
Improving Domain-Independent Cloud-Based Speech Recognition
with Domain-Dependent Phonetic Post-Processing

Johannes Twiefel, Timo Baumann, Stefan Heinrich, and Stefan Wermter
University of Hamburg, Department of Informatics

Vogt-Kölln-Straße 30, D - 22527 Hamburg, Germany

Abstract
Automatic speech recognition (ASR) technology has
been developed to such a level that off-the-shelf dis-
tributed speech recognition services are available (free
of cost), which allow researchers to integrate speech
into their applications with little development effort or
expert knowledge leading to better results compared
with previously used open-source tools.
Often, however, such services do not accept language
models or grammars but process free speech from any
domain. While results are very good given the enor-
mous size of the search space, results frequently contain
out-of-domain words or constructs that cannot be un-
derstood by subsequent domain-dependent natural lan-
guage understanding (NLU) components. We present a
versatile post-processing technique based on phonetic
distance that integrates domain knowledge with open-
domain ASR results, leading to improved ASR perfor-
mance. Notably, our technique is able to make use of
domain restrictions using various degrees of domain
knowledge, ranging from pure vocabulary restrictions
via grammars or N-Grams to restrictions of the accept-
able utterances. We present results for a variety of cor-
pora (mainly from human-robot interaction) where our
combined approach significantly outperforms Google
ASR as well as a plain open-source ASR solution.

1 Introduction
Google, Apple, Bing, and similar services offer very good
and easily retrievable cloud-based automatic speech recog-
nition (ASR) for many languages free of charge, which
can also take advantage from constant improvements on the
server side (Schalkwyk et al. 2010).

However, results that are received from such a service
cannot be limited to a domain (e.g. by restricting the recog-
nizer to a fixed vocabulary, grammar, or statistical language
model) which may result in poor application performance
(Morbini et al. 2013). For example, out-of-vocabulary er-
rors for custom-made natural language understanding com-
ponents may be higher with such generic services than with
simpler and less reliable open-source speech recognition
solutions, e.g. based on Sphinx (especially for languages
where good open-source acoustic models are unavailable).

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To address this gap, we propose a simple post-processing
technique based on phonetic similarity that aligns the output
from Google ASR (or any other similar service with ‘unre-
strictable’ recognition output) to a specified sub-language
that is more suitable for natural language understanding
(NLU) in a given domain. The result string from the speech
recognizer is transformed back to a sequence of phonemes
which is then rescored to a language model based on do-
main knowledge. We consider phonemes to be the appropri-
ate level of detail that (a) can still be recovered from ASR
result strings, and (b) remains relatively stable to different
ASR errors that are caused by inadequate language mod-
elling. Our method is based on Sphinx-4 (Walker et al. 2004)
and hence works with various kinds of language specifica-
tions such as grammars, statistical language models (SLMs),
or blends of both kinds.

In the remainder of the paper, we discuss related previ-
ous work in the following section and detail our approach
to post-processing in Section 3 and considerations on the
implementation in Section 4. We present an experiment in
which we use our post-processing technique in Section 5 and
discuss the results in Section 6.

2 Related Work
Search by Voice developed by Google Inc. described by
Schalkwyk et al. (2010) is a distributed speech recognition
system. While voice activity detection (VAD) and feature
extraction may be performed on the client (depending on
the client’s capabilities), the computationally expensive de-
coding step of speech recognition is performed on Google’s
servers, which then returns a list of hypotheses back to the
client. The system employs acoustic models derived from
GOOG-411 (Van Heerden, Schalkwyk, and Strope 2009), a
telephony service that has been operated by Google. GOOG-
411 enabled its users to search telephone numbers of busi-
nesses by using speech recognition and web search, and
has collected large amounts of acoustic training data (about
5,000 hours of training data until 2010). Given this origin,
a disadvantage of Search by Voice is the language model
which is optimized for web searches. In addition, there is
no public interface to change Google’s ASR to a custom
domain-dependent language model. Therefore, the benefit
of good acoustic models cannot be exploited well in domain-
specific projects.

Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence

1529



2.1 Distributed vs. Local Speech Recognition
In the analysis of Morbini et al. (2013), several speech
recognition systems (including cloud-based recognizers)
are compared in terms of their applicability for develop-
ing domain-restricted dialogue systems. The results show
that distributed speech recognition systems can offer better
recognition accuracy than local customizable systems even
if they are not adjusted to the domain; however, there is
no clear ‘best’ system in their evaluation. It appears plau-
sible that a combination of cloud-based recognizers with
domain-restricted local system leads to an overall better sys-
tem, which we aim at in this paper. In addition, Morbini et
al. show that better ASR performance correlates with better
NLU performance.

2.2 Sphinx-4
Sphinx-4 is an open-source speech recognition software
developed at CMU (Walker et al. 2004) that is modular,
easily embeddable and extensible. The frontend includes
voice activity detection, and the decoder is based on time-
synchronous Viterbi search using the token-pass algorithm
(Young, Russell, and Thornton 1989). A main shortcoming
are the weak open-source acoustic models which, for En-
glish, are often based on the HUB-4 data set (Garofolo, Fis-
cus, and Fisher 1997) and use MFCC features (Mermelstein
1976). However, the Sphinx’ versatility can be exploited to
completely change the feature representation (and meaning)
as well as the search space representation (called ‘linguist’
in Sphinx terminology), which we aim at as explained in
Section 4.3 below.

2.3 Post-processing Google’s Search by Voice
Milette and Stroud (2012, ch. 17) present an approach of
post-processing results from Google ASR on Android. The
list of available commands and the results from Google’s
speech recognition are transformed using a phonetic index-
ing algorithm such as Soundex or Metaphone. However,
phonetic indexing algorithms are meant to de-duplicate dif-
ferent spellings of the same names (Jurafsky and Martin
2009, p. 115). Thus, they (a) are optimized for names but not
necessarily for other words of a language, and (b) may re-
sult in multiple target commands being reduced to the same
representation. In addition, their matching is limited to in-
dividual words such that mis-segmentation in the ASR re-
sults cannot be recovered from. We extend the approach by
Milette and Stroud (2012) using a more flexible rescoring
method based on Levenshtein distance between recognition
result and accepted language and enabling rescoring across
word boundaries.

2.4 Levenshtein Distance Optimization
Ziółko et al. (2010) modify Levenshtein distance (Leven-
shtein 1966) using different insertion, deletion and substitu-
tion costs based on held-out data to generate word hypothe-
ses from a DTW-based phoneme recognizer. Our work is
orthogonal in that optimized Levenshtein costs would cer-
tainly further improve our results.

Zgank and Kacic (2012) propose to estimate acoustic con-
fusability of words. Actual and recognized word tokens are
transformed to their phoneme representations and the con-
fusability score is computed based on normalized Leven-
shtein distances between the phoneme representations. Word
confusabilities are used to estimate expected ASR perfor-
mance given some currently available user commands. In
contrast, we aim to improve ASR results by comparing a
word’s phonemes using Levenshtein distance either for indi-
vidual words, for whole sentences, or for more expressive
language models, by including Levenshtein computations
into the Viterbi decoder.

2.5 Reranking the N-best List
Morbini et al. (2012) compare the performance of speech
recognition systems including Google Search by Voice and
taking N-best results into account. As had been previously
found (Rayner et al. 1994), they state that often not the best
matching hypothesis is at the top of the N-best list of results,
which is why we will make use of N-best information below.

3 General Approach
As described in Section 2, distributed speech recognition
systems like Google Search by Voice can provide better
performance than local speech recognition systems because
they often provide better trained acoustic models and possi-
bly more advanced frontend processing, e.g. based on deep
belief networks (Jaitly et al. 2012). Their disadvantage is
that they often cannot be adjusted to specific domains by
way of a task-specific language model, as domain knowl-
edge cannot be externally provided.

Providing domain knowledge to the speech recognition
service is impossible under this black box paradigm, and
hence, we instead resort to post-processing the results of the
system using the available domain knowledge. It turns out
that there is hidden knowledge contained in the ‘raw’ re-
sults delivered by Google that our post-processing is able to
recover: In preliminary test runs, we compared the word er-
ror rate (WER) and phoneme error rates (PER) of Google’s
speech recognition for the same hypotheses. PER was com-
puted based on transforming words to phonemes for both
reference text and recognition hypothesis and aligning them
with standard Levenshtein distance. Those preliminary tests
indicated that the PER is much lower than WER for the hy-
pothesis returned from Google, which supports our initial as-
sumption that there is more information contained in the re-
sults received from Google than is visible at the word level:
e.g., in our tests, the word “learn” was often mis-recognized
as “Lauren”, which, despite being quite different graphemi-
cally, differs only marginally phonemically. We explain the
ingredients to our post-processing technique in this section
and detail the individual implementation strategies in the fol-
lowing Section 4.

3.1 Pronunciation Extraction
Under the assumption that the speech recognizer’s acoustic
models are adequate to the task, the first step to finding alter-
native word hypotheses is to recover the phoneme sequence

1530



that is underlying the ASR hypothesis. While this task is
often solved by simple pronunciation dictionaries that map
every word’s graphemic to its phonemic representation, this
would be insufficient given the very large (and unknown) vo-
cabulary of the Google speech recognizer. We thus trained
the grapheme to phoneme converter SequiturG2P, (Bisani
and Ney 2008) on CMUdict 0.7a1, which enables our sys-
tem to generate plausible phonemisations for any incoming
word.

3.2 Phoneme Matching with Levenshtein
Distance

We compare the phoneme sequences of the ASR output
and the hypotheses based on domain knowledge using the
Levenshtein distance (Levenshtein 1966), which is also fre-
quently used to compare hypotheses on the word level (e.g.
to computer WER).

Plain Levenshtein distance works well to find the most
likely full sentence from a given set of sentences, or to re-
place every recognized word by the most similar word in
a given vocabulary. However, it is insufficient to be used
in a time-synchronous Viterbi search, as the binary costs (0
for matches, 1 for insertion, deletion or substitution) are too
hard. We therefore use a cost of 0.1 for matches and 0.9
for all other edit operations in the implementation described
in Subsection 4.3 below.2 We also experiment with variable
costs for phoneme substitution as detailed next.

3.3 Levenshtein Cost Optimization
We experiment with variable substitution costs to account
for the intuitive notion that some phonemes are more eas-
ily interchanged than others. Specifically, we tried two ap-
proaches, one based on linguistic insight, the other based on
actual data from the Google speech recognizer.

Costs Based on the IPA Table The international phonetic
association classifies phones3 according to an elaborate, yet
regular scheme (IPA 1999): Consonants are categorized by
place and manner of articulation (MOA), and phonation,
with the place being (in order): bilabial, labiodental, dental,
alveolar, palatoalveolar, alveopalatal, palatal, velar, glot-
tal and unknown, manner being (in order): plosive, frica-
tive, nasal approximant, and phonation being either voiced
or voiceless. Inspired by the categorization for consonants,
vowels are differentiated by height (close, near-close, close-
mid, mid, open-mid, near-open and open) and backness
(front, near-front, central, near-back and back). Further-
more, vowels may be monophthongs (i.e. static), or diph-
thongs (sliding between two phonemic positions).

Given this categorization, we compute the linguistic dis-
tance based on the distance between two phonemes in each

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict. Bisani and Ney
(2008) report a PER of 5.8 % for SequiturG2P on CMUdict 0.6.

2In effect, we try to avoid ‘dangerous’ scoring regions in which
the search manager otherwise could prune away hypotheses that
would later turn out to be useful.

3Phones are equated with phonemes in the context of this work,
even though real phoneticians or phonologists may disagree.

of the given dimensions (e.g. plosives and fricatives are as-
signed a distance of 1, plosives and nasals a distance of 2,
etc.). To be able to calculate a distance between vowels and
consonants, vowels are added to the MOA category after
approximants as monophthongs and diphthongs. To account
for the different importance of the dimensions, we sum the
errors but scale MOA error with a factor of 5.

Again, to remain in the range from 0.1 to 0.9 for substitu-
tion cost, we compute the cost as

c(x) =
1

(x×max+ 250)× 0.1
+ 0.1

where max is the maximum possible distance and x is the
distance to be normalized.

Google Reverse In order to compute a scoring matrix that
is tuned to the specifics of the Google speech recognizer, we
let it recognize a set of development sentences. Results were
then transformed to phonemes and aligned with the expected
phoneme sequences. The count of substitutions between ex-
pected and actual phonemes were then calculated from the
alignments (and costs again normalized to the range between
0.1 and 0.9). The outcomes for optimized Levenshtein costs
are discussed in Section 5.

3.4 Domain Knowledge

To be able to adjust Google’s speech recognition to a do-
main, the available domain knowledge needs to be mod-
elled, ideally in terms of the estimated linguistic constructs
that will be used. Our implementations currently provide for
three kinds of linguistic restrictions. The weakest restriction
can be implemented by allowing only a certain vocabulary
(but no ordering restrictions for words); a very strong re-
striction can be set by only allowing a limited number of
sentences (or commands) to be spoken at any point in time.
While potentially least powerful (list of vocabulary) or least
flexible (list of allowed sentences), these approaches have
the advantage of being easy to implement and easy to ad-
minister as a non-speech expert.

More flexibility can be gained by using a ‘full-blown’ lan-
guage model as used in current speech recognition engines:
either (weighted) grammars, or N-Gram statistical language
models, which are both more expressive and compact than
the naı̈ve approaches mentioned above. However, writing
grammars or estimating N-Gram models requires a certain
degree of expertise and their implementation is more com-
plex, as will be shown in the following section.

4 Implemented Strategies
Using our general approach, we implemented three different
post-processors, as depicted in Figure 1. In all approaches,
the word-level hypothesis from the Google speech service
is transformed to the phoneme level, and then matched us-
ing the respective domain model. Post-processors differ in
the degree of the domain knowledge that is used and in the
complexity of their implementation.

1531



Speech service
(Google)

+Sphinx
N-Gram +Wordlist 

+Sentence
list

+Sphinx
Sentences

+Sphinx
Grammar

Figure 1: The overall system: speech recognition results
can be passed on to post-processing based on full-sentence
matching, word-based matching, or to one of several
Sphinx-based post-processing schemes. (Implementations
are ordered by degree of domain knowledge/language re-
striction, with the most restricted scheme at the very left.)

4.1 Google+Sentencelist Approach
The simplest approach to a post-processor finds the sentence
that best matches the hypothesis from a list of given in-
domain sentences. Our implementation takes up to 10-best
results that are returned by the speech service and computes
the Levenshtein distances between these results and all its
target sentences. The sentence that receives the minimum
Levenshtein distance to any of the top-ranking hypotheses
from the speech service is the winning sentence.

An advantage of this approach are the hard constraints
of the results, as each possible result can be mapped to an
expected sentence and then be handled even by simplistic
NLU components. However, the hard constraints are also a
disadvantage because the user cannot speak freely to the sys-
tem. Even if the spoken input does not make sense at all, it
is mapped to a best matching sentence which may not be
desirable. To counteract this, a threshold (in terms of PER)
can be defined, which, if surpassed by all sentences in the
list, results in a special ‘no-match’ being returned. While
the algorithm works very quick in general, its complexity
grows linearly with the number of sentences accepted and
the length of the allowed sentences.

4.2 Google+Wordlist Approach
For less constrained speech, we follow the approach by
Milette and Stroud (2012) and implement a word-by-word
post-processing scheme in which every word in the incom-
ing (best) hypothesis is compared to the vocabulary, and the
best-matching word is taken to be the target word.

An advantage of this approach is that the speaker can
speak more freely to the system as the words order is not pre-
determined. One problem is that sometimes Google’s speech
service recognizes two spoken words as one or one spoken
word as two words. In most of these cases, the hypothesized
words are not similar to either of the intended vocabulary
words and are transformed wrongly.

4.3 Google+Sphinx Approach
A more flexible post-processing approach that supports a
wide range of language models can be built by making use
of the Sphinx’ versatility and extensibility. Sphinx’ object
encapsulation ensures that the content of frontend feature

SearchManager
ActiveList

Scorer Pruner

Decoder Phoneme
Linguist

Dictionary

LanguageModel

Phoneme SearchGraph

Phoneme
FrontEnd

Recognizer

Result From Google Result

Grapheme
to

Phoneme
Converter

Figure 2: Components of the Google+Sphinx implementa-
tion, based on Figure 1 in (Walker et al. 2004).

frames is ignored in all processing except the scoring stage,
in which the emission probability of this feature frame given
a Hidden Markov Model (HMM) triphone sub-state is com-
puted. These computations are completely encapsulated in
the search state representation (called ‘linguist’ in Sphinx
terminology). In Sphinx-4 we replace the original frontend
with our own phoneme frontend, which converts an incom-
ing result string from Google ASR to its phonemic repre-
sentation (see Figure 2). On the other end, we implemented
a linguist that scores the phonemes against the search nodes’
assigned phonemes using one of the costs as defined in Sub-
sections 3.2 and 3.3.

Sphinx-4 uses Bakis HMM networks without skip-tran-
sitions (which are hard to implement). As there are usually
many frames per phone, states that should be skipped can be
allowed to emit one frame without accumulating much error.
Thus, while phoneme insertion cost can be handled simply
by state-repetition costs, phoneme deletion cannot be han-
dled as easily. To enable deletions nonetheless, we duplicate
all phoneme occurrences, which allows the Viterbi search to
spread out deletion costs, as is conventionally done.

All other processing remains untouched, meaning that all
kinds of language models provided by Sphinx-4 can be used.
Furthermore, we are working to extend the integration with
the Google speech service to make it possible to transpar-
ently integrate it into any Sphinx-4 recognition setup.

As this approach combines Google ASR and Sphinx-4,
we call it Google+Sphinx (G+S) below.

5 Experiment and Results
We use several corpora relevant to HRI in the evaluation of
our approach, which differ in domain size (and linguistic re-
striction) and recording conditions. We will first describe the
corpora used and then present the results.
Scripted HRI data set (SCRIPTED): To test ASR under

natural conditions in an HRI scenario, we use a cor-
pus that has previously been recorded by Heinrich and
Wermter (2011), which contains English speech from two
non-native speakers (female and male) using headset mi-
crophones. The speakers read out (in an acted voice) sen-
tences that were produced from a predefined grammar, for
a total of 592 utterances. The corpus is especially useful
as a grammar for parsing the utterances is available.

1532



Figure 3: Setup of the SPONT corpus recording.

TIMIT Core Test Set (TIMIT): To provide an easily com-
parable ASR test, we evaluate with the TIMIT corpus
(Garofolo et al. 1993) of which we choose the Core Test
Set which consists of 192 different sentences by 24 speak-
ers using close-talking microphones. As the sentences
spoken are very diverse, there is no speech recognition
grammar for TIMIT.

Spontaneous HRI data set (SPONT): To also test ASR for
robot-directed spontaneous speech, we collected an addi-
tional data set. The speakers were instructed to vocalize
robot commands presented in keywords as free speech.
The audio data was recorded by a binaural head that has
acoustic characteristics similar to the characteristics of the
human head, to test in natural HRI conditions, with a dis-
tance of 1.5m to the speakers (see Figure 3). We collected
97 audio files from 15 different native and non-native En-
glish speakers from various countries. Speech was not re-
stricted and too varied to be captured by a grammar.

We performed all experiments with ‘raw’ Google speech
recognition, with a local Sphinx-4 installation using HUB-4
acoustic models, and with our post-processing techniques:
G+Sentencelist, G+Wordlist, and our G+S combined post-
processor with 0.1/0.9 Levenshtein costs using as language
models N-Grams, an (unweighted) grammar (if applicable),
and a grammar that includes all possible sentences (thus
similar to the G+Sentencelist technique, but without mak-
ing use of N-best information). The results for sentence and
word error rates are presented in Table 1; the columns for
the SCRIPTED corpus are in addition plotted in Figure 4. In
the sub-figures (b) and (c), system settings are ordered by
the degree of language restriction / domain knowledge used.

As can be seen in Figure 4 (b) (compare also Table 1)
the speech recognition performance for Sphinx is similar
to Google, regardless of whether a grammar or N-Grams
are used, or even the list of possible sentences (some im-
provement in SER comes at the cost of WER). The results
indicate that Google’s better acoustic models compensate

 0

 20

 40

 60

 80

 100

ra
w
 G

oo
gl

e

Sp
hi

nx
 N

-G
ra

m

Sp
hi

nx
 G

ra
m

m
ar

Sp
hi

nx
 S

en
te

nc
es

G
+
W

or
dl

is
t

G
+
S 

N
-G

ra
m

G
+
S 

G
ra

m
m

ar

G
+
S 

Se
nt

en
ce

s

G
+
Se

nt
en

ce
lis

t

%

WER and SER in the Scripted HRI Corpus

more domain
knowledge

more domain
knowledge

(a) (b) (c)

SER
WER

Figure 4: Performance comparison on the SCRIPTED cor-
pus: (a) raw Google, (b) plain Sphinx with various setups,
and (c) G+S with various setups. Levenshtein-based post-
processing improves performance and improvements are
higher the more domain-knowledge restricts the search.

for the Sphinx’ domain knowledge. Figure 4 (c) shows the
results for our post-processing strategies, again ordered by
the amount of domain knowledge that is used. The results
show that the combined systems greatly and significantly
(Twiefel 2014) benefits from more domain knowledge, in
which the superior acoustic model (Google) and tighter do-
main language restrictions (Sphinx) play together. For ex-
ample, the G+S N-Grams condition (SCRIPTED corpus) re-
sults in a WER of 8.0%, which is a relative improvement
of about 85% to the raw Google (50.2%) and Sphinx N-
Gram (60.5%) conditions. Finally, the slight improvement
between G+S Sentences and G+Sentencelist may show the
advantage of using N-best results, which is currently not im-
plemented in the combined system versions.

Across the corpora shown in Table 1, the tendency of bet-
ter results with more domain knowledge is repeated. Specif-
ically, using word N-Grams in combination with phonetic
post-processing radically cuts down error rates from using
Google ASR or Sphinx-4 N-Grams alone. However, error
rates especially for the SPONT corpus remain high, which
points to an inability of either recognizer’s acoustic model to
cope with spontaneous speech collected with a far-distance
microphone.

Finally, to our surprise and in contrast to the findings by
(Ziółko et al. 2010), the choice of confusion cost estimation
between different phonemes was negligible for G+S post-
processing: Table 2 shows the results of a small-scale opti-
mization experiment on parts of the SCRIPTED corpus. Re-
sults differ only marginally. Given that the many free param-
eters in the IPA table approach would have to be estimated
from data or require more linguistic knowledge (as, appar-
ently, our ad-hoc heuristics deteriorates results), and given
that the ‘Google Reverse’ approach of estimating phoneme
confusion from data would be prone to AM improvements
on the server side (a main incentive of using cloud-based ser-
vices), we conclude that the alignment flexibility of our sim-
plistic 0.1/0.9 heuristics is sufficient, given that the Google
ASR already has a relatively low phoneme error rate.

1533



Table 1: Evaluation results (WER and SER) for all corpora: raw speech recognition results for Google ASR and various Sphinx
settings, simple word- or sentence-optimizing Levenshtein post-processing of Google ASR, and the combined Google+Sphinx-
based Levenshtein post-processing using different language models (always using 0.1/0.9 costs for post-processing).

WER in % SER in %
System SCRIPTED TIMIT SPONT SCRIPTED TIMIT SPONT

Raw Google 50.230 33.356 74.717 97.804 80.208 91.667

Sphinx N-Gram 60.462 23.949 69.057 95.101 64.063 93.750
Sphinx Grammar 65.346 * * 85.980 * *
Sphinx Sentences 65.346 52.675 85.283 85.980 54.167 86.458

Google+Sentencelist 3.077 0.382 71.698 11.993 0.521 77.083
Google+Wordlist 23.231 30.510 71.509 57.432 79.688 90.625

Google+Sphinx N-Gram 7.962 18.000 67.547 27.703 38.020 86.458
Google+Sphinx Grammar 6.038 * * 19.257 * *
Google+Sphinx Sentences 5.846 1.401 65.094 18.581 10.417 71.875

*No grammar available

Table 2: Results for the three confusion cost estimations for
alignment (WER in %, G+S N-Gram condition).

Confusion cost est. SCRIPTED TIMIT SPONT

Derived IPA Table 9.692 17.197 68.679
Google Reverse 8.192 17.006 66.038
0.1 / 0.9 7.962 18.000 67.547

6 Conclusions and Future Work
We have presented our work on mitigating the gap between
the superior acoustic modelling performance of free but un-
restrictable cloud-based speech recognition services and rel-
atively weak, open-source acoustic models, and the high per-
formance impact of language restrictions provided by do-
main knowledge. We have implemented several approaches
that combine the freely available cloud-based Google speech
recognizer with phonetic post-processing that integrates do-
main knowledge and allows varying degrees of restriction
as can be expressed by different kinds (and configurations)
of standard language models and grammars in the Sphinx-4
framework.

Our results (compare Figure 4) show very clearly the ad-
vantage of supplying domain knowledge to speech recog-
nition (the more the better). Our combined Sphinx-based
solution handles Levenshtein-based phoneme alignment in
an identical way as standard speech recognition using the
Viterbi algorithm and has the clear advantage of being able
to operate with varying degrees and representations of do-
main knowledge, over the simpler list-based (vocabulary or
allowed sentences) post-processing methods, which, how-
ever, do not require expert knowledge to set up.

Our usage of the Viterbi decoder does, however, come
with some drawbacks, e.g. regarding the inconsistent han-
dling of deletions (as discussed above) which may also hin-
der learning the optimal edit costs from data. Furthermore,
as the cloud-based recognizer’s speech is used as input to
the decoding step, and input to decoding is assumed to be

non-ambiguous, using N-best results as input to the Sphinx-
based post-processor will be difficult. Figure 4 (c) shows the
advantage of including N-best input into the matching pro-
cess (compare the two right-most columns), which, how-
ever, might only be possible with an approach that is sim-
ilar to lattice-rescoring (Jurafsky and Martin 2009, p. 375).
Using multiple alternative phonemisations (as provided by
SequiturG2P) in the alignment process faces similar diffi-
culties. Our N-Gram implementation of Sphinx-based post-
processing is currently limited to bigrams as the Sphinx-4
linguist with arbitrary N-Gram support has a much higher
code-complexity. However, this is not a principled limita-
tion and extending the implementation to cover higher-order
N-Grams will be conceptually straightforward.4

Google speech recognition can run in an incremental (i.e.
online) mode (McGraw and Gruenstein 2012) in which re-
sults are produced while speech is still being produced. Us-
ing a freely available incremental processing toolkit based
on Sphinx-4 (Baumann, Atterer, and Schlangen 2009), we
expect that our approach is easy to port for our use-case as
well, which will enable more advanced interaction capabili-
ties in human-robot interaction (HRI) settings.

In summary, powerful cloud-based but domain-
independent speech recognition systems can be improved by
using domain knowledge in phonetic distance-based post-
processing. These systems offer the opportunity to extend
interaction capabilities of intelligent systems, e.g. in known
HRI scenarios. To foster such research, our implemented
framework DOCKS (DOmain- and Cloud-based Knowledge
for Speech recognition) is available as open-source software
at www.informatik.uni-hamburg.de/WTM/software/. We plan to
work towards making it a full drop-in replacement of the
Sphinx-4 frontend and acoustic models.

4This will also enable code optimizations in Sphinx’ arbitrary
N-Gram code which will further reduce post-processing runtime to
be negligible compared to the speech service (which, in general, is
also very fast).

1534



Acknowledgments. The authors would like to thank Sven
Magg, Erik Strahl and the students of the international Mas-
ter Intelligent Adaptive Systems for their help in collecting
the SPONT corpus. This research has been partly supported
by the EU project RobotDoC under 235065 ROBOT-DOC
from the 7th Framework Programme (FP7), by the DFG
German Research Foundation (grant #1247) – International
Research Training Group CINACS, and by the Daimler and
Benz foundation (PostDoc grant #32-02/13).

References
Baumann, T.; Atterer, M.; and Schlangen, D. 2009. As-
sessing and improving the performance of speech recogni-
tion for incremental systems. In Proceedings of the Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies
(NAACL-HLT), 380–388.
Bisani, M., and Ney, H. 2008. Joint-sequence models for
grapheme-to-phoneme conversion. Speech Communication
50(5):434–451.
Garofolo, J. S.; Lamel, L. F.; Fisher, W. M.; Fiscus, J. G.;
Pallett, D. S.; and Dahlgren, N. L. 1993. DARPA TIMIT
acoustic phonetic continuous speech corpus CDROM.
Garofolo, J.; Fiscus, J. G.; and Fisher, W. M. 1997. De-
sign and preparation of the 1996 HUB-4 broadcast news
benchmark test corpora. In Proceedings of the 1997 DARPA
Speech Recognition Workshop, 15–21.
Heinrich, S., and Wermter, S. 2011. Towards robust speech
recognition for human-robot interaction. In Narioka, K.; Na-
gai, Y.; Asada, M.; and Ishiguro, H., eds., Proceedings of the
IROS2011 Workshop on Cognitive Neuroscience Robotics
(CNR), 29–34.
IPA, I. 1999. Handbook of the International Phonetic As-
sociation: A guide to the use of the International Phonetic
Alphabet. Cambridge University Press.
Jaitly, N.; Nguyen, P.; Senior, A. W.; and Vanhoucke, V.
2012. Application of pretrained deep neural networks to
large vocabulary speech recognition. In Proceedings of the
13th Annual Conference of the International Speech Com-
munication Association (Interspeech). ISCA.
Jurafsky, D., and Martin, J. H. 2009. Speech and Language
Processing: An Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Recognition.
Pearson International, 2 edition.
Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics – Dok-
lady 10(8):707–710.
McGraw, I., and Gruenstein, A. 2012. Estimating word-
stability during incremental speech recognition. In Pro-
ceedings of the 13th Annual Conference of the International
Speech Communication Association (Interspeech). ISCA.

Mermelstein, P. 1976. Distance measures for speech recog-
nition – psychological and instrumental. In Proceedings of
the Joint Workshop on Pattern Recognition and Artificial In-
telligence, 374–388.
Milette, G., and Stroud, A. 2012. Professional Android Sen-
sor Programming. ITPro collection. Wiley.
Morbini, F.; Audhkhasi, K.; Artstein, R.; Van Segbroeck,
M.; Sagae, K.; Georgiou, P.; Traum, D. R.; and Narayanan,
S. 2012. A reranking approach for recognition and classifi-
cation of speech input in conversational dialogue systems. In
Proceedings of the 2012 IEEE Spoken Language Technology
Workshop (SLT), 49–54. IEEE.
Morbini, F.; Audhkhasi, K.; Sagae, K.; Artstein, R.; Can,
D.; Georgiou, P.; Narayanan, S.; Leuski, A.; and Traum, D.
2013. Which ASR should I choose for my dialogue system?
In Proceedings of the 14th annual SIGdial Meeting on Dis-
course and Dialogue, 394–403.
Rayner, M.; Carter, D.; Digalais, V.; and Price, P. 1994.
Combining knowledge sources to reorder n-best speech hy-
pothesis lists. In Proceedings of the ARPA Human Language
Technology Workshop, 217–221.
Schalkwyk, J.; Beeferman, D.; Beaufays, F.; Byrne, B.;
Chelba, C.; Cohen, M.; Kamvar, M.; and Strope, B. 2010.
Your word is my command: Google search by voice: A case
study. In Advances in Speech Recognition. Springer. 61–90.
Twiefel, J. 2014. Development and evaluation of semanti-
cally constained speech recognition architectures. Master’s
thesis, Universität Hamburg, Dept. of Informatics, Hamburg,
DE.
Van Heerden, C.; Schalkwyk, J.; and Strope, B. 2009. Lan-
guage modeling for what-with-where on GOOG-411. In
Proceedings of the 10th Annual Conference of the Inter-
national Speech Communication Association (Interspeech).
ISCA.
Walker, W.; Lamere, P.; Kwok, P.; Raj, B.; Singh, R.; Gou-
vea, E.; Wolf, P.; and Woelfel, J. 2004. Sphinx-4: A Flexible
Open Source Framework for Speech Recognition. Technical
Report SMLI TR2004-0811, Sun Microsystems Inc.
Young, S. J.; Russell, N.; and Thornton, J. 1989. Token pass-
ing: A simple conceptual model for connected speech recog-
nition systems. Technical Report CUED/F-INFENG/TR,
Cambridge University Engineering Department.
Zgank, A., and Kacic, Z. 2012. Predicting the acoustic con-
fusability between words for a speech recognition system
using Levenshtein distance. Electronics and Electrical En-
gineering 18(8):81–84.
Ziółko, B.; Gałka, J.; Jadczyk, T.; and Skurzok, D.
2010. Modified weighted Levenshtein distance in automatic
speech recognition. In Proceedings of the 16th Conference
on Applications of Mathematics in Biology and Medicine,

1535




