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with the mixed emotions and were reflected well in the 
virtual social communications. With this unexpected and 
immediate decision by the beaurocrats, came the newly 
framed regulations which have taken the nation by surprise in 
understanding these new guidelines and following them in 
the nook and corner of the Indian landscapes.  

For the purpose of gathering the tweets, the API 
Authentication of R studio tool [6] is used.  R Studio is a tool 
for statistical data modeling and widely used by data miners 
to  study and analyze the large scale datasets. In this study of 
tweets related to demonetisation move, text mining is done 
using the following libraries like “tm”, “twitter”, “topic 
models”, wordcloud etc. After collection of the tweets, the 
cleansing is done for removing nonesse-ntial characters such 
as web addresses, punctuation marks, hashtags, retweets, user 
handles, html links, time stamps, numbers and special 
characters, etc. Post cleanup a corpus of tweets devoid of 
unneeded data is obtained. 

The efficacy of cleansing (pre-processing) procedure used 
is observed by plotting the word cloud. The frequently 
appearing terms in the tweets in the preprocessed corpus can 
be viewed in the wordcloud shown in the Fig. 2. 

 

Post this, a term-document matrix is created depicting the 
most tweeted words upfront. Here, some of the top most 
frequent key terms are shown in the Table 1 in a row wise 
manner. 

 

 
 
Figure 2. Plot of Word Cloud for the Demonetisation Move 

Tweets 
 

Table 1. Frequent Key Terms Appearing in Tweets Related to Demonetisation Move 
 

"112" "50days" "actual" "address" "agenda" 

"always" "amp" "anti" "arrogant" "babu" 
 "behaves" "black" "cash" "cause" "congress" 
"day" "days" "deaths" "demonetisation" "demonetisationspeech" 
"due" "effects" "failed" "farmers" "figures" 
"finance" "former" "gain" "gujarat" "his" 
"how" "hurdle" "india" "just" "like" 
"list" "live" "made" "maggi" "main" 
"minister" "modi" "modis" "main" "money" 
"much" "nation" "national" "new" "now" 
"people" "pmnewyearspeech” "poor" "post" "pre…" 
"recovered" "responsible" "return" "says" "speech" 
"still" "surprised" "the" "this" "today" 
"took" "totally" "victims" "was" "watch" 
"what" "where" "will" "year" "you" 

 
4. ANALYSIS AND FINDINGS 

 
Term Document Matrix creation helped in finding term’s 
frequency and association between terms using correlation. 
This had been helpful in conducting hierarchical clustering 
analysis using Ward method.  

The widely popular technique used in the text corpus 
mining is the cluster analysis. Out of the numerous 
techniques used for clustering, the hierarchical clustering is 
the most used one and is done here using the Ward’s 
method. Although a dendrogram is outputted and shown in 
the Fig. 3, which is suitable for browsing, it usually suffers 
from efficiency problems. This is due to the fact that it does 
not provide complete analysis as some of indexed words do 
not help in further analysis and no major value addition is 
guaranteed towards topic modeling. In the dendrogram the 
right most cluster having the words (modi, amp, new, year, 
modispeech, and will) is considered insignificant and 
ignored. The remaining clusters with the bag-of-words in 

each make sense and the same resulted in the frequency 
analysis. 

Latent Dirichlet Allocation (LDA) as taken as one of the 
topic modeling techniques. For proceeding, a document-
term matrix is created by removing the sparse terms with the 
threshold value set at 0.98, and parameters: row sums 
greater than zero and selection of ten topics. 

Identification of frequent terms in the tweets, highlights 
the some of the keywords based on frequency and a look at 
the some of the top words (shown in the Table 1) will be 
related to Prime Minister Narendra Modi  speech addressed 
the nation on new year event.  

To further enhance the analysis and understanding, topic 
models using Latent Dirichlet Allocation (Gibbs Method) 
was conducted on the corpus of documents. The LDA topic 
model was run with 10 topics as criteria and the output was 
highlighted in the Table 2. 

In this paper, we considered ten topics and discovered as 
follows:  
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Topic 1 can be classified as related to PM Modi's new 

year speech had actual agenda of demonetisation in India. 
Topic 2 relates to PM Modi’s  new year speech where are 

the figures of demonetization, how much of black money was 
recovered ,what did the nation gain after demonetisation. 

Topic 3 relates to demonetisation effects failed to watch 
cash figures return congress days that like this. 

Topic 4 can be related to PM Modi deviated from actual 
agenda of black money and demonetisation, just took over 
the post of finance minister and made pre-budget speech. 

Topic 5 opines that the people of Gujarat in their speech 
are anti-national and always behaves as the main hurdle. 

Topic 6 related to demonetization in India effects people 
and formers in the coming days of the year. 

Topic 7 related to Modi will address the nation today on 
demonetisation and black money, watch speech live. 

 Topic 8 related to post Modi’s speech on demonetisation 
what was recovered and what farmers took to return. 

 Topic 9 related to Modi, you are totally arrogant and 
responsible for the victims list of 112 deaths in India that 
demonetisation took, says congress. 

Topic 10 did not provide any better contextual meaning 
and hence ignored. 

 
The correct and relevant topics from the document corpus 

are generated from tweets’ data and are automatically 
enlisted using Gibbs method under LDA Modeling. 

 
5. CONCLUSION 
 

Tweets under the demonetisation twitter handler are 
downloaded using API authentication and the corpus is 
preprocessed. A word cloud is plotted, and visualization 
using hierarchical clustering is performed for discovering the 
most relevant topics. The topic modeling involving Latent 
Dirichlet Allocation using Gibbs method is done to uncover 
the most relevant topics.  

The most of the topics were related to PM Modi's new 
year speech had actual agenda of demonetisation in India, 
where are the figures of demonetization, how much of black 
money was recovered ,what did the nation gain after 
demonetisation, demonetisation effects failed to watch cash 
figures return congress days that like this, PM Modi deviated 
from actual agenda of black money and demonetisation, just 
took over the post of finance minister and made pre-budget 
speech, opines that the people of gujarat in their speech are 
anti-national and always behaves as the main hurdle, 
demonetization in India effects people and formers in the 
coming days of the year, Modi will address the nation today 
on demonetisation and black money, watch speech live, post 
Modi’s speech on demonetisation what was recovered and 
what farmers took to return, Modi, you are totally arrogant 
and responsible for the victims list of 112 deaths in India that 
demonetisation took, says congress. 

From the above discussion and analysis, the LDA can be 
seen as the best method for topic modeling in order to 
automatically discover topics and trends in such large scale 
twitter datasets. 
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