajkumar Joghee Bhojan,
Principal Consultant, Wipro Technologies,

 Bangalore, India

Dr. K.Vivekanandan,
Director, BSMED, Bharathiar University,

Coimbatore, India

Dr. D. Ramyachitra,
Assistant Professor, Department of Computer Science,

Bharathiar University, Coimbatore, India

Dr. Subramaniam Ganesan,
Professor, Oakland University, Rochester,

MI 48309, USA

Abstract: Hundreds of different mobile devices are on the market, produced by different vendors, and with different software features and
hardware components. Mobile applications, while running on different devices, may behave differently due to variations in the hardware or O.S.
components. Since mobile applications are expected to be deployed and executed on diverse mobile platforms, they must be validated on
different mobile platforms and devices. Due to the peculiarities of mobile application development, there is a need for a quality assurance
approach that focuses on its challenges. Moreover, mobile test executions take long time because all the tests were executed on different
environments and developers had to create complex tear down procedures. Such procedures were lengthy and far from perfect, leading to
unpredictable failures. Regression testing is a crucial part of Mobile app development and it checks that software changes do not break existing
functionality. In every regression test execution, the final results are expected either always pass or always fail for the same code. But, in real
time project release cycles, some of the tests will be non-deterministic, in other words called flaky tests. It reduces the importance of regression
testing cycle and it is very difficult to trust on these results. These results significantly reduced the trust in the tests and thus undermined the
whole mobile app test automation effort. We trained machine learning classifiers separately on each test result dataset and compared
performance across datasets. The proposed model predicts result types as Non-Deterministic orDeterministic tests from the regression suite
results executed in various release cycles.

Keywords: Mobile App Testing, Regression Testing, Non-Deterministic Tests, Machine Learning Algorithms, Decision Tree, Random Forest
Algorithms.

1. INTRODUCTION

Software Testing represents an important part of a software
development Life Cycle process. It is a stage where the
errors and issues still presented in the system should be
discovered and fixed. It is also a very costly process.
Resources — time and people — are spent to prepare the
test case scenarios and to execute them. Its cost is estimated
to be between 40% and 80% of the total cost of development
[1]. Mobile devices such as smartphones and tablets have
become the de facto computers in our daily lives [2].As
authors, Rajkumar J Bhojan, et.al.,described in [3] the
mobile applications and mobile users are growing rapidly, it
is indeed for researchers and testing experts to come up with
effective verification techniques to ensure reliability of these
mobile applications. Authors also mentioned that mobile
applications are becoming increasingly sophisticated, they
significantly increase the requirement for functional and
non-functional tests. [3]
The rest of this paper is organized as follows. In Section II,
we review related work in identifying Non-Deterministic
tests using different methods. In Section III, we proposed
Data Collection and Random Forest algorithm for test
results. In Section IV, we evaluated the performance of our

algorithms over large set of rows of simulated data,
followed by discussions and concluding remarks in Section
V.

2. RELATED WORK
Authors Alex Gyori, et.al., in "Reliable Testing: Detecting
State-Polluting Tests to prevent Test Dependency” proposed
a technique, called PolDet, for finding tests that pollute the
shared state. Their findings in a nutshell, PolDet finds tests
that modify some location on the heap shared across tests or
on the file system; a subsequent test could fail if it assumes
the shared location to have the initial value before the state
was modified. They also stressed to aid in inspecting the
pollutions, PolDet provides an access path through the heap
that leads to the polluted value or the name of the file that
was modified. Finally they implemented a prototype PolDet
tool for Java and evaluated it on 26 projects, with a total of
6105 tests. PolDet reported 324 polluting tests, and our
inspection found that 194 are relevant pollutions that can
easily affect other tests. [4]
Authors ArashVahabzadeh, et.al., did a thorough research
work on Non-Deterministic test. In their research paper "An
Empirical study of Bugs in Test Code", they presented the
first empirical study of bugs in test code to characterize their

Mr. Rajkumar Joghee Bhojanet al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018 219-223

© 2015-19, IJARCS All Rights Reserved 220

prevalence and root cause categories. They mined the bug
repositories and version control systems of 211 Apache
Software Foundation (ASF) projects and found 5,556 test-
related bug reports. They also compared properties of test
bug with production bugs, such as active time and fixing
effort needed and qualitatively study 443 randomly sampled
test bug reports in detail and categorize them based on their
impact and root causes. (1) Compare properties of test bugs
with production bugs, such as active time and fixing effort
needed, and (2) qualitatively study 443 randomly sampled
test bug reports in detail and categorize them based on their
impact and root causes.
Their results are listed below

• Around half of all the projects had bugs in their
test code;

• The majority of test bugs are false alarms, i.e., test
fails while the production code is correct, while a
minority of these bugs result in silent horrors, i.e.,
test passes while the production code is incorrect;

• Incorrect and missing assertions are the dominant
root cause of silent horror bugs;

• Semantic (25%), Non-Deterministic (21%),
environment related(18%) bugs are the dominant
root cause categories of false alarms;

• The majority of false alarm bugs happen in the
exercise portion of the tests, and

• Developers contribute more actively to fixing test
bugs and test bugs are fixed sooner compared to
production bugs. [5]

In another research work “Detecting Assumptions on
Deterministic Implementations of Non-deterministic
Specifications”, authors August Shi, et.al.found a technique
called NONDEX for detecting Non-Deterministic tests due
to ADINS (Assumes a Deterministic Implementation of a
method with a Non-Deterministic Specification) code. They
implemented NONDEX for Java and found 31 methods with
non-deterministic specification in the Java Standard Library,
manually built non-deterministic models for these methods,
and used a modified Java Virtual Machine for these
methods, and used a modified JVM to explore various non-
deterministic choices. They also evaluated NONDEX on
195 open-source projects for GitHub and 72 student
submissions from a programming homework assignment.
NonDEX detected 60 Non-Deterministic test in 21 open-
source projects and 110 Non-Deterministic tests in 34
student submissions. [6]

3. MACHINE LEARNING

Authors in [7] describe that Machine learning is an exciting
area that is seen significant advances lately in both theories
and practices. As the machine learning tools and techniques
getting more mature, they are increasingly applied to many
different field for both research and business needs.
However, the amount of data that is generated in today’s
world has being grown exponentially. In machine learning
algorithms, variable and feature selection is nothing but
trivial. A set of carefully chosen features can make the
prediction more accurate; make the calculating process
faster; and can lead to better understanding between the
process and the data it generated. In addition, if only a
subset of the variables are useful to construct learning

features, it can reduce storage requirements and simply data
visualization results. Traditionally, finding the dominating
sets of variables relies on the experts’ domain knowledge of
the system. However, as pointed in the survey study [8], a
variable that is deemed useless by itself can provide
substantial performance improvement if it is paired with
other variables. Or put it differently, two non-contributing
variables can be useful if they are both included in the
features of a machine learning algorithm. Likewise, it is
possible to gain better performance if a presumably
redundant variable is included in the learning process. In
this research paper, we propose Decision Tree Algorithm
and Random Forest Algorithm for identifying Non-
Deterministic Tests from pool of Results/Reports files. As
noted by authors [9], in real-world data are often represented
on multiple manifolds. Examples of this can be usually
found in machine learning, signal and image processing,
pattern recognition, computer vision and information
retrieval.
In our research work, Decision Tree Algorithm will
identifyNon-Deterministic tests in Mobile application
testing results based on DT algorithm prediction. Decision
tree learning is a type of algorithm which maps observations
about an item to conclusions about the items' target value.
Every node is denoted asa Non-Deterministic Test and
trimming method is used for each node in the tree. The
trimming method is otherwise known as pruning technique
which reduces the complexity of the classifier and boosts the
predictive accuracy. This algorithm stops removing Non-
Deterministic tests when no further selection can be made.
As there are some issues like “overfitting” with Decision
tree algorithm, we further extended our finding with
Random Forest Algorithm. Random Forest (RF) [10, 11,
12] is an ensemble classification and regression trees
(CARTs) that are grown in a random subspace of data. Each
tree in the forest is grown using a bootstrap sample of
instances from the data. One third of samples are left in out-
of-bag (OOB) to estimate the prediction error. The attributes
in the tree are chosen using random feature selection. A
binary split is represented as a node, which terminates at a
leaf. The data is recursively split into distinct subsets using
appropriate splitting rules. Each subset of child nodes is
purer than the corresponding parent node. Finally, the
subjects are classified by majority votes over all trees in the
forest. RF outperforms the prediction when the trees do not
exhibit a correlation with each other. It can estimate the
importance (Gini) of each attribute in the training data. It
can also determine the pairwise proximity among the
samples. These features of RF uncover the interactions
between genes in the absence of main effect. The algorithm
is implemented in a number of open source software
packages, such as R [13], Rapid miner [14], Weka [15] and
Willows packages [16]. RF can be very suitable for handling
large p-value problems.
As shown in the Table -1, the non-deterministic dataset has
been created for training after cleaning the dataset. The
training data set has both True (1) and False labels (0) and it
has five attributes. The first step will be to find the partition
with the least entropy. Then, the minimum-entropy partition
for the whole data set was found.
Based on our previous experience, we found the following
reasons for non-deterministic test failures as shown in the
below list.

Mr. Rajkumar Joghee Bhojanet al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018 219-223

© 2015-19, IJARCS All Rights Reserved 221

[a] Not having a framework [b] Hardcoded Test data [c]
Using X,Y Coordinates or Xpath for element
recognition [d] Using Shared Test Environments [e]
Having test that are dependent on one another [f] Test not
starting in a known state [g] Test no managing their own
test data[h] Failure to use proper synchronization [i] Badly
written test scripts [j]Network [k]Time [l] Floating point
Operations [m]Async Wait [n] Resource Leak and [o]
Unordered Collections

From the above list, important attributes / features are
filtered for the training the model. In order to find the

subset of correct attributes from the dataset, feature selection
process is used. Similarly, all possible combinations of
attributes will be selected from the dataset. The good
combination will enhance the performance over selecting all
attributes. The important benefits of feature selection are as
follows:

• Overfitting Problem will be resolved
• Improves model accuracy
• Training time will be reduced, so that training will

be faster

Table –1 Feature Selection

Test
Results

Test
Data

TE_Shared Test
Dependent

Sync
Issue

Test
Scripts

Long
Time

Floating
Point
Operation

Selection

Yes No Yes Yes No No Yes No 1
No Yes No No Yes No Yes Yes 0
Yes No No Yes Yes Yes No No 1
No Yes Yes No Yes No Yes Yes 0
No No Yes No No Yes No No 0
Yes No Yes Yes No No Yes No 1
Yes Yes No No Yes No Yes Yes 1
Yes Yes No Yes Yes Yes No No 0
Yes Yes Yes No Yes No Yes Yes 1
Yes No Yes Yes No No Yes No 1

The above table (Table-1) shows the sample training set data for constructing a model.

4. IMPLEMENTATION

As shown in the Figure -1, a model has been implemented to
detect Non-Deterministic tests from mobile testing results in
our research POC. As a first step in our implementation, we
collected all the mobile testing results from different
devices, work stations, online results and stored them in a
separate repository.

Fig – 1 Flow chart for the Model

In preprocess step, all other data like test steps, test
descriptions, expected results, etc., are removed from the
results. The next step is to extract only non-deterministic
failed / passed results for training dataset for the model.
Then dataset normalization is done before Machine
Learning algorithm is used for mining the data and detecting
Non-Deterministic tests. In this research POC, ten sets of
sample results were taken from five different iterations. All
the results were generated as ‘Pass’ or ‘Fail’ and it was
named “1” for Pass and “0” for Fail for the calculations
purposes. Similarly, the attributes are divided based on its
presence.

Fig. 2. Graph for different Features

Though there are more number of algorithms available in
machine learning area for predictions, Decision Tree and

Mr. Rajkumar Joghee Bhojanet al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018 219-223

© 2015-19, IJARCS All Rights Reserved 222

Random Forest Algorithms are selected in this research
paper. Decision tree and Random Forest algorithms
stopremoving devices when no further selection can be
made. Based on our Proof Of Concept (POC) data, the
following steps are derived.

 If the list of attributes like “No Framework”, “Test
Data”, “XY coordinates”, etc., is empty, i.e., there
are no more possible questions to ask, then create
a leaf node that predicts the most common label
and then stop.

 Otherwise, try partitioning the data by each of the
attributes

 Choose the partition with the lowest partition
entropy

 Add a decision node based on the chosen attribute
 Recur on each partitioned subset using the

remaining attributes.

 Decision Tree Algorithm is used to split dataset
into subset,

 Are they all pure?
 If it is “Yes” stop or if all “No” stop;
 Else repeat.
 The lowest entropy comes from splitting on first

attribute “No Framework”, so it will need to make
a subtree for each possible No Framework value.
When attribute comes pure “Yes” or “No”, it stops
further classifications. As part of research, we used
100 records for decision tree as shown in the Fig.3.
In this way, Non-Deterministic test selection will
be narrowed down and a logical decision is arrived
based on attributes which test set has to be selected
for testing and which one should not be selected.

Fig-3. DT Classification Result

A. Prediction Results:

The following tables Table2 & 3 display prediction results
derived from Decision Tree Algorithm and Random Forest
Algorithm. As shown in the Table -2, the model will predict
whether the given data is Non-Deterministic or not. If it is a
Non-Deterministic or Flaky test, the same test will be sent
back for either correction or rerunning the execution.

Table –2 Prediction Results
Inputs for Prediction Predicted

Result
Description

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Deterministic

clf.predict([[1,0,1,1,0,0,1,0]]) [0] Deterministic
clf.predict([[1,0,1,1,0,0,1,0]]) [0] Deterministic

Random forests is currently one of the most used machine
learning algorithms in the non-streaming (batch) setting.
This preference is attributable to its high learning
performance and low demands with respect to input
preparation and hyper-parameter tuning.[17] The Random
forest algorithm is an ensemble learning method that takes
average results of several decision trees to classify its
samples. As the name denotes, each decision tree is trained
on a random training data subset, perhaps using random
features as well. Random forest is a collection of many
decision trees. If we use many trees in the forest, many or all
of the features will be included. This inclusion of many
features will help limit our error due to bias and error due to

Mr. Rajkumar Joghee Bhojanet al, International Journal of Advanced Research in Computer Science, 9 (1), Jan-Feb 2018 219-223

© 2015-19, IJARCS All Rights Reserved 223

variance. If features weren’t chosen randomly, trees in the
forest could become highly correlated. This is because a few
features could be particularly predictive and thus, the same
features would be chosen in many of the trees. The
following table shows predicted results found by random
forest classifier.

Table – 3 Random Forest Classifier

Different Inputs for
Prediction

Predicted
Result

Description

clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-
Determi-

nistic
clf.predict([[1,0,1,1,0,0,1,0]]) [1] Non-

Determi-
nistic

clf.predict([[1,0,0,1,1,1,0,0]]) [0] Deterministic
clf.predict([[0,0,1,0,0,1,0,0]]) [1] Non-

Determi-
nistic

clf.predict([[1,1,0,0,1,0,1,1]]) [1] Non-
Determi-

nistic

5. CONCLUSION

We have proposed a model to classify Non-Deterministic
test based on several results derived from multiple
executions. We found that feature set are sufficientto
classify Non-Deterministic tests. We also did in-depth
analysis on the performance of two Machine Learning
algorithms with respect to identifying Non-Deterministic
tests. The future works will include performance
enhancement by examining and comparing the classification
accuracy of Non-Deterministic Tests with other
classification algorithm using deep learning.

6. ACKNOWLEDGEMENT

Authors would like to thank project stakeholders for their
valuable support in collecting the data. . I am immensely
thankful to Dr. D. Ramyachitra, who provided insight and
expertise that greatly assisted this research paper.My sincere
thanks toDr.K.Vivekanandan and Dr.Subramaniam Ganesan
for theirconstant encouragement and support throughout this
research work.

REFERENCES

[1] S. Eldh, H. Hansson, S. Punnekkat, A. Pettersson, and D.

Sundmark, “A framework for comparing efficiency,

effectiveness and applicability of software testing
techniques,” in Testing: Academic and Industrial Conference
- Practice And Research Techniques, 2006. TAIC PART
2006. Proceedings, Aug 2006, pp. 159–170.

[2] S. Allen, V. Graupera, and L. Lundrigan, “The smartphone is
the new PC,” in Pro Smartphone Cross-Platform
Development. Apress, 2010, pp. 1–14.

[3] Rajkumar J. Bhojan, K.Vivekanandan and Subramaniam
Ganesan, "Mobile Test Automation Framework for
Automotive HMI", International Journal of Advanced
Research in Computer and Communication Engineering,
Vol. 3, Issue 1, January 2014

[4] Alex Gyori, et.al Reliable Testing: Detecting State-Polluting
Tests to prevent Test Dependency", ISSTA -2015,
Baltimore, MD, USA DOI - 10.1145 /2771783.2771793

[5] ArashVahabzadeh, Amin MilaniFard, Ali Mesbah, "An
Empirical Study of Bugs in Test Code", ICSME 2015,
Bremen, Germany, DOI:978-1-4673-7532-0/15, IEEE-2015

[6] August Shi, Alex Gyori, OwolabiLegunsen and Dark Marinov,
"Detecting Assumption on Deterministic Implementations of
Non-Deterministic Specifications", IEEE International
Conference on Software Testing, Verification and
Validation, 2016. DOI:10.1109/ICST.2016.40

[7] Baijian Yang, Tonglin Zhang, "A Scalable Feature Selection
and Model Updating Approach for Big Data Machine
Learning", IEEE International Conference on Smart Cloud,
2016, DOI 10.1109/SmartCloud.2016.32.

[8] I. Guyon and A. Elisseeff, An introduction to variable and
feature selection, The Journal of Machine Learning
Research, 3, 11571182, 2003.

[9] Lili Li, JianchengLv,ZhangYim, “A non-negative
representation learning algorithm for selecting neighbors”,
Springer Link, Machine Learning, Feb-2016, volume 102,
issue 2, pp 133-153

[10] J. Han, M. Kamber, and J. Pei, Data mining: concepts and
techniques: Morgan kaufmann, 2006.

[11] L. Breiman, "Random forests," Machine learning, vol. 45,
pp. 5-32, 2001.

[12] Y. Qi, "Random Forest for Bioinformatics," in Ensemble
Machine Learning, ed: Springer, 2012, pp. 307-323.

[13] A. Liaw and M. Wiener, "Classification and regression by
random Forest," R news, vol. 2, pp. 18-22, 2002.

[14] X. Liu, K. Tang, J. R. Buhrman, and H. Cheng, "An agent-
based framework for collaborative data mining
optimization," in Collaborative Technologies and Systems
(CTS), 2010, International Symposium on, 2010, pp. 295-
301.

[15] E. Frank, M. Hall, L. Trigg, G. Holmes, and I. H. Witten,
"Data mining in bioinformatics using Weka,"
Bioinformatics, vol. 20, pp. 2479-2481, 2004.

[16] H. Zhang, M. Wang, and X. Chen, "Willows: a memory
efficient tree and forest construction package," BMC
bioinformatics, vol. 10, p. 130, 2009.

[17] Gomes, H.M., Bifet, A., Read, J. et al., "Adaptive random
forests for evolving data stream classification", Mach Learn
(2017) 106: 1469.https://doi.org/10.1007/s10994-017-5642-8

