
SMLI TR2004-0811 c©2004 SUN MICROSYSTEMS INC. 1

Sphinx-4: A Flexible Open Source Framework for
Speech Recognition

Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea, Peter Wolf, Joe Woelfel

Abstract

Sphinx-4 is a flexible, modular and pluggable framework to help foster new innovations in the core research of hidden Markov
model (HMM) recognition systems. The design of Sphinx-4 is based on patterns that have emerged from the design of past systems
as well as new requirements based on areas that researchers currently want to explore. To exercise this framework, and toprovide
researchers with a ”research-ready” system, Sphinx-4 alsoincludes several implementations of both simple and state-of-the-art
techniques. The framework and the implementations are all freely available via open source.

I. I NTRODUCTION

WHEN researchers approach the problem of core speech recognition research, they are often faced with the problem of
needing to develop an entire system from scratch, even if they only want to explore one facet of the field. Open source

speech recognition systems are available, such as HTK [1], ISIP [2], AVCSR [3] and earlier versions of the Sphinx systems
[4]–[6]. The available systems are typically optimized fora single approach to speech system design. As a result, thesesystems
intrinsically create barriers to future research that departs from the original purpose of the system. In addition, some of these
systems are encumbered by licensing agreements that make entry into the research arena difficult for non-academic institutions.

To facilitate new innovation in speech recognition research, we formed a distributed, cross-discipline team to createSphinx-4
[7]: an open source platform that incorporates state-of-the art methodologies and also addresses the needs of emergingresearch
areas. Given our technical goals as well as our diversity (e.g., we used different operating systems on different machines, etc.),
we wrote Sphinx-4 in the JavaTMprogramming language, making it available to a large variety of development platforms.

First and foremost, Sphinx-4 is a modular and pluggable framework that incorporates design patterns from existing systems,
with sufficient flexibility to support emerging areas of research interest. The framework is modular in that it comprisesseparable
components dedicated to specific tasks, and it is pluggable in that modules can be easily replaced at runtime. To exercisethe
framework, and to provide researchers with a working system, Sphinx-4 also includes a variety of modules that implement
state-of-the-art speech recognition techniques.

The remainder of this document describes the Sphinx-4 framework and implementation, and also includes a discussion of
our experiences with Sphinx-4 to date.

II. SELECTED HISTORICAL SPEECHRECOGNITION SYSTEMS

The traditional approach to speech recognition system design has been to create an entire system optimized around a particular
methodology. As evidenced by past research systems such as Dragon [8], Harpy [9], Sphinx and others, this approach has
proved to be quite valuable in that the resulting systems have provided foundational methods for speech recognition research.

In the same light, however, each of these systems was largelydedicated to exploring a single specific groundbreaking area
of speech recognition. For example, Baker introduced hidden Markov models (HMMs) with his Dragon system, [8], [10]
and earlier predecessors of Sphinx explored variants of HMMs such as discrete HMMs [4], semicontinuous HMMs [5], and
continuous HMMs [11]. Other systems explored specialized search strategies such as using lex tree searches for large N-Gram
models [12].

Because they were focused on such fundamental core theories, the creators of these systems tended to hardwire their
implementations to a high degree. For example, the predecessor Sphinx systems restrict the order of the HMMs to a constant
value and also fix the unit context to a single left and right context. Sphinx-3 eliminated support for context free grammars
(CFGs) due to the specialization on large N-Gram models. Furthermore, the decoding strategy of these systems tended to
be deeply entangled with the rest of the system. As a result ofthese constraints, the systems were difficult to modify for
experiments in other areas.

Design patterns for these systems emerged over time, however, as exemplified by Jelinek’s source-channel model [13] and
Huang’s basic system architecture [14]. In developing Sphinx-4, one of our primary goals was to develop a framework that
supported these design patterns, yet also allowed for experimentation in emerging areas of research.
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Fig. 1. Sphinx-4 Decoder Framework. The main blocks are the FrontEnd, the Decoder, and the Linguist. Supporting blocks include the ConfigurationManager
and the Tools blocks. The communication between the blocks,as well as communication with an application, is depicted.

III. SPHINX-4 FRAMEWORK

The Sphinx-4 framework has been designed with a high degree of flexibility and modularity. Figure 1 shows the overall
architecture of the system. Each labeled element in Figure 1represents a module that can be easily replaced, allowing researchers
to experiment with different module implementations without needing to modify other portions of the system.

There are three primary modules in the Sphinx-4 framework: the FrontEnd, the Decoder, and theLinguist. The FrontEnd
takes one or more input signals and parameterizes them into asequence ofFeatures. The Linguist translates any type of
standard language model, along with pronunciation information from theDictionary and structural information from one or
more sets ofAcousticModels, into a SearchGraph. The SearchManagerin the Decoder uses the Features from the FrontEnd
and the SearchGraph from the Linguist to perform the actual decoding, generatingResults. At any time prior to or during the
recognition process, the application can issueControlsto each of the modules, effectively becoming a partner in therecognition
process.

The Sphinx-4 system is like most speech recognition systemsin that it has a large number of configurable parameters,
such as search beam size, for tuning the system performance.The Sphinx-4ConfigurationManageris used to configure such
parameters. Unlike other systems, however, the ConfigurationManager also gives Sphinx-4 the ability to dynamically load and
configure modules at run time, yielding a flexible and pluggable system. For example, Sphinx-4 is typically configured with a
FrontEnd (see Section IV) that produces Mel-Frequency Cepstral Coefficients (MFCCs) [15]. Using the ConfigurationManager,
however, it is possible to reconfigure Sphinx-4 to constructa different FrontEnd that produces Perceptual Linear Prediction
coefficients (PLP) [16] without needing to modify any sourcecode or to recompile the system.

To give applications and developers the ability to track decoder statistics such as word error rate [17], runtime speed,and
memory usage, Sphinx-4 provides a number ofTools. As with the rest of the system, the Tools are highly configurable, allowing
users to perform a wide range of system analysis. Furthermore, the Tools also provides an interactive runtime environment
that allows users to modify the parameters of the system while the system is running, allowing for rapid experimentationwith
various parameters settings.

Sphinx-4 also provides support forUtilities that support application-level processing of recognitionresults. For example,
these utilities include support for obtaining result lattices, confidence scores, and natural language understanding.

IV. FRONTEND

The purpose of the FrontEnd is to parameterize anInput signal (e.g., audio) into a sequence of outputFeatures. As illustrated
in Figure 2, the FrontEnd comprises one or more parallel chains of replaceable communicating signal processing modulescalled
DataProcessors. Supporting multiple chains permits simultaneous computation of different types of parameters from the same
or different input signals. This enables the creation of systems that can simultaneously decode using different parameter types,
such as MFCC and PLP, and even parameter types derived from non-speech signals such as video [3].
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Fig. 2. Sphinx-4 FrontEnd. The FrontEnd comprises one or more parallel chains of communicating DataProcessors.

Like the ISIP [2] system, each DataProcessor in the FrontEndprovides an input and an output that can be connected to
another DataProcessor, permitting arbitrarily long sequences of chains. The inputs and outputs of each DataProcessorare
genericData objects that encapsulate processed input data as well as markers that indicate data classification events such as
end-point detection. The last DataProcessor in each chain is responsible for producing a Data object composed of parameterized
signals, calledFeatures, to be used by the Decoder.

Like the AVCSR system [3], Sphinx-4 permits the ability to produce parallel sequences of features. Sphinx-4 is unique,
however, in that it allows for an arbitrary number of parallel streams.

The communication between blocks follows a pull design. With a pull design, a DataProcessor requests input from an earlier
module only when needed, as opposed to the more conventionalpush design, where a module propagates its output to the
succeeding module as soon as it is generated. This pull design enables the processors to perform buffering, allowing consumers
to look forwards or backwards in time.

The ability to look forwards or backwards in time not only permits the Decoder to perform frame-synchronous Viterbi
searches [18], but also allows the decoder to perform other types of searches such as depth-first and A* [19].

Within the generic FrontEnd framework, the Sphinx-4 provides a suite of DataProcessors that implement common signal
processing techniques. These implementations include support for the following: reading from a variety of input formats
for batch mode operation, reading from the system audio input device for live mode operation, preemphasis, windowing
with a raised cosine transform (e.g., Hamming and Hanning windows), discrete fourier transform (via FFT), mel frequency
filtering, bark frequency warping, discrete cosine transform (DCT), linear predictive encoding (LPC), end pointing, cepstral
mean normalization (CMN), mel-cepstra frequency coefficient extraction (MFCC), and perceptual linear prediction coefficient
extraction (PLP).

Using the ConfigurationManager described in Section III, users can chain the Sphinx-4 DataProcessors together in any
manner as well as incorporate DataProcessor implementations of their own design. As such, the modular and pluggable nature
of Sphinx-4 not only applies to the higher-level structure of Sphinx-4, but also applies to the higher-level modules themselves
(i.e., the FrontEnd is a pluggable module, yet also consistsof pluggable modules itself).

V. L INGUIST

The Linguist generates the SearchGraph that is used by the decoder duringthe search, while at the same time hiding the
complexities involved in generating this graph. As is the case throughout Sphinx-4, the Linguist is a pluggable module,allowing
people to dynamically configure the system with different Linguist implementations.

A typical Linguist implementation constructs the SearchGraph using the language structure as represented by a given
LanguageModel and the topological structure of the AcousticModel (HMMs for the basic sound units used by the system).
The Linguist may also use a Dictionary (typically a pronunciation lexicon) to map words from the LanguageModel into
sequences of AcousticModel elements. When generating the SearchGraph, the Linguist may also incorporate sub-word units
with contexts of arbitrary length, if provided.

By allowing different implementations of the Linguist to beplugged in at runtime, Sphinx-4 permits individuals to provide
different configurations for different system and recognition requirements. For instance, a simple numerical digits recognition
application might use a simple Linguist that keeps the search space entirely in memory. On the other hand, a dictation application
with a 100K word vocabulary might use a sophisticated Linguist that keeps only a small portion of the potential search space
in memory at a time.

The Linguist itself consists of three pluggable components: the LanguageModel, the Dictionary, and the AcousticModel,
which are described in the following sections.

A. LanguageModel

The LanguageModel module of the Linguist provides word-level language structure, which can be represented by any
number of pluggable implementations. These implementations typically fall into one of two categories: graph-driven grammars
and stochastic N-Gram models. The graph-driven grammar represents a directed word graph where each node represents a
single word and each arc represents the probability of a wordtransition taking place. The stochastic N-Gram models provide
probabilities for words given the observation of the previous n-1 words.
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The Sphinx-4 LanguageModel implementations support a variety of formats, including the following:

• SimpleWordListGrammar: defines a grammar based upon a list of words. An optional parameter defines whether the
grammar “loops” or not. If the grammar does not loop, then thegrammar will be used for isolated word recognition. If
the grammar loops, then it will be used to support trivial connected word recognition that is the equivalent of a unigram
grammar with equal probabilities.

• JSGFGrammar: supports the JavaTMSpeech API Grammar Format (JSGF) [20], which defines a BNF-style, platform-
independent, and vendor-independent Unicode representation of grammars.

• LMGrammar: defines a grammar based upon a statistical language model. LMGrammar generates one grammar node per
word and works well with smaller unigram and bigram grammarsof up to approximately 1000 words.

• FSTGrammar: supports a finite-state transducer (FST) [21] in the ARPA FST grammar format.
• SimpleNGramModel: provides support for ASCII N-Gram models in the ARPA format. The SimpleNGramModel makes

no attempt to optimize memory usage, so it works best with small language models.
• LargeTrigramModel: provides support for true N-Gram models generated by the CMU-Cambridge Statistical Lan-

guage Modeling Toolkit [22]. The LargeTrigramModel optimizes memory storage, allowing it to work with very large
files of 100MB or more.

B. Dictionary

The Dictionary provides pronunications for words found in the LanguageModel. The pronunciations break words into
sequences of sub-word units found in the AcousticModel. TheDictionary interface also supports the classification of words
and allows for a single word to be in multiple classes.

Sphinx-4 currently provides implementions of the Dictionary interface to support the CMU Pronouncing Dictionary [23]. The
various implementations optimize for usage patterns basedon the size of the active vocabulary. For example, one implementation
will load the entire vocabulary at system initialization time, whereas another implementation will only obtain pronunciations
on demand.

C. AcousticModel

TheAcousticModelmodule provides a mapping between a unit of speech and an HMM that can be scored against incoming
features provided by the FrontEnd. As with other systems, the mapping may also take contextual and word position information
into account. For example, in the case of triphones, the context represents the single phonemes to the left and right of the
given phoneme, and the word position represents whether thetriphone is at the beginning, middle, or end of a word (or is
a word itself). The contextual definition is not fixed by Sphinx-4, allowing for the definition of AcousticModels that contain
allophones as well as AcousticModels whose contexts do not need to be adjacent to the unit.

Typically, the Linguist breaks each word in the active vocabulary into a sequence of context-dependent sub-word units.The
Linguist then passes the units and their contexts to the AcousticModel, retrieving the HMM graphs associated with thoseunits.
It then uses these HMM graphs in conjunction with the LanguageModel to construct the SearchGraph.

Unlike most speech recognition systems, which represent the HMM graphs as a fixed structure in memory, the Sphinx-4
HMM is merely a directed graph of objects. In this graph, eachnode corresponds to an HMM state and each arc represents the
probability of transitioning from one state to another in the HMM. By representing the HMM as a directed graph of objects
instead of a fixed structure, an implementation of the AcousticModel can easily supply HMMs with different topologies. For
example, the AcousticModel interfaces do not restrict the HMMs in terms of the number of states, the number or transitions
out of any state, or the direction of a transition (forward orbackward). Furthermore, Sphinx-4 allows the number of states in
an HMM to vary from one unit to another in the same AcousticModel.

Each HMM state is capable of producing a score from an observed feature. The actual code for computing the score is
done by the HMM state itself, thus hiding its implementationfrom the rest of the system, even permitting differing probability
density functions to be used per HMM state. The AcousticModel also allows sharing of various components at all levels. That
is, the components that make up a particular HMM state such asGaussian mixtures, transition matrices, and mixture weights
can be shared by any of the HMM states to a very fine degree.

As with the rest of Sphinx-4, individuals can configure Sphinx-4 with different implementations of the AcousticModel based
upon their needs. Sphinx-4 currently provides a single AcousticModel implementation that is capable of loading and using
acoustic models generated by the Sphinx-3 trainer.

D. SearchGraph

Even though Linguists may be implemented in very different ways and the topologies of the search spaces generated by
these Linguists can vary greatly, the search spaces are all represented as a SearchGraph. Illustrated by example in Figure 3,
the SearchGraph is the primary data structure used during the decoding process.



SMLI TR2004-0811 c©2004 SUN MICROSYSTEMS INC. 5

Fig. 3. Example SearchGraph. The SearchGraph is a directed graph composed of optionally emitting SearchStates and SearchStateArcs with transition
probabilities. Each state in the graph can represent components from the LanguageModel (words in rectangles), Dictionary (sub-word units in dark circles)
or AcousticModel (HMMs).

The graph is a directed graph in which each node, called aSearchState, represents either anemitting or a non-emitting
state. Emitting states can be scored against incoming acoustic features while non-emitting states are generally used to represent
higher-level linguistic constructs such as words and phonemes that are not directly scored against the incoming features. The
arcs between states represent the possible state transitions, each of which has a probability representing the likelihood of
transitioning along the arc.

The SearchGraph interface is purposely generic to allow fora wide range of implementation choices, relieving the assumptions
and hard-wired constraints found in previous recognition systems. In particular, the Linguist places no inherent restrictions on
the following:

• Overall search space topology
• Phonetic context size
• Type of grammar (stochastic or rule based)
• N-Gram language model depth

A key feature of the SearchGraph is that the implementation of the SearchState need not be fixed. As such, each Linguist
implementation typically provides its own concrete implementation of the SearchState that can vary based upon the characteris-
tics of the particular Linguist. For instance, a simple Linguist may provide an in-memory SearchGraph where each SearchState
is simply a one-to-one mapping onto the nodes of the in-memory graph. A Linguist representing a very large and complex
vocabulary, however, may build a compact internal representation of the SearchGraph. In this case, the Linguist would generate
the set of successor SearchStates by dynamically expandingthis compact representation on demand.

The manner in which the SearchGraph is constructed affects the memory footprint, speed, and recognition accuracy. The
modularized design of Sphinx-4, however, allows differentSearchGraph compilation strategies to be used without changing
other aspects of the system. The choice between static and dynamic construction of language HMMs depends mainly on the
vocabulary size, language model complexity and desired memory footprint of the system, and can be made by the application.

E. Implementations

As with the FrontEnd, Sphinx-4 provides several implementations of the Linguist to support different tasks.
TheFlatLinguist is appropriate for recognition tasks that use context-freegrammars (CFG), finite-state grammars (FSG),

finite-state transducers (FST) and small N-Gram language models. The FlatLinguist converts any of these external language
model formats into an internal Grammar structure. The Grammar represents a directed word graph where eachGrammarNode
represents a single word, and each arc in the graph represents the probability of a word transition taking place. The FlatLinguist
generates the SearchGraph directly from this internal Grammar graph, storing the entire SearchGraph in memory. As such, the
FlatLinguist is very fast, yet has difficulty handling grammars with high branching factors.

The DynamicFlatLinguist is similar to the FlatLinguist in that is is appropriate for similar recognition tasks. The
main difference is that the DynamicFlatLinguist dynamically creates the SearchGraph on demand, giving it the capability to
handle far more perplex grammars. With this capability, however, comes a cost of a modest decrease in run time performance.

TheLexTreeLinguist is appropriate for large vocabulary recognition tasks thatuse large N-Gram language models. The
order of the N-Grams is arbitrary, and the LexTreeLinguist will support true N-Gram decoding. The LexTreeLinguist organizes
the words in a lex tree [6], a compact method of representing large vocabularies. The LexTreeLinguist uses this lex tree to
dynamically generate SearchStates, enabling it to handle very large vocabularies using only a modest amount of memory.The
LexTreeLinguist supports ASCII and binary language modelsgenerated by the CMU-Cambridge Statistical Language Modeling
Toolkit [22].
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VI. D ECODER

The primary role of the Sphinx-4Decoderblock is to use Features from the FrontEnd in conjunction with the SearchGraph
from the Linguist to generateResulthypotheses. The Decoder block comprises a pluggableSearchManagerand other supporting
code that simplifies the decoding process for an application. As such, the most interesting component of the Decoder block is
the SearchManager.

The Decoder merely tells the SearchManager to recognize a set of Feature frames. At each step of the process, the
SearchManager creates aResultobject that contains all the paths that have reached a final non-emitting state. To process
the result, Sphinx-4 also provides utilities capable of producing a lattice and confidence scores from the Result. Unlike other
systems, however, applications can modify the search spaceand the Result object in between steps, permitting the application
to become a partner in the recognition process.

Like the Linguist, the SearchManager is not restricted to any particular implementation. For example, implementations of
the SearchManager may perform search algorithms such as frame-synchronous Viterbi, A*, bi-directional, and so on.

Each SearchManager implementation uses a token passing algorithm as described by Young [24]. A Sphinx-4 token is an
object that is associated with a SearchState and contains the overall acoustic and language scores of the path at a given point, a
reference to the SearchState, a reference to an input Feature frame, and other relevant information. The SearchState reference
allows the SearchManager to relate a token to its state output distribution, context-dependent phonetic unit, pronunciation,
word, and grammar state. Every partial hypothesis terminates in an active token.

As illustrated in Figure 1, implementations of a SearchManager may construct a set of active tokens in the form of an
ActiveListat each time step, though the use of an ActiveList is not required. As it is a common technique, however, Sphinx-4
provides a sub-framework to support SearchManagers composed of anActiveList, a Pruner and aScorer.

The SearchManager sub-framework generates ActiveLists from currently active tokens in the search trellis by pruning using
a pluggablePruner. Applications can configure the Sphinx-4 implementations of the Pruner to perform both relative and
absolute beam pruning. The implementation of the Pruner is greatly simplifed by the garbage collector of the Java platform.
With garbage collection, the Pruner can prune a complete path by merely removing the terminal token of the path from the
ActiveList. The act of removing the terminal token identifies the token and any unshared tokens for that path as unused,
allowing the garbage collector to reclaim the associated memory.

The SearchManager sub-framework also communicates with the Scorer, a pluggable state probability estimation module that
provides state output density values on demand. When the SearchManager requests a score for a given state at a given time,
the Scorer accesses the feature vector for that time and performs the mathematical operations to compute the score. In the case
of parallel decoding using parallel acoustic models, the Scorer matches the acoustic model set to be used against the feature
type.

The Scorer retains all information pertaining to the state output densities. Thus, the SearchManager need not know whether
the scoring is done with continuous, semi-continuous or discrete HMMs. Furthermore, the probability density functionof each
HMM state is isolated in the same fashion. Any heuristic algorithms incorporated into the scoring procedure for speeding it
up can also be performed locally within the scorer. In addition, the scorer can take advantage of multiple CPUs if they are
available.

The current Sphinx-4 implementation provides pluggable implementations of SearchManagers that support frame synchronous
Viterbi [18], Bushderby [25], and parallel decoding [26]:

• SimpleBreadthFirstSearchManager: performs a simple frame synchronous Viterbi search with pluggable Pruner
that is called on each frame. The default Pruner manages bothabsolute and relative beams. This search manager produces
Results that contains pointers to active paths at the last frame processed.

• WordPruningBreadthSearchManager: performs a frame synchronous Viterbi search with a pluggable Pruner that
is called on each frame. Instead of managing a single ActiveList, it manages aset of ActiveLists, one for each of the
state types defined by the Linguist. Pruning is performed in the decomposition and sequence order of the state types as
defined by the Linguist.

• BushderbySearchManager: performs a generalized frame-synchronous breadth-first search using the Bushderby
algorithm, performing classifications based on free energyas opposed to likelihoods.

• ParallelSearchManager: performs a frame synchronous Viterbi search on mulitple feature streams using a factored
language HMM approach as opposed to the coupled HMM approachused by AVCSR [3]. An advantage of the factored
search is that it can be much faster and far more compact than afull search over a compound HMM.

VII. D ISCUSSION

The modular framework of Sphinx-4 has permitted us to do somethings very easily that have been traditionally difficult.
For example, both the parallel and Bushderby SearchManagerimplementations were created in a relatively short period of
time and did not require modification to the other componentsof the system.

The modular nature of Sphinx-4 also provides it with the ability to use modules whose implementations range from general
to specific applications of an algorithm. For example, we were able to improve the runtime speed for the RM1 [27] regression
test by almost 2 orders of magnitude merely by plugging in a new Linguist and leaving the rest of the system the same.
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Test WER RT
Sphinx-3.3 Sphinx-4 Sphinx-3.3 Sphinx-4 (1 CPU) Sphinx-4 (2 CPU)

TI46 (11 words) 1.217 0.168 0.14 0.03 0.02
TIDIGITS (11 words) 0.661 0.549 0.16 0.07 0.05
AN4 (79 words) 1.300 1.192 0.38 0.25 0.20
RM1 (1000 words) 2.746 2.739 0.50 0.50 0.40
WSJ5K (5000 words) 7.323 7.174 1.36 1.22 0.96
HUB-4 (64000 words) 18.845 18.878 3.06 4.40 3.80

TABLE I

SPHINX-4 PERFORMANCE. WORD ERRORRATE (WER) IS GIVEN IN PERCENT. REAL T IME (RT) SPEED IS THE RATIO OF UTTERANCE DURATION TO THE

TIME TO DECODE THE UTTERANCE. FOR BOTH, A LOWER VALUE INDICATES BETTER PERFORMANCE. DATA GATHERED ON A DUAL CPU 1015MHZ

ULTRASPARCR©III WITH 2G RAM

Furthermore, the modularity of Sphinx-4 also allows it to support a wide variety of tasks. For example, the various
SearchManager implementations allow Sphinx-4 to efficiently support tasks that range from small vocabulary tasks such
as TI461 [28] and TIDIGITS2 [29] to large vocabulary tasks such as HUB-4 [30]. As anotherexample, the various Linguist
implementations allow Sphinx-4 to support different taskssuch as traditional CFG-based command-and-control applications in
addition to applications that use stochastic language models.

The modular nature of Sphinx-4 was enabled primarily by the use of the Java programming language. In particular, the ability
of the Java platform to load code at run time permits simple support for the pluggable framework, and the Java programming
language construct of interfaces permits separation of theframework design from the implementation.

The Java platform also provides Sphinx-4 with a number of other advantages:

• Sphinx-4 can run on a variety of platforms without the need for recompilation
• The rich set of platform APIs greatly reduces coding time
• Built-in support for multithreading makes it simple to experiment with distributing decoding tasks across multiple threads
• Automatic garbage collection helps developers to concentrate on algorithm development instead of memory leaks

On the downside, the Java platform can have issues with memory footprint. Also related to memory, some speech engines
will directly access the platform memory directly in order to optimize the memory throughput during decoding. Direct access
to the platform memory model is not permitted with the Java programming language.

A common misconception people have regarding the Java programming language is that it is too slow. When developing
Sphinx-4, we carefully instrumented the code to measure various aspects of the system, comparing the results to its predecessor,
Sphinx-3.3. As part of this comparison, we tuned Sphinx-3.3to get its optimal performance for both real-time speed (RT)and
word error rate (WER). We then tuned Sphinx-4 to match or better the WER of Sphinx-4, comparing the resulting RT speeds.
Table I provides a summary of this comparison, showing that Sphinx-4 performs well in comparison to Sphinx-3.3 (for both
WER and RT, a lower number indicates better performance).

An interesting result of this comparison helps to demonstrate the strength of the pluggable and modular design of Sphinx-4.
Sphinx-3.3 has been designed for more complex N-Gram language model tasks with larger vocabularies. As a result, Sphinx-3.3
does not perform well for “easier” tasks such as TI46 and TIDIGITS. Because Sphinx-4 is a pluggable and modular framework,
we were able to plug in different implementations of the Linguist and SearchManager that were optimized for the particular
tasks, allowing Sphinx-4 to perform much better. For example, note the dramatic difference in WER and RT performance
numbers for the TI46 task.

Another interesting aspect of the performance study shows us that raw computing speed is not our biggest concern when it
comes to RT performance. For the 2 CPU results in this table, we used a Scorer that equally divided the scoring task across
the available CPUs. While the increase in speed is noticeable, it is not as dramatic as we expected. Further analysis helped
us determine that only about 30 percent of the CPU time is spent doing the actual scoring of the acoustic model states. The
remaining 70 percent is spent doing non-scoring activity, such as growing and pruning the ActiveList. Our empirical results
also show that the Java platform’s garbage collection mechanism only accounts for 2-3 percent of the overall CPU usage.

VIII. F UTURE WORK

Sphinx-4 currently provides just one implementation of theAcousticModel, which loads Sphinx-3.3 models created by the
SphinxTrain acoustic model trainer. The SphinxTrain trainer produces HMMs with a fixed number of states, fixed topology,
and fixed unit contexts. Furthermore, the parameter tying [5] between the SphinxTrain HMMs and their associated probability
density functions is very coarse. Because the Sphinx-4 framework does not have these restrictions, it is capable of handling
HMMs with an abitrary topology over an arbitrary number of states and variable length left and right unit contexts. In addition,

1TI46 refers to the NIST CD-ROM Version of the Texas Instruments-developed 46-Word Speaker-Dependent Isolated Word Speech Database.
2TIDIGITS refers to the NIST CD-ROM Version of the Texas Instruments-developed Studio Quality Speaker-Independent Connected-Digit Corpus.
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the Sphinx-4 acoustic model design allows for very fine parameter tying. We predict that taking advantage of these capabilities
will greatly increase both the speed and accuracy of the decoder.

We have created a design for a Sphinx-4 acoustic model trainer that can produce acoustic models with these desirable
characteristics [31]. As with the Sphinx-4 framework, the Sphinx-4 acoustic model trainer has been designed to be a modular,
pluggable system. Such an undertaking, however, represents a significant effort. As an interim step, another area for experi-
mentation is to create FrontEnd and AcousticModel implementations that support the models generated by the HTK system
[1].

We have also considered the architectural changes that would be needed to support segment-based recognition frameworks
such as the MIT SUMMIT speech recognizer [32]. A cursory analysis indicates the modifications to the Sphinx-4 architecture
would be minimal, and would provide a platform to do meaningful comparisons between segemental and fixed-frame-size
systems.

Finally, the SearchManager provides fertile ground for implementing a variety of search approaches, including A*, fast-match,
bi-directional, and multiple pass algorithms.

IX. CONCLUSION

After careful development of the Sphinx-4 framework, we created a number of differing implementations for each module
in the framework. For example, the FrontEnd implementations support MFCC, PLP, and LPC feature extraction; the Linguist
implementations support a variety of language models, including CFGs, FSTs, and N-Grams; and the Decoder supports a
variety of SearchManager implementations, including traditional Viterbi, Bushderby, and parallel searches. Using the Config-
urationManager, the various implementations of the modules can be combined in various ways, supporting our claim that we
have developed a flexible pluggable framework. Furthermore, the framework is performing well both in speed and accuracy
when compared to its predecessors.

The Sphinx-4 framework is already proving itself as being “research ready,” easily supporting various work such as the
parallel and Bushderby SearchManagers as well as a specialized Linguist that can apply “unigram smear” probabilities to lex
trees. We view this as only the very beginning, however, and expect Sphinx-4 to support future areas of core speech recognition
research.

Finally, the source code to Sphinx-4 is freely available under a BSD-style license. The license permits others to do academic
and commercial research and to develop products without requiring any licensing fees. More information is available at
http://cmusphinx.sourceforge.net/sphinx4.
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