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Abstract

Sphinx-4 is a flexible, modular and pluggable framework tip iester new innovations in the core research of hidden hark
model (HMM) recognition systems. The design of Sphinx-4asda on patterns that have emerged from the design of pasinsys
as well as new requirements based on areas that researohenstly want to explore. To exercise this framework, angravide
researchers with a "research-ready” system, Sphinx-4 iatdades several implementations of both simple and sifitee-art
technigues. The framework and the implementations areeslyf available via open source.

I. INTRODUCTION

HEN researchers approach the problem of core speech réioogrésearch, they are often faced with the problem of

needing to develop an entire system from scratch, evenyfahnéy want to explore one facet of the field. Open source
speech recognition systems are available, such as HTK $1f, |2], AVCSR [3] and earlier versions of the Sphinx systems
[4]-[6]. The available systems are typically optimized éosingle approach to speech system design. As a result, ghstsens
intrinsically create barriers to future research that dispom the original purpose of the system. In addition, sashthese
systems are encumbered by licensing agreements that maierga the research arena difficult for non-academic fngtns.

To facilitate new innovation in speech recognition reskane formed a distributed, cross-discipline team to cr&gteinx-4
[7]: an open source platform that incorporates state-efatt methodologies and also addresses the needs of ems¥gaaych
areas. Given our technical goals as well as our diversity,(ae used different operating systems on different mashiatc.),
we wrote Sphinx-4 in the Jal¥programming language, making it available to a large warétdevelopment platforms.

First and foremost, Sphinx-4 is a modular and pluggable émank that incorporates design patterns from existingesyst
with sufficient flexibility to support emerging areas of raseh interest. The framework is modular in that it comprisszarable
components dedicated to specific tasks, and it is pluggabtleat modules can be easily replaced at runtime. To exetioése
framework, and to provide researchers with a working syst®phinx-4 also includes a variety of modules that implement
state-of-the-art speech recognition techniques.

The remainder of this document describes the Sphinx-4 framleand implementation, and also includes a discussion of
our experiences with Sphinx-4 to date.

Il. SELECTEDHISTORICAL SPEECHRECOGNITION SYSTEMS

The traditional approach to speech recognition systengddss been to create an entire system optimized aroundieubert
methodology. As evidenced by past research systems suchag®m[8], Harpy [9], Sphinx and others, this approach has
proved to be quite valuable in that the resulting systeme mawvided foundational methods for speech recognitioaanes.

In the same light, however, each of these systems was ladgelicated to exploring a single specific groundbreaking are
of speech recognition. For example, Baker introduced Hidelarkov models (HMMs) with his Dragon system, [8], [10]
and earlier predecessors of Sphinx explored variants of ldMMch as discrete HMMs [4], semicontinuous HMMs [5], and
continuous HMMs [11]. Other systems explored specializatch strategies such as using lex tree searches for lafgei-
models [12].

Because they were focused on such fundamental core thethieescreators of these systems tended to hardwire their
implementations to a high degree. For example, the predec&phinx systems restrict the order of the HMMs to a constan
value and also fix the unit context to a single left and righttegt. Sphinx-3 eliminated support for context free gramsnma
(CFGs) due to the specialization on large N-Gram modelsthEumore, the decoding strategy of these systems tended to
be deeply entangled with the rest of the system. As a resuthese constraints, the systems were difficult to modify for
experiments in other areas.

Design patterns for these systems emerged over time, hovas/exemplified by Jelinek’s source-channel model [13] and
Huang'’s basic system architecture [14]. In developing ®p#i, one of our primary goals was to develop a framework that
supported these design patterns, yet also allowed for empetation in emerging areas of research.
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Fig. 1. Sphinx-4 Decoder Framework. The main blocks are thatEnd, the Decoder, and the Linguist. Supporting blookfude the ConfigurationManager
and the Tools blocks. The communication between the blaksyell as communication with an application, is depicted.

Ill. SPHINX-4 FRAMEWORK

The Sphinx-4 framework has been designed with a high dedrdlexability and modularity. Figure 1 shows the overall
architecture of the system. Each labeled element in Figuepresents a module that can be easily replaced, allowsggrehers
to experiment with different module implementations with@eeding to modify other portions of the system.

There are three primary modules in the Sphinx-4 framewdv&:RrontEnd the Decoder and theLinguist The FrontEnd
takes one or more input signals and parameterizes them isgaence ofeatures The Linguist translates any type of
standard language model, along with pronunciation infeienafrom the Dictionary and structural information from one or
more sets ofAcousticModelsinto a SearchGraphThe SearchManagem the Decoder uses the Features from the FrontEnd
and the SearchGraph from the Linguist to perform the actaabding, generatinResults At any time prior to or during the
recognition process, the application can is@amtrolsto each of the modules, effectively becoming a partner irrélsegnition
process.

The Sphinx-4 system is like most speech recognition systenthat it has a large number of configurable parameters,
such as search beam size, for tuning the system perform@heeSphinx-4ConfigurationManageis used to configure such
parameters. Unlike other systems, however, the Configursliinager also gives Sphinx-4 the ability to dynamicalgdand
configure modules at run time, yielding a flexible and pludgalystem. For example, Sphinx-4 is typically configurechveit
FrontEnd (see Section V) that produces Mel-Frequency EapSoefficients (MFCCs) [15]. Using the ConfigurationMgeg
however, it is possible to reconfigure Sphinx-4 to constaiclifferent FrontEnd that produces Perceptual Linear Etiedi
coefficients (PLP) [16] without needing to modify any souomale or to recompile the system.

To give applications and developers the ability to trackatiee statistics such as word error rate [17], runtime spaed,
memory usage, Sphinx-4 provides a numbefadls As with the rest of the system, the Tools are highly configleaallowing
users to perform a wide range of system analysis. Furtherntbe Tools also provides an interactive runtime enviramme
that allows users to modify the parameters of the systemewh# system is running, allowing for rapid experimentatiotin
various parameters settings.

Sphinx-4 also provides support faitilities that support application-level processing of recognitiesults. For example,
these utilities include support for obtaining result 8, confidence scores, and natural language understanding

IV. FRONTEND

The purpose of the FrontEnd is to parameterizéngut signal (e.g., audio) into a sequence of outpedtures As illustrated
in Figure 2, the FrontEnd comprises one or more parallelnshaf replaceable communicating signal processing modaliesd
DataProcessorsSupporting multiple chains permits simultaneous comraof different types of parameters from the same
or different input signals. This enables the creation otesys that can simultaneously decode using different pasrnygpes,
such as MFCC and PLP, and even parameter types derived framspeech signals such as video [3].
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Fig. 2. Sphinx-4 FrontEnd. The FrontEnd comprises one orenparallel chains of communicating DataProcessors.

Like the ISIP [2] system, each DataProcessor in the Fronfioglides an input and an output that can be connected to
another DataProcessor, permitting arbitrarily long segae of chains. The inputs and outputs of each DataProcassor
genericData objects that encapsulate processed input data as well d®mmadhat indicate data classification events such as
end-point detection. The last DataProcessor in each cha@sponsible for producing a Data object composed of paeained
signals, called-eatures to be used by the Decoder.

Like the AVCSR system [3], Sphinx-4 permits the ability tooduce parallel sequences of features. Sphinx-4 is unique,
however, in that it allows for an arbitrary number of parafiteams.

The communication between blocks follows a pull designhvsitpull design, a DataProcessor requests input from areearli
module only when needed, as opposed to the more convenfiosal design, where a module propagates its output to the
succeeding module as soon as it is generated. This pullrdes@ples the processors to perform buffering, allowingaorers
to look forwards or backwards in time.

The ability to look forwards or backwards in time not only méts the Decoder to perform frame-synchronous Viterbi
searches [18], but also allows the decoder to perform ofpst of searches such as depth-first and A* [19].

Within the generic FrontEnd framework, the Sphinx-4 predgd suite of DataProcessors that implement common signal
processing techniques. These implementations includpostifior the following: reading from a variety of input fornsa
for batch mode operation, reading from the system audiotimigvice for live mode operation, preemphasis, windowing
with a raised cosine transform (e.g., Hamming and Hanningdaivs), discrete fourier transform (via FFT), mel frequenc
filtering, bark frequency warping, discrete cosine transf¢DCT), linear predictive encoding (LPC), end pointingpstral
mean normalization (CMN), mel-cepstra frequency coefficextraction (MFCC), and perceptual linear predictionfficient
extraction (PLP).

Using the ConfigurationManager described in Section llerascan chain the Sphinx-4 DataProcessors together in any
manner as well as incorporate DataProcessor implememsabibtheir own design. As such, the modular and pluggablereat
of Sphinx-4 not only applies to the higher-level structufeSphinx-4, but also applies to the higher-level modulesribelves
(i.e., the FrontEnd is a pluggable module, yet also consistduggable modules itself).

V. LINGUIST

The Linguist generates the SearchGraph that is used by the decoder dieirsgarch, while at the same time hiding the
complexities involved in generating this graph. As is theecthroughout Sphinx-4, the Linguist is a pluggable modallewing
people to dynamically configure the system with differemduiist implementations.

A typical Linguist implementation constructs the Searcigidr using the language structure as represented by a given
LanguageModel and the topological structure of the Acodddidel (HMMs for the basic sound units used by the system).
The Linguist may also use a Dictionary (typically a pronaticin lexicon) to map words from the LanguageModel into
sequences of AcousticModel elements. When generating éaecBGraph, the Linguist may also incorporate sub-wordsuni
with contexts of arbitrary length, if provided.

By allowing different implementations of the Linguist to ptugged in at runtime, Sphinx-4 permits individuals to pdsv
different configurations for different system and recognitrequirements. For instance, a simple numerical digit®gnition
application might use a simple Linguist that keeps the $espace entirely in memory. On the other hand, a dictatioticgijmn
with a 100K word vocabulary might use a sophisticated Lisgthat keeps only a small portion of the potential searcltespa
in memory at a time.

The Linguist itself consists of three pluggable componetiits LanguageModel, the Dictionary, and the AcousticMpdel
which are described in the following sections.

A. LanguageModel

The LanguageModel module of the Linguist provides worctleanguage structure, which can be represented by any
number of pluggable implementations. These implementatigpically fall into one of two categories: graph-driveragmars
and stochastic N-Gram models. The graph-driven grammaesepts a directed word graph where each node represents a
single word and each arc represents the probability of a wartkition taking place. The stochastic N-Gram models igeov
probabilities for words given the observation of the pregim-1 words.
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The Sphinx-4 LanguageModel implementations support atanf formats, including the following:

o Si npl eWor dLi st Granmar : defines a grammar based upon a list of words. An optionalnpeter defines whether the
grammar “loops” or not. If the grammar does not loop, thendhemmar will be used for isolated word recognition. If
the grammar loops, then it will be used to support trivial mected word recognition that is the equivalent of a unigram
grammar with equal probabilities.

o JSGFG ammar : supports the Jav¥ Speech API Grammar Format (JSGF) [20], which defines a BMIe;splatform-
independent, and vendor-independent Unicode repregantatgrammars.

o LMG ammar : defines a grammar based upon a statistical language mdd@rammar generates one grammar node per
word and works well with smaller unigram and bigram gramnudrap to approximately 1000 words.

e FSTG ammar : supports a finite-state transducer (FST) [21] in the ARPA lggammar format.

o Si npl eNG amvbdel : provides support for ASCII N-Gram models in the ARPA formte SimpleNGramModel makes
no attempt to optimize memory usage, so it works best withllsar@guage models.

o LargeTri grambdel : provides support for true N-Gram models generated by théJ&bambridge Statistical Lan-
guage Modeling Toolkit [22]. The LargeTrigramModel optes memory storage, allowing it to work with very large
files of 200MB or more.

B. Dictionary

The Dictionary provides pronunications for words found in the Languagedodhe pronunciations break words into
sequences of sub-word units found in the AcousticModel. Dfationary interface also supports the classification ofdgo
and allows for a single word to be in multiple classes.

Sphinx-4 currently provides implementions of the Dictipnenterface to support the CMU Pronouncing Dictionary [ZBhe
various implementations optimize for usage patterns bardtle size of the active vocabulary. For example, one imeigation
will load the entire vocabulary at system initializatiom#&, whereas another implementation will only obtain pranations
on demand.

C. AcousticModel

The AcousticModemodule provides a mapping between a unit of speech and an HMMcan be scored against incoming
features provided by the FrontEnd. As with other systenesniapping may also take contextual and word position inftiona
into account. For example, in the case of triphones, theespmepresents the single phonemes to the left and rightef th
given phoneme, and the word position represents whethetrififone is at the beginning, middle, or end of a word (or is
a word itself). The contextual definition is not fixed by Sphi allowing for the definition of AcousticModels that cairt
allophones as well as AcousticModels whose contexts do @et no be adjacent to the unit.

Typically, the Linguist breaks each word in the active vadaby into a sequence of context-dependent sub-word UFiits.
Linguist then passes the units and their contexts to the gtaodel, retrieving the HMM graphs associated with thoseds.

It then uses these HMM graphs in conjunction with the Langidaggdel to construct the SearchGraph.

Unlike most speech recognition systems, which representtfM graphs as a fixed structure in memory, the Sphinx-4
HMM is merely a directed graph of objects. In this graph, eactie corresponds to an HMM state and each arc represents the
probability of transitioning from one state to another ie tHHMM. By representing the HMM as a directed graph of objects
instead of a fixed structure, an implementation of the Adolkidel can easily supply HMMs with different topologiesorF
example, the AcousticModel interfaces do not restrict théMs$ in terms of the number of states, the number or transstion
out of any state, or the direction of a transition (forwardobackward). Furthermore, Sphinx-4 allows the number ofestat
an HMM to vary from one unit to another in the same Acousticklod

Each HMM state is capable of producing a score from an obdefeature. The actual code for computing the score is
done by the HMM state itself, thus hiding its implementatitom the rest of the system, even permitting differing phuibity
density functions to be used per HMM state. The AcousticMati® allows sharing of various components at all levelsatTh
is, the components that make up a particular HMM state sudBaassian mixtures, transition matrices, and mixture wsigh
can be shared by any of the HMM states to a very fine degree.

As with the rest of Sphinx-4, individuals can configure Sphéhwith different implementations of the AcousticModelsea
upon their needs. Sphinx-4 currently provides a single Atolodel implementation that is capable of loading anchgsi
acoustic models generated by the Sphinx-3 trainer.

D. SearchGraph

Even though Linguists may be implemented in very differeaysvand the topologies of the search spaces generated by
these Linguists can vary greatly, the search spaces arepattgented as a SearchGraph. lllustrated by example ime=gju
the SearchGraph is the primary data structure used durangéboding process.
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Fig. 3. Example SearchGraph. The SearchGraph is a directggsh gomposed of optionally emitting SearchStates andcBStateArcs with transition
probabilities. Each state in the graph can represent coemgerirom the LanguageModel (words in rectangles), Dietign(sub-word units in dark circles)
or AcousticModel (HMMs).

The graph is a directed graph in which each node, call@karchStaterepresents either aamitting or a non-emitting
state. Emitting states can be scored against incoming aicdeatures while non-emitting states are generally usa@present
higher-level linguistic constructs such as words and phwethat are not directly scored against the incoming featurhe
arcs between states represent the possible state trassiBach of which has a probability representing the likalih of
transitioning along the arc.

The SearchGraph interface is purposely generic to allow feide range of implementation choices, relieving the aggioms
and hard-wired constraints found in previous recognitigstems. In particular, the Linguist places no inherentriegins on
the following:

« Overall search space topology

« Phonetic context size

« Type of grammar (stochastic or rule based)

o N-Gram language model depth

A key feature of the SearchGraph is that the implementatfahe SearchState need not be fixed. As such, each Linguist
implementation typically provides its own concrete impéartation of the SearchState that can vary based upon thaatbas-
tics of the particular Linguist. For instance, a simple Liigj may provide an in-memory SearchGraph where each Seiateh
is simply a one-to-one mapping onto the nodes of the in-mgrgosph. A Linguist representing a very large and complex
vocabulary, however, may build a compact internal repreagiem of the SearchGraph. In this case, the Linguist woeldegate
the set of successor SearchStates by dynamically expatidsngompact representation on demand.

The manner in which the SearchGraph is constructed affetsriemory footprint, speed, and recognition accuracy. The
modularized design of Sphinx-4, however, allows differ8etarchGraph compilation strategies to be used withoutgihgn
other aspects of the system. The choice between static amahdy construction of language HMMs depends mainly on the
vocabulary size, language model complexity and desired ongfiootprint of the system, and can be made by the applicatio

E. Implementations

As with the FrontEnd, Sphinx-4 provides several implemgéonsg of the Linguist to support different tasks.

TheFl at Li ngui st is appropriate for recognition tasks that use context-graenmars (CFG), finite-state grammars (FSG),
finite-state transducers (FST) and small N-Gram languaggefaoThe FlatLinguist converts any of these external laggu
model formats into an internal Grammar structure. The Granmapresents a directed word graph where gacmmarNode
represents a single word, and each arc in the graph repsabentrobability of a word transition taking place. The Elaguist
generates the SearchGraph directly from this internal Grangraph, storing the entire SearchGraph in memory. As,sheh
FlatLinguist is very fast, yet has difficulty handling grarara with high branching factors.

The Dynami cFl at Li ngui st is similar to the FlatLinguist in that is is appropriate famgar recognition tasks. The
main difference is that the DynamicFlatLinguist dynanlica@ireates the SearchGraph on demand, giving it the capatli
handle far more perplex grammars. With this capability, éesv, comes a cost of a modest decrease in run time perfoemanc

TheLexTr eeLi ngui st is appropriate for large vocabulary recognition tasks tisat large N-Gram language models. The
order of the N-Grams is arbitrary, and the LexTreeLinguitit support true N-Gram decoding. The LexTreeLinguist arigas
the words in a lex tree [6], a compact method of representingel vocabularies. The LexTreeLinguist uses this lex toee t
dynamically generate SearchStates, enabling it to haretielarge vocabularies using only a modest amount of menidry.
LexTreeLinguist supports ASCII and binary language modelserated by the CMU-Cambridge Statistical Language Moglel
Toolkit [22].
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VI. DECODER

The primary role of the Sphinx-Becoderblock is to use Features from the FrontEnd in conjunctiomhie SearchGraph
from the Linguist to generateesulthypotheses. The Decoder block comprises a pluggaddechManageand other supporting
code that simplifies the decoding process for an applicafdsnsuch, the most interesting component of the Decodekboc
the SearchManager.

The Decoder merely tells the SearchManager to recognizet afsBeature frames. At each step of the process, the
SearchManager createsResultobject that contains all the paths that have reached a finalenutting state. To process
the result, Sphinx-4 also provides utilities capable ofdu@ing a lattice and confidence scores from the Result. &rdiker
systems, however, applications can modify the search spradehe Result object in between steps, permitting the egijin
to become a partner in the recognition process.

Like the Linguist, the SearchManager is not restricted tp jparticular implementation. For example, implementatior
the SearchManager may perform search algorithms such me{fsgnchronous Viterbi, A*, bi-directional, and so on.

Each SearchManager implementation uses a token passiogtiatg as described by Young [24]. A Sphinx-4 token is an
object that is associated with a SearchState and contansvirall acoustic and language scores of the path at a goiaeh p
reference to the SearchState, a reference to an input Edatime, and other relevant information. The SearchSté¢eemrece
allows the SearchManager to relate a token to its state bufigtribution, context-dependent phonetic unit, pronatian,
word, and grammar state. Every partial hypothesis terragat an active token.

As illustrated in Figure 1, implementations of a SearchMgamamay construct a set of active tokens in the form of an
ActivelListat each time step, though the use of an ActiveList is not reduiAs it is a common technique, however, Sphinx-4
provides a sub-framework to support SearchManagers caedpafsanActivelList a Pruner and aScoret

The SearchManager sub-framework generates ActivelLista frurrently active tokens in the search trellis by prunisong
a pluggablePruner. Applications can configure the Sphinx-4 implementatiohgh@ Pruner to perform both relative and
absolute beam pruning. The implementation of the Prunerdatly simplifed by the garbage collector of the Java ptatfo
With garbage collection, the Pruner can prune a complete lpatmerely removing the terminal token of the path from the
ActiveList. The act of removing the terminal token idensfithe token and any unshared tokens for that path as unused,
allowing the garbage collector to reclaim the associatechamg.

The SearchManager sub-framework also communicates watBc¢brer a pluggable state probability estimation module that
provides state output density values on demand. When thel8@anager requests a score for a given state at a given time,
the Scorer accesses the feature vector for that time andrperfthe mathematical operations to compute the scoreelnake
of parallel decoding using parallel acoustic models, ther&cmatches the acoustic model set to be used against theefea
type.

The Scorer retains all information pertaining to the statpot densities. Thus, the SearchManager need not knowhahet
the scoring is done with continuous, semi-continuous ccrdie HMMs. Furthermore, the probability density functmfreach
HMM state is isolated in the same fashion. Any heuristic dthms incorporated into the scoring procedure for spegdin
up can also be performed locally within the scorer. In additithe scorer can take advantage of multiple CPUs if they are
available.

The current Sphinx-4 implementation provides pluggablgi@mentations of SearchManagers that support frame sgnobs
Viterbi [18], Bushderby [25], and parallel decoding [26]:

« Si npl eBr eadt hFi r st Sear chManager : performs a simple frame synchronous Viterbi search witlggable Pruner
that is called on each frame. The default Pruner managesalbsthiute and relative beams. This search manager produces
Results that contains pointers to active paths at the lastdrprocessed.

o Wor dPr uni ngBr eadt hSear chManager : performs a frame synchronous Viterbi search with a plugg®puner that
is called on each frame. Instead of managing a single Acttelt manages aet of ActiveLists, one for each of the
state types defined by the Linguist. Pruning is performededecomposition and sequence order of the state types as
defined by the Linguist.

« Bushder bySear chManager : performs a generalized frame-synchronous breadth-faatch using the Bushderby
algorithm, performing classifications based on free enagyppposed to likelihoods.

o Paral | el Sear chManager : performs a frame synchronous Viterbi search on mulitpddiiee streams using a factored
language HMM approach as opposed to the coupled HMM approsett by AVCSR [3]. An advantage of the factored
search is that it can be much faster and far more compact tlfialh search over a compound HMM.

VIl. DISCUSSION

The modular framework of Sphinx-4 has permitted us to do stritgs very easily that have been traditionally difficult.
For example, both the parallel and Bushderby SearchMariag#ementations were created in a relatively short peribd o
time and did not require modification to the other componefithe system.

The modular nature of Sphinx-4 also provides it with theigbtb use modules whose implementations range from general
to specific applications of an algorithm. For example, weenadle to improve the runtime speed for the RM1 [27] regressio
test by almost 2 orders of magnitude merely by plugging in\& himguist and leaving the rest of the system the same.
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Test WER RT
Sphinx-3.3] Sphinx-4| Sphinx-3.3] Sphinx-4 (1 CPU)[ Sphinx-4 (2 CPU)
TI46 (11 words) 1.217 0.168 0.14 0.03 0.02
TIDIGITS (11 words) 0.661 0.549 0.16 0.07 0.05
AN4 (79 words) 1.300 1.192 0.38 0.25 0.20
RM1 (1000 words) 2.746 2.739 0.50 0.50 0.40
WSJ5K (5000 words) 7.323 7.174 1.36 122 0.96
HUB-4 (64000 words)| 18.845 18.878 3.06 4.40 3.80
TABLE |

SPHINX-4 PERFORMANCE WORD ERRORRATE (WER)IS GIVEN IN PERCENT REAL TIME (RT) SPEED IS THE RATIO OF UTTERANCE DURATION TO THE
TIME TO DECODE THE UTTERANCE FOR BOTH, A LOWER VALUE INDICATES BETTER PERFORMANCEDATA GATHERED ON A DUAL CPU 1015M14z
ULTRASPARGRIII wiTH 2G RAM

Furthermore, the modularity of Sphinx-4 also allows it tgpgart a wide variety of tasks. For example, the various
SearchManager implementations allow Sphinx-4 to effityesupport tasks that range from small vocabulary tasks such
as TI46 [28] and TIDIGITS [29] to large vocabulary tasks such as HUB-4 [30]. As anothexmple, the various Linguist
implementations allow Sphinx-4 to support different tasksh as traditional CFG-based command-and-control agigits in
addition to applications that use stochastic language mode

The modular nature of Sphinx-4 was enabled primarily by the of the Java programming language. In particular, théyabil
of the Java platform to load code at run time permits simpfapsut for the pluggable framework, and the Java programming
language construct of interfaces permits separation ofrdmeework design from the implementation.

The Java platform also provides Sphinx-4 with a number oéo#udvantages:

« Sphinx-4 can run on a variety of platforms without the needrézompilation

o The rich set of platform APIs greatly reduces coding time

« Built-in support for multithreading makes it simple to exipgent with distributing decoding tasks across multiplestids
« Automatic garbage collection helps developers to conatmtn algorithm development instead of memory leaks

On the downside, the Java platform can have issues with mefootprint. Also related to memory, some speech engines
will directly access the platform memory directly in orderdptimize the memory throughput during decoding. Directeas
to the platform memory model is not permitted with the Javegpsmming language.

A common misconception people have regarding the Java gmoging language is that it is too slow. When developing
Sphinx-4, we carefully instrumented the code to measuliewsiaspects of the system, comparing the results to itepesdor,
Sphinx-3.3. As part of this comparison, we tuned Sphinxt8.8et its optimal performance for both real-time speed (&19
word error rate (WER). We then tuned Sphinx-4 to match orebbétlte WER of Sphinx-4, comparing the resulting RT speeds.
Table | provides a summary of this comparison, showing thudtirsc-4 performs well in comparison to Sphinx-3.3 (for both
WER and RT, a lower number indicates better performance).

An interesting result of this comparison helps to demonsstifze strength of the pluggable and modular design of Sphinx
Sphinx-3.3 has been designed for more complex N-Gram |layegodel tasks with larger vocabularies. As a result, SpBiBx
does not perform well for “easier” tasks such as T146 and TOIS. Because Sphinx-4 is a pluggable and modular framework
we were able to plug in different implementations of the Lirsg and SearchManager that were optimized for the paaticul
tasks, allowing Sphinx-4 to perform much better. For exanpbte the dramatic difference in WER and RT performance
numbers for the TI46 task.

Another interesting aspect of the performance study sha@ambat raw computing speed is not our biggest concern when it
comes to RT performance. For the 2 CPU results in this tabdeused a Scorer that equally divided the scoring task across
the available CPUs. While the increase in speed is notiegdtbis not as dramatic as we expected. Further analysisetielp
us determine that only about 30 percent of the CPU time istsp@ng the actual scoring of the acoustic model states. The
remaining 70 percent is spent doing non-scoring activilghsas growing and pruning the ActiveList. Our empiricalutes
also show that the Java platform’s garbage collection n@shaonly accounts for 2-3 percent of the overall CPU usage.

VIIl. FUTURE WORK

Sphinx-4 currently provides just one implementation of AwmusticModel, which loads Sphinx-3.3 models created lgy th
SphinxTrain acoustic model trainer. The SphinxTrain teaiproduces HMMs with a fixed number of states, fixed topology,
and fixed unit contexts. Furthermore, the parameter tyindp¢bveen the SphinxTrain HMMs and their associated prdihabi
density functions is very coarse. Because the Sphinx-4dwaork does not have these restrictions, it is capable of lrand
HMMs with an abitrary topology over an arbitrary number aites and variable length left and right unit contexts. Initioial

1T146 refers to the NIST CD-ROM Version of the Texas Instrutsetieveloped 46-Word Speaker-Dependent Isolated WordcBpPatabase.
2TIDIGITS refers to the NIST CD-ROM Version of the Texas Instrents-developed Studio Quality Speaker-Independenh&ued-Digit Corpus.
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the Sphinx-4 acoustic model design allows for very fine patamtying. We predict that taking advantage of these céipfabi
will greatly increase both the speed and accuracy of thedbrco

We have created a design for a Sphinx-4 acoustic model tréivae can produce acoustic models with these desirable
characteristics [31]. As with the Sphinx-4 framework, thghBx-4 acoustic model trainer has been designed to be alarpdu
pluggable system. Such an undertaking, however, repesesignificant effort. As an interim step, another area fqreex
mentation is to create FrontEnd and AcousticModel impleatgns that support the models generated by the HTK system
[1].

We have also considered the architectural changes thadvimuheeded to support segment-based recognition framswork
such as the MIT SUMMIT speech recognizer [32]. A cursory gsialindicates the modifications to the Sphinx-4 architectu
would be minimal, and would provide a platform to do meanihgfomparisons between segemental and fixed-frame-size
systems.

Finally, the SearchManager provides fertile ground forlenpenting a variety of search approaches, including A*:faatch,
bi-directional, and multiple pass algorithms.

IX. CONCLUSION

After careful development of the Sphinx-4 framework, weateel a number of differing implementations for each module
in the framework. For example, the FrontEnd implementatismpport MFCC, PLP, and LPC feature extraction; the Lirtguis
implementations support a variety of language modelsuting CFGs, FSTs, and N-Grams; and the Decoder supports a
variety of SearchManager implementations, includingitiawcial Viterbi, Bushderby, and parallel searches. Usimg €onfig-
urationManager, the various implementations of the madlodn be combined in various ways, supporting our claim theat w
have developed a flexible pluggable framework. Furthermitwe framework is performing well both in speed and accuracy
when compared to its predecessors.

The Sphinx-4 framework is already proving itself as beings&arch ready,” easily supporting various work such as the
parallel and Bushderby SearchManagers as well as a spgedadlinguist that can apply “unigram smear” probabilitiedex
trees. We view this as only the very beginning, however, aqpetet Sphinx-4 to support future areas of core speech rétamgn
research.

Finally, the source code to Sphinx-4 is freely availableamal BSD-style license. The license permits others to doeanad
and commercial research and to develop products withoutinieq any licensing fees. More information is available at
htt p: // cmusphi nx. sour cef or ge. net / sphi nx4.
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