
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*����������

© 2010, IJARCS All Rights Reserved 261

�����������	
��
�	�

Software Development Life Cycle: A Detailed Study

Ms Namrata Jain*

Asst. Professor

Jain Arts, Science & Commerce College

Mandsaur (MP), India

E-mail:namrata_12664@rediff.com

Anurag Jain
Jr. Software Developer

SB InfoTech

Indore (MP), India

E-mail:anurag_51787@rediff.com

Abstract: A software development process, also known as a software development life cycle (SDLC), is a structure imposed on the development

of a software product. Similar terms include software life cycle and software process. It is often considered a subset of systems development life

cycle. There are several models for such processes, each describing approaches to a variety of tasks or activities that take place during the

process. Some people consider a lifecycle model a more general term and a software development process a more specific term. For example,

there are many specific software development processes that 'fit' the spiral lifecycle model. ISO 12207 is an ISO standard for software lifecycle

processes.

It aims to be the standard that defines all the tasks required for developing and maintaining software. Software Development Life Cycle or

SDLC is a model of a detailed plan on how to create, develop, implement and eventually fold the software. It’s a complete plan outlining how

the software will be born, raised and eventually be retired from its function. The Software development life cycle (SDLC) is the entire process of

formal, logical steps taken to develop a software product.

Keywords: SDLC Models, Software Planning, Requirements , Analysis, Design and Testing.

I. INTRODUCTION

A software development process is a structure imposed on

the development of a software product. Synonyms include

software life cycle and software process. There are several

models for such processes, each describing approaches to a

variety of tasks or activities that take place during the

process [5 and 16]. Software Development Lifecycle

(SDLC) provides structure so that team members and

project stakeholders all understand the current state of the

project. It supports visibility and predictability while

enabling project teams to make specifics choices that

achieve the business goals and constraints. Construx can

provide guidance, support, and expertise as you define your

SDLC [15][13].

A common misconception is that methodology is

synonymous with technology or industry constructs.

Structured programming, Event Driven, Client-Server,

Object-Oriented, n- Tier, and Service-Oriented

Development of Applications (SODA) are all examples of

constructs that have evolved over time to deliver faster or

better systems. They are not methodologies. A methodology

is the process within which any or all of these might be

utilized and controlled to deliver the solutions. While

technology constructs may influence your selection of a

methodology in the short term, value to the business should

be the predominant driver of methodology selection.

Additionally, the type of organization [13][15][12]

and its focus may significantly influence the selection. Case

in point; an Information Technology (IT) or Management

Information Systems (MIS) organization will likely select a

significantly different methodology from that of a Line of

Business (LOB) or Functional organization.

The large and growing body of software development

organizations implement process methodologies. Many of

them are in the defense industry, which in the U.S. requires

a rating based on 'process models' to obtain contracts.

A decades-long goal has been to find repeatable, predictable

processes that improve productivity and quality. Some try to

systematize or formalize the seemingly unruly task of

writing software[11][5]. Others apply project management

techniques to writing software. Without project

management, software projects can easily be delivered late

or over budget. With large numbers of software projects not

meeting their expectations in terms of functionality, cost, or

delivery schedule, effective project management appears to

be lacking.

Organizations may create a Software Engineering Process

Group (SEPG), which is the focal point for process

improvement. Composed of line practitioners who have

varied skills, the group is at the center of the collaborative

effort of everyone in the organization who is involved with

software engineering process improvement [4][2][13].

In a rapidly changing world people’ s needs are also

changing rapidly. From simple additions to their car engines

to a new technology that should be launched online people

will always lack something. It is for this reason that you will

always find experts from different fields working on new

ideas everyday.

II. SDLC MODEL

A framework that describes the activities performed at each

stage of a software development project [11].

Namrata Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,261-264

© 2010, IJARCS All Rights Reserved 262 �

A. Waterfall Model

• Requirements – defines needed information, function,

behavior, performance and interfaces.

• Design – data structures, software architecture, interface

representations, algorithmic details.

• Implementation – source code, database, user

documentation, testing [11][3][7][6].

B. Incremental Model

The Incremental methodology is a derivative of the

Waterfall. It maintains a series of phases

which are distinct and cascading in nature. Each phase is

dependent on the preceding phase

before it can begin and requires a defined set of inputs from

the prior phase [14][6]. However, as the

graphic below portrays, in the design phase development is

broken into a series of increments

that can be constructed sequentially or in parallel. The

methodology then continues focusing

only on achieving the subset of requirements for that

development increment. The process

continues all the way through Implementation. Increments

can be discrete components (e.g.,

database build), functionality (e.g., order entry), or

integration activities (e.g., integrating a

Human Resources package with your Enterprise Resource

Planning application). Again, subsequent

phases do not change the requirements but rather build upon

them in driving to completion [15][13][16][10].

C. Evolutionary (also Known as Iterative)

The Evolutionary methodology also maintains a series of

phases that are distinct and cascading in nature. As in the

other methodologies, each phase is dependent on the

preceding phase before it can begin and requires a defined

set of inputs from the prior phase [14][16]. As the graphic

below portrays, the Evolutionary methodology is similar to

the Incremental in that during the design phase development

is broken into a distinct increment or subset of requirements.

However, only this limited set of requirements is

constructed through to implementation. The process then

repeats itself with the remaining requirements becoming an

input to a new requirements phase. The “left over”

requirements are give consideration for development along

with any new functionality or changes. Another Iteration of

the process is accomplished through implementation with

the result being an “Evolved” form of the same software

product. This cycle continues with the full functionality

“Evolving” overtime as multiple iterations are completed

[9][13][15].

V-SHAPED SDLC MODEL

• A variant of the Waterfall that emphasizes the verification

and validation of the product.

• Testing of the product is planned in parallel with a

corresponding phase of development [11][13][16][8].

D. Rapid Application Model (RAD)

The RAD methodology is a significant departure from the

other methodologies in that it is time driven rather than

requirements driven. Surely requirements are what define

the functionality of the software [16][13][15].

• Requirements planning phase (a workshop utilizing

structured discussion of business problems)

• User description phase – automated tools capture

information from users

• Construction phase – productivity tools, such as code

generators, screen generators, etc. inside a time-box. (“Do

until done”)

• Cutover phase -- installation of the system, user acceptance

testing and user training [15][14][2].

Namrata Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,261-264

© 2010, IJARCS All Rights Reserved 263 �

9. Spiral Model

Much as the other methodologies, the Spiral methodology

maintains a series of phases

that are distinct and cascading in nature [3]. As in the other

methodologies, each phase is

dependent on the preceding phase before it can begin and

requires a defined set of inputs

from the prior phase. However, as the graphic below

portrays, the Spiral methodology

iterates within the Requirements and Design phases. Unlike

the other models, multiple

iterations are utilized to better define requirements and

design by assessing risk, simulating, and validating

progress. The Spiral methodology also relies heavily on the

use and evolution of prototypes to help define requirements

and design [13][14][15][16][6].

Investigation

– Identify problems or opportunities

• Systems Analysis

– How can we solve the problem

• Systems Design

– Select and plan the best solution

• Systems Implementation

– Place solution into effect

• Systems Maintenance and Review

- Evaluate the results of the solution [15][11].

 IV. SOFTWARE REQUIREMENTS

All requirements captured will have clearly stated source

(customer contact name, title, and phone number),

description, business case, and detailed specifications (if

any) [15][2]

• Requirements gathered from existing customers at

minimum twice a year and when opportunity

presents (source Product Managers)

• Market drivers defined by competitive analysis

(source Marketing)

• Requirements from bugs found in existing product

releases (source Operations)

• Other requirements gathered (source developers

and company architect) [13][6][12].

V. SOFTWARE ANALYSIS

The analysis phase defines the requirements of the system,

independent of how these requirements will be

accomplished. This phase defines the problem that the

customer is trying to solve. The deliverable result at the end

of this phase is a requirement document. Ideally, this

document states in a clear and precise fashion what is to be

built. This analysis represents the ``what'' phase. The

requirement document tries to capture the requirements from

the customer's perspective by defining goals and interactions

at a level removed from the implementation details. The

requirement document may be expressed in a formal

language based on mathematical logic. Traditionally, the

requirement document is written in English or another

written language [2][16][1][12].

The requirement document does not specify the architectural

or implementation details, but specifies information at the

higher level of description. The problem statement, the

customer's expectations, and the criteria for success are

examples of high-level descriptions. There is a fuzzy line

between high-level descriptions and low-level details.

Sometimes, if an exact engineering detail needs to be

specified, this detail will also appear in the requirement

document. This is the exception and should not be the rule.

These exceptions occur for many reasons including

maintaining the consistency with other established systems,

availability of particular options, customer's demands, and to

establish, at the requirement level, a particular architecture

vision. An example of a low-level detail that might appear in

the requirement document is the usage of a particular

vendor's product line, or the usage of some accepted

computer industry standard, or a constraint on the image

size of the application [13,16 and 5].

Top-down and bottom-up approaches force a greater

distinction between high levels and low levels of detail.

Namrata Jain et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,261-264

© 2010, IJARCS All Rights Reserved 264 �

Interactive approaches lead to the refinement of those

details.

The requirement descriptions of the things in the system and

their actions does not imply an architecture design rather a

description of the artifacts of the system and how they

behave, from the customer's perspective. Later, in the design

phase, these requirement descriptions are mapped into

computer science based primitives, such as lists, stacks,

trees, graphs, algorithms, and data structures [15][12].

VI. SOFTWARE DESIGN

Software design is a process of problem solving and

planning for a software solution. After the purpose and

specifications of software are determined, software

developers will design or employ designers to develop a

plan for a solution. It includes low-level component and

algorithm implementation issues as well as the architectural

view [11][3].

Design team will “initially” consist of the following

members

• Engineering Manager

• Senior Product Architect

• Development Team Lead

Design document created by developer will be presented to

design team and representatives of QA for a detailed review.

Developer will be asked to explain the overall goal his/her

design, review the changes to the code in detail, and field

questions regarding the impact of the changes on the

product as well as the compatibility with previous releases
[13].

VII. SOFTWARE TESTING

Software testing is an investigation conducted to provide

stakeholders with information about the quality of the

product or service under test.[1] Software testing also

provides an objective, independent view of the software to

allow the business to appreciate and understand the risks of

software implementation. Test techniques include, but are

not limited to, the process of executing a program or

application with the intent of finding software bugs (errors

or other defects) [1][3].

Software testing can also be stated as the process of

validating and verifying that a software

program/application/product:

1. meets the business and technical requirements that

guided its design and development;

2. works as expected; and

3. can be implemented with the same characteristics.

Software testing, depending on the testing method

employed, can be implemented at any time in the

development process. However, most of the test effort

occurs after the requirements have been defined and the

coding process has been completed. As such, the

methodology of the test is governed by the software

development methodology adopted [5 and 3].

QA Testing phases will begin once the design document,

test plan and test matrixes have been approved. QA will then

perform the following testing procedures:[15]

• Functional Testing

• Regression Testing

• Performance Testing

• Load Testing

• Manual Testing

• Exploratory Testing

VIII. CONCLUSION

While selecting the right SDLC methodology is challenging,

the challenge is not insurmountable. With a clear

understanding of the business and a framework for

guidance, selecting a fitting SDLC can be readily achieved.

A proper methodology in a maturing environment will

enable the business to build software that assists the

business in realizing its value proposition [3][5].

 IX. REFERENCES

[1] http://www.extremeprogramming.org

[2] http://c2.com/cgi/wiki?ExtremeProgrammingRoad

map

[3] http://www.google.co.in/

[4] http://www.xprogramming.com/

[5] http://en.wikipedia.org/wiki/Software_development

[6] http://codebetter.com/raymondlewallen/2005/07/13

/software-development-life-cycle-models/

[7] http://infolab.stanford.edu/~burback/watersluice/no

de4.html

[8] http://www.clarotesting.com/userimages/vmodel3.J

PG

[9] http://condor.depaul.edu/sjost/hci430/documents/pr

ototypes general/Dolan_files/xt94g01i.gif

[10] http://www.qualitytesting.info/profiles/blogs/sdlc-

incremental-model

[11] http://cab.org.in/Lists/Knowledge%20Bank/Attach

ments/83/SDLC.pdf

[12] www.stylusinc.com/Common/.../SoftwarePhilosop

hy.php

[13] Pressman - Software Engineering: A Practitioner's

Approach, 6th edition, SPANISH

[14] Selecting a Software Development Life Cycle

[15] (SDLC) Methodology ,A Practical Decision

Framework to Maximize Business Value. By : Dr.

Alan E. Dillman

[16] Component-Based Software Engineering. By:

Thomas Jell

