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Abstract: Given a set P  of n  points in the two dimensional plane, we propose )( 52
nkO  time and )( 4

knO  space algorithm to locate 

k  isothetic unit squares which are pairwise disjoint and they together contain maximum number of points from P . Moreover, an 

)log( 2
nnO  time and )(nO  space algorithm is demonstrated for 2=k . 
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I. INTRODUCTION 

 

   Enclosing problems of many variations involving a 

planar point },,,,{= 321 nppppP �  set have been 

extensively studied in computational geometry [4, 14]. 

Problems of computing geometric object such as circle [17], 

triangle [19], rectangle and square [18] having smallest area 

or parameter are well known. Problem of finding the 

smallest enclosing convex polygon is the famous convex 

hull problem. The  k -enclosing problem is an important 

variant of enclosure problem. The k -enclosing problem 

computes a smallest region of given type that contains at 

least k  points of P . For example, a general problem in 

rectangular domain, computes smallest rectangle of arbitrary 

orientation that contains at least k  points of a planar point 

set P . In other words, k -enclosing problem identifies a 

subset PP ∈′  of size at least k  that minimizes some 

closeness measure. Interest reader may read for different 

complexity results on k -enclosing problems [7]. A closely 

related problem is to locate one or more copies of a given 

region to maximize the size of the subset covered. In other 

words, instead of fixing k  and computing an optimal (or 

smallest) enclosing region, the problem is to maximize the 

number of points covered by the given region(s) of fixed 

size and shape. These so called problems of  maximal 

covering by convex objects such as circle, rectangle, square, 

polygon have also received attention of many researchers [5, 

9, 12]. Maximal covering problem finds applications in 

facility location [8], Pattern Recognition and Classification, 

etc [1, 2, 11]. 

In the context of bichromatic planar point set, 

Díaz-Báñez et al. [10] consider the following problem: 

Given a set of red points and a set of blue points on the 

plane, find two isothetic unit squares RS  and BS  with 

disjoint interiors such that the number of red points covered 

by RS  plus the number of blue points covered by BS  is 

maximized. First they proposed )( 2nO  time algorithms to 

locate two disjoint isothetic unit squares RS  and BS . 

Later, they improved the complexity to )log( nnO  time 

[6]. It is interesting to generalize this problem by k , 

2≥k , isothetic unit squares. In this work this 

generalization is considered. We first solve the problem for 

3=k . Other motivations for considering this problem are  

 

as follows:   

    • In facility location type of problems of rectilinear 

kind, the areas need to be square.   

    • For  un-constraint facility location type of problem 

with limited resources and, that is, with just k  facilities 

available to be sited and with different populations at each 

of the demand nodes, the maximal covering problem seeks 

to locate the facilities in such a way that the largest possible 

population is covered.  

    • The requirement for disjoint interiors is relevant, for 

example, in facility location problems where facilities may 

interfere negatively with each other, or when their areas of 

influence are not allowed to overlap.  

 

 

II.BASICS 

 

 An isothetic unit square is a square of unit size whose 

sides are parallel to one of the coordinate axes. We say that 

an isothetic unit square S  encloses a point set  Q  if all 

the elements of  Q  lie on the boundaries of S  or in the 

interior of S . For disjoint case, the above stated 

generalized problem can be stated as follows. 

 

Problem 1  Given a set P  of n  points in the two 

dimensional plane, locate k  isothetic unit squares which 

are pairwise disjoint and the together contain maximum 

number of points from P .  
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 Here we use the following two results for constructing 

an algorithm to solve Problem 1.  

Result 1  [6] Given a set of red points and a set of blue 

points on the plane, let two disjoint isothetic unit squares 

RS  and BS  be such that the number of red points covered 

by RS  plus the number of blue points covered by BS  is 

maximized. RS  and BS  can be located in )log( nnO  

time and )(nO  space.  

Result 2  [16] Given a planar set P  of n  points, 

the isothetic unit square S  containing maximum number 

of points from P  can be computed in )log( nnO  time 

using )(nO  space.  

 Note that the Result 2 can be used to locate two 

disjoint isothetic unit squares that together cover maximum 

number of points from P ; where each point of set 

},,,,{= 321 nppppP �  has same color. The underlying 

algorithm requires )log( nnO  time and linear space. 

Moreover, an isothetic unit square that contains maximum 

number of points P  can be located in )log( nnO  time 

and linear space using Result 2. These two results are 

follows. 

In general case, Problem 1 is known to be NP-hard [15]. 

A set of rectangles on the plane is called sliceable if they 

can be recursively partitioned by a  Space Partition Tree 

[20]. A Space Partition Tree is a tree structure, whose 

interior nodes denote either vertical or horizontal space 

partitions, and leaves denote the set of rectangles. Here we 

define a set of squares as  k -sliceable in the following 

way.  

Definition 1 Given a set of points P  in two 

dimensional plane, a set of k  isothetic unit squares is 

called k -sliceable if they can be recursively partitioned by 

1−k  horizontal or vertical line.  

 Given set of points in the plane and there exists a set 

of sliceable rectangles, the Mukherjee et al [13] considered 

the following problem.  

Problem 2 Given n  points nqqq ,,, 21 �  in the two 

dimensional plane, and some number p , where 
2

<
n

p , 

find p  isothetic, non-intersecting rectangles 

pRRR ,,, 21 �  so that Φ∩ =ji RR  for ji ≠ , 

j

p

ji Rq � 1=
∈  for ni ,1,2,= �  and )(

1= i

p

j
RArea�  

is minimized.  

 They used dynamic programming paradigm to 

construct )( 52
nkO  time and )( 4

knO  algorithm to 

solve this problem. 

Here we assume that there exists a set of k -sliceable 

isothetic squares and in next section demonstrates a method 

that solves Problem 1 for 3=k . 

 

 

 

  

A. Placement of a triplet of pairwise isothetic unit 

squares to maximize point containment 

 

 Let },,,,{= 321 nppppP �  be a set of points in 

two dimensional plane. Without loss of generality, assume 

that no two points have the same x - or y -coordinate. 

Consider two arrays xΛ  and yΛ  containing the points 

of P  in ascending order with respect to their x  and y

-coordinate respectively. Let us denote the x -coordinate of 

the i -th entry of xΛ  by ix  and similarly the y

-coordinate of the i -th entry of 
yΛ  by iy , ni ≤≤1 . 

Let 
max

xp  and 
min

yp  be the points with maximum 

x -coordinates and minimum y -coordinates among the 

points in P  respectively. Similarly, 
max

yp  and 
min

xp  

be the points with maximum y -coordinates and minimum 

x -coordinates among the points in P  respectively. 

Observe that the minimum enclosing rectangle ( MER) of 

the point set P  is defined the above set of four points. We 

first propose an algorithm that computes three squares 

which are pairwise disjoint and they together contains 

maximum number of points from P . Observe that among 

these three squares, one square will be separated from other 

two squares by a horizontal or a vertical line. Without loss 

of generality, assume that the line separating one square 

from other two is horizontal. The other case where the line 

separation is vertical, can be handled in similar manner. 

Now we are describing the first pass of our proposed 

algorithm. 

 

 
Figure.1 Sample point set and the corresponding triplet of isothetic 

unit squares which are pairwise disjoint and they together contain 

maximum number of points 

  Let the vertical line passing through the i -th point in 

array xΛ  divides the point set P  into two sub-set iQ  

and iQ′  respectively; the subset iQ  and iQ′  lie on the 
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left and right side of this vertical line. For the position of the 

vertical line that passes through the i -point of xΛ , use the 

Result 1 to locate a square that contains maximum number 

of points from iQ  and the Result 2 to compute a pair of 

disjoint squares containing maximum number of points from 

iQ′ . This triplate of squares is a potential candidate for 

position of the vertical line that passes through the i -th 

entry of xΛ  (See Figure 2.1). Observe that the time 

required to locate these triplet of squares is )log( nnO . 

Now this process is repeated for each position of the vertical 

line that passes though a point xp ∆∈ . 

In second pass, the above process is invoked for 

each position of the horizontal line passing through the point 

in array yΛ . In each pass, we keep the triplate of pairwise 

disjoint squares that together contains maximum number of 

point from P . Finally, the triplate of pairwise disjoint 

squares that together contains maximum number of point 

from P  is reported. We thus have the following results.  

Theorem 1  Given a set P  of n  points in two 

dimensional plane, three isothetic unit squares which are 

pairwise disjoint and they together contain maximum 

number of points from P  can be located in )log( 2
nnO  

time and )(nO  space.  

  

B. k  Disjoint isothetic unit squares 

 

 If we naively extend this algorithm to solve 

Problem 1 then it is interesting to note that the solution 

would not have a polynomial time complexity in both n  

and k . Now to solve Problem 1, we propose an 

)log( 5
nnO  time and )( 4

knO  algorithm algorithm that 

uses similar dynamic programming approach as proposed by 

Mukherjee et al [13] and the Result 1 as a subroutine. 

Observe that placing horizontal and vertical 

partitioning lines among the points of P  can generate 

)( 4nO  subsets of P . Let Q  ( P∈ ) be the subset of 

points enclosed by the minimum enclosing rectangle defined 

by the points ),(
k

y
i

x pp  and ),(
l

y
j

x pp , ji <  and 

lk <  as bottom-left and top-right corners respectively. 

Given a subset Q  ( P∈ ), let 

),,,,( mppppCount
l

y
j

x
k

y
i

x  denote the maximum 

number of points from P  jointly covered by m  disjoint 

isothetic unit squares placed over the subset Q . 

In the first step, the algorithm computes 

,1),,,(
l

y
j

x
k

y
i

x ppppCount  for all possible subsets of 

P . Subsequently, it computes 

),,,,( uppppCount
l

y
j

x
k

y
i

x  for all possible subsets of 

P  using the results of the previous steps in similar 

dynamic programming approach as proposed by Mukherjee 

et al [13]. Finally, it reports 

),,,,( kppppCount
max

y
max

x
min

y
min

x
 and the k  

optimum squares. Observe that to compute 

,1),,,(
l

y
j

x
k

y
i

x ppppCount  for all possible subsets, the 

Result 1 is used for each possible subset of P . 

In view of the Result 1, computation of the first 

step requires )log( 5
nnO . Complexity of subsequent 

steps, and hence, the over all time complexity of the 

algorithm is )( 52
nkO . Corresponding space complexity 

can also be shown to be )( 4
knO . Further details can be 

found in [13]. The result can be stated as, 

 

Theorem 2  Given a set of n  points in two 

dimensional plane and there exists a k -sliceable set of 

isotheic unit squares, k  isothetic unit squares which are 

pairwise disjoint and they together cover maximum number 

of points from P  can be located using )( 52
nkO  time 

and )( 4
knO  space.  

 

III. CONCLUSIONS 

 

 Given a set P  of n  points in two dimensional 

plane and is there exists a set of k -sliceable isothetic unit 

squares, we have considered the problem of locating k  

isothetic unit squares which are pairwise disjoint and 

together contain maximum number of points from P . 

Moreover, a placement of triplet of pairwise disjoint squares 

are also computed so that they together contains maximum 

number of points from P . Generalization of the Problem 1 

can allow these optimal k  isothetic unit squares be (i) 

disjoint or overlapping with empty common zone and (ii) 

disjoint or overlapping with points in the common zone. For 

both two generalizations of Problem 1, the result of the work 

of Ahn et al. [3] can be used to show that each of the 

problem is  NP-Hard. In particular, their NP-hardness gives 

a transformation that, even if you allow overlapping of 

squares, the squares of the optimal solution do not overlap. 

Hence, the generalization of both problems are NP-hard. 
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