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Abstract: Maximum Covering Location Problem sometimes allocate fixed number of facilities to meet maximum demand of customers. We first 
review the existing works on Maximum Covering Location Problems in facility location. Then we discuss about various annuls problems. In 
each such problem, a future direction of research is indicated. 
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I. INTRODUCTION 

 
 In Covering Location Problem, objective is to install 

minimize number of facilities to meet the demand of each 
customer. This Covering Location Problem is some times 
referred as Locational Set Covering Problem (LSCP) [19, 
41]. In contrast, in Maximum Covering Location Problem 
(MCLP) [27, 19], the restriction of giving services to all 
customers is waived due to lack of resources. In realistic 
point of view, MCLP admits that resources may be 
insufficient to address the total demand. Here the objective 
is to install fixed (constant) number of facilities to serve 
maximum number of customers. The initial research in 
MCLP starts around early seventy's using non deterministic 
algorithmic techniques. Later in early eighty's deterministic 
algorithms are used to deal these problems. Our discussion 
starts with the important results of MCLP along with some 
open problem in this field. Then the existing works in 
various Annulus Problem are discussed and directions for 
further research are given. 

 
II. MAXIMUM COVERING LOCATION 

PROBLEM 
 Maximum Covering Location Problem admits that 

resources may be insufficient to address the total demand. 
MCLP was originally stated and solved by Chruch and 
ReVelle, [36], who offered three initial approaches to the 
problem. The first approach, dubbed greedy adding (GA), 
began with the single facility that provided the maximal 
possible demand coverage and successively added those 
facilities, one at a time, which incrementally increased the 
coverage values the most. The second approach, called 
greedy adding with substitution (GAS), utilized the GA 
algorithm as the backbone. Besides these heuristics 
approaches, the author showed that linear programming was 
effective in producing 0,1 solution for problems upto 55 
nodes in about 80 percent of cases. When linear 
programming produced fractional solutions, it was only 
necessary to supplement it by modest amounts of branch and 
bound. Hillsmon [21] as well as Church and ReVell [37] 
noted the equivalence of a data-modified p -median and 

MCLP and pointed out that any heuristic (such as vertex 
substitution) useful for the p -median could also utilized 

for MCLP. Mauricio G.C. Resende [38] also study MCLP 
and present a greedy randomized adaptive search procedure 
(GRASP) that addresses maximum demand, though not 
necessarily optimum. They also describe a well-known 
upper bound on the maximum coverage which can be 
computed by solving a linear program and show that on 
large instances, the GRASP can produce facility placement  

 
that are nearly optimal. Lorena and Pereira [35] report 

results obtained with a Lagrangean/surrogate heuristic using 
a sub-gradient optimization method, as a complement to the 
dissociated Lagrangean and surrogate heuristic presented in 
Galvao et al. [7]. Arakaki and Lorena [26] present a 
constructive genetic algorithm to solve real case instances 
with up to 500 vertices. 

The formulation for planar maximum enclosing 
problems, where facility can be placed anywhere on the 
plane, has been also studied by several authors [17, 32, 33, 
34]. For the Euclidean distance measure, candidate points 
would be the points of intersection of circles drawn around 
the demand points. Similarly, for rectilinear distances, the 
candidate facility locations would be the points of 
intersection of diamond shaped boundaries around demand 
points [17]. In [34], Maherez et al. developed an algorithm 
for a facility that is  somewhat desirable and named it 
``maximin-minimax'' facility location. Their method 
involves finding the set of intersection points of any two 
lines forming the equi-rectilinear distances from the demand 
points. The techniques used in [17, 32, 33, 34] and in the 
standard location problem models discussed in books on 
location theory [23, 24, 29] are based on equidistance shapes. 
Ventura and Dung [42] studied parts inspection with 
rectangular and square shapes. Their technique used a 
Euclidean least-square methods to determine the optimal 
parameters of the straight lines defining the edged of the 
part being inspected. Bespamyatnikh and Segal [16] solved 
covering a set of points by two axis-parallel boxes. No 
inclination angle or partial covering is proposed in [16]. 

A closely related problem is to find a placement of one 
or more geometric objects of same type so that objects cover 

maximum number of points from a planar set P  of n  
points. These so called problems of maximal covering by 
convex objects has also received attention of many 
researchers. Barequet et al. [14] find a translation of a given 



Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,346-349 

© 2010, IJARCS All Rights Reserved  347 

convex polygon Q  to enclose maximum number of points 

from a planar point set P  in ))(log( mmknkO +  time 

using )( nmO +  space; m  is the number of vertices of 

the convex polygon Q . Barequet et al. [15] define δ

-annulus of a convex polygon Q  as the closed region 

defined by all planar points set P  at distance at most δ  

from the boundary of polygon Q . Given convex polygon 

Q  with m  vertices and a distance δ , they propose an 

))(log( 3
mmnnO +  time and )( nmO +  space 

algorithm to compute an arbitrary oriented δ -annulus 
region that contains maximum number of points from the 
point set P . Katz and et al. [28] also studied the minsum 
coverage problem to place undesirable facility within an 
axis-parallel rectangle of fixed size. They proposed an 
algorithm that runs in )log( nnO  time and )(nO  space. 

Younies et al. [43] introduce a zero-one mixed integer 
formulation for maximum covering problem where points 
are covered by inclined parallelograms in a plane. Sitting 
directional antennas is one of the applications where 
parallelogram shapes would be useful. Mahapatra et al. [30] 
first proposed an optimal )log( nnO  time and )(nO  

space algorithm for maximal covering by two disjoint 

axis-parallel unit squares. They also present an )( 2
nO  

time and space algorithm to compute a pair of disjoint or 
overlapping squares that contains maximum number of 
points from P . In case of overlapping, the overlapping 
region does not contains any point from P . Díaz-Báñez et 
al. [20] proposed algorithms for maximal covering by two 

disjoint axis-parallel unit squares and circles in )( 2
nO  

and )log( 3
nnO  time respectively. Later, the time 

complexities were improved to )log( nnO  and 

)log( 28/3
nnO  respectively [18]. They [18] also find two 

parallel disjoint squares of arbitrary orientation so that these 
two squares contain maximum number of points from P . 

Their algorithm runs in )( 3nO  time and )(nO  space. 

However, the problem of computing two arbitrary oriented 
squares that contain maximum number of points from P  is 
still open. Recently, Mahapatra et al. [31] proposed an 

)log( 2
nnO  time and )(nO  space algorithm that 

computes a pair of axis-parallel squares containing 
maximum number of points from P . In this case, a pair of 
square may be disjoint or overlapping. Some open problems 
in this context are the query versions of the above problem.  

Problem 1 Given a point set P , an axis parallel 

square S  and a point Pp ∈ , locate the square S  so 

that it contains maximum number of points from P  and 

S  contains the point p .  

 The immediate generalization of this problem is that 
the square S  is arbitrary oriented.  

 
III. ANNULUS PROBLEM 

 
 In computational metrology [10], an important task is 

to find a geometric object that fits nicely to a set of planar 
points. This immediately leads to the  minimum width 

annulus problem. Minimum width annulus problem 
computes two concentric circles such that all planar points 

of },,,{= 21 npppP �  are contained by the annulus 

thus formed and the difference of the two radii is minimum. 
Wainstein [44] and Roy et al. [39] propose different 

)( 2nO  time algorithm to solve minimum width annulus 

problem. Ebara et al. [22] prove that the center of the 
optimal annulus is either a vertex of the closest-point 
Voronoi diagram of P , or a vertex of the farthest-point 
Voronoi diagram, or an intersection point of a pair of edges 
of the two diagrams. Based on this observation, they 

propose an )( 2
nO  time algorithm. All such intersections 

are computed by Guibas and Seidel [25]. One can develop 
simple )log( knnO +  time algorithm for computing 

minimum width annulus; k  is the number of these 
intersections. Parametric search is used by Agarwal et al. [4] 

to compute a minimum width annulus in )( 5

8
ε+

nO  time. 

Later, Agarwal and Sharir [2] improve the expected running 

time to )( 2

3
ε+

nO . Other variations of minimum width 

annulus problem depends on the  shape of the geometric 
object as well as the  distance metric used to compute the 
width of an annulus. 

Duncan et al. [8] and Bose et al. [5] consider another 
variation of minimum width annulus problem. Given the 
radius r  of the  outer (or inner, or median) circle 
enclosing the point set, both of these works independently 
compute the minimum width circular annulus in 

)log( nnO  time. For a set P  of n  points in the 

Euclidean plane, Díaz-Báñez et al. [9] consider the problem 
of computing an empty annulus A  of largest width. For 
this the points set P  is partitioned so that no point 

)( Pp ∈  lies in the interior of A  and width of the 

annulus is minimum. They propose an )log( 3
nnO  time 

and )(nO  space algorithm for this problem. 

Barequet et al. [15] first use non-convex object for 
minimum width annulus problem. They define δ -annulus 

of a convex polygon Q  as the closed region defined by all 

planar points set P  at distance at most δ  from the 

boundary of polygon Q . Given a convex polygon Q  with 

m  vertices and a distance δ , they propose an 

))(log( 3
mmnnO +  time and )( nmO +  space 

algorithm to compute a δ -annulus (of arbitrary orientation) 

region that contains maximum number of points from P . 
Gluchshenko et al. [11] present an  optimal )log( nnO  

time algorithm for computing a  rectilinear annulus of 
minimum width which to enclose a point set P . See the 
papers [1, 3, 6] for further study, motivation and 
applications. 

The following variation of annulus problem is still open. 
One can find a minimum  width  rectangular annulus that 
encloses the points of P . Rectangular annulus is a pair of 



Priya Ranjan Sinha Mahapatra, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,346-349 

© 2010, IJARCS All Rights Reserved  348 

rectangles, the inner rectangle fully contained within the 
outer rectangle and the corresponding sides of the inner and 
outer rectangles are mutually parallel. Here we need to 
define  annular distance as the distance between the 
corresponding sides of the inner and outer rectangle of a 
rectangular annulus and width of a rectangular annulus is the 
maximum distance among the four possible annular 
distances. This minimum width rectangular annulus can be 
computed for fixed as well as arbitrary orientation. 
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