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Abstract: Deep Learning has gained tremendous importance due to its advancement in various fields of text mining, speech recognition, 
computer vision, natural language processing etc. The weights of the input layer attributes and the series of hidden layers of deep learning plays 
a dominant role in its fast classification and accuracy. The weight adjustment algorithm for the Deep Learning is proposed in this paper. 
Generally, the weights can be determined by mathematical techniques, can be suggested by the domain experts or by considering random 
weights. In this proposed work, the weights of a neural network are computed mathematically by constructing the fuzzy decision tree. It is 
proposed to use the least gini index value of the attribute of the fuzzy decision tree as the weight of the corresponding attribute for the weight 
adjustment algorithm to classify using neural networks. Fast classification and accuracy is achieved with the computed gini weights of the deep 
learning which outperforms when compared with the fuzzy decision tree classifiers. 
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1. INTRODUCTION 

 
Classification is a very useful and powerful technique with 
which the hidden knowledge patterns can be extracted from 
data. There are standard ID3, C4.5 algorithms for 
classification purpose which uses Entropy as a splitting 
criterion, but the SLIQ algorithm which is applied here uses 
gini index as split measure. SLIQ is a decision tree classifier 
which can deal with both the numeric and categorical 
attributes. It uses a pre-sorting technique and enables to scale 
for large data sets irrespective of number of classes, 
attributes and records thus making it more significant in the 
data classification.  There is a decision tree classifier 
CLOUDS [1] which creates the splitting points for the 
numeric attributes. 
Crisp decision tree algorithms almost faces the trouble of 
arriving at sharp decision boundaries which can be rarely 
seen in the real life classification problems and hence the 
fuzzy decision trees which are more efficient are used in this 
paper. The gini index is used as the best split measure for the 
fuzzy decision trees. The problem with the fuzzy decision 
trees is, appropriate membership function cannot be 
identified. In fact, the previous studies / techniques proves 
that the fuzzy decision trees contains gradual transitions 
between attribute values when compared with crisp decision 
trees. Generally the attributes of the data set are converted in 
to fuzzy values using a triangular or trapezoidal membership 
function. In this proposed work, the fuzzy values are 
computed for the split values of an attribute during decision 
tree construction.  
One of the approach to build a decision tree is by using the 
parameter called gini index [2]. Gini index is calculated for 
all the attributes at various split points and the attribute 
having least value of gini index is decided as the ROOT 

which is considered as the Best classifier attribute. So, lot of 
PRIORITY & WEIGHTAGE is given for the Root attribute 
for classifying the records. That means the  minimum / least 
value of gini index of an attribute tells that the records of that 
attribute are well distributed and would be classified with 
more accuracy and Hence that attribute would be decided as 
the ROOT of the decision tree.   
On the other hand, Deep Learning is a type of Artificial 
neural network which contains more than one hidden layer 
and learns to perform the classification tasks directly from 
images, text, sound. The weight of an attribute of Deep 
Learning model can be computed using few mathematical 
techniques or can be suggested by the domain experts or 
simply using the Random weights. The proper assigning of 
weights of neural network leads to rapid computations and 
achieve more classification accuracy. In this work, it is 
proposed to assign the weight of attribute of neural network 
model mathematically by constructing fuzzy decision tree. 
Then the technique of applying the least value of gini index 
value of the attribute as the weight [3] [4] of the 
corresponding attribute to classify the same data set using 
Neural Networks is proposed in this model. Here, the 
proposed novel approach aims to fuzzify the decision 
boundary at each node of the decision tree and build an 
efficient neural networks model with proposed gini weights 
to achieve better classification accuracy. The proposed gini 
weights are considered and applied on various types of 
neural networks such as Deep Learning, Backpropagation, 
Multi Layer Feed Forward and good results are observed in 
all the cases. 
The rest of the paper is structured in the following way. 
Section 2 explains the SLIQ & GFDT algorithms and 
calculates the split values, fuzzy values & gini values of all 
the attributes and section 3 is used for the fuzzy decision tree 
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construction. And section 4 stresses on the proposed 
methodology and illustrates the usage of gini values for the 
nodes of fuzzy decision tree as the weights and narrates the 
classification process using neural networks. Section 5 
emphasizes on the various implementations using decision 
tree and different types of neural networks such as Deep 
Learning, Backpropagation, Multi Layer Feed Forward and 
compare the classification accuracy by giving various types 
of inputs. 

 
2. SLIQ & GFDT ALGORITHM  

 
In this approach, Fuzzified decision tree would be 
constructed with gini index as best split measure. So, the 
concept of split point, fuzzy value and gini index would be 
explained here. In this proposed work, the Wisconsin data set 
is used which contains 699 tuples. The data set consists of id, 
9 attributes and a class label. There are some missing values 
and the preprocessing is done to obtain the complete data. 
The 3-fold cross validation is performed on the data set and 
three pairs of training and testing sets were prepared. For 
easy understanding, a sample data of 20 records is taken 
which contains attributes a1, a2, a3, class label (refer table 
1).   
Every attribute may contain several split points and the gini 
index is computed for all the attributes at all the split points. 
Firstly, to compute the split point, attribute, class label from 
the sample data is taken. And the attribute is sorted in 
ascending order, then due to sorting of the attribute, class 
label records would also be altered correspondingly. There 
are only two class labels 1 & 2 in the data set. Then after 
sorting, the class label is verified from top to bottom in each 
attribute list. If there is a change observed in the class label 
from “1 to 2”  or “2 to 1”, then the corresponding attribute 
values related to class label 1 and class label 2(or class label 
2 & class label 1) are taken and average them and their 
average value would be preserved as split point respectively. 
 

Table 1 – sample data set 

 
 
The split points would be computed for all the attributes 
(refer table 2). let’s consider attribute a2 which is computed 
in the following way. Column a2 is sorted, and the 
corresponding class label have altered. And the change in 
class label from “1 to 2” or “2 to 1” is verified and we can 

notice two split points at (58,66) and (66,68). Randomly, 
let’s calculate the split point of attribute a2 at (66,68). 
 

 
 

Here the split point would be average of 66, 68 which comes 
to 67.And the membership value for each record µ by default 
is taken as 1/c (c is the number of class labels used which are 
2) which comes to 0.5. Then the standard deviation is 
calculated for the attribute a2 which comes to 3.451087.  
Table 2 – Data set, split points & fuzzy values 
 

 
 

 

// The attributes  sno, a1,a2,…a9, class. , m – number of 
attributes, n – number of records,  sp - split point  
Function Split()  
{ 
for( I = 1  to m )  
{ 
sort  a i 
for( j = 1 to n ) 
{ 
if ( ( class label [ j ] ==1 && class label [ j+1 ] ==2) ||( 
class label [ j ] ==2 && class label [ j+1 ] ==1)) 
sp [ j ] =  (aj + a(j+1) ) / 2  
}  }  } 
 

//c  - number of class labels , n – number of records 
Function Fuzzyvalue() 
{ 
µ = 1/c   
for (i  = 1 to sp ) 
{ 
x1 [ i ] = 1- 1/(1+exp( -(σ) * ( x - split point))) 
x2[i] = x1 [ i] * µ  
} 
for (i  = sp to n  ) 
{ 
x3 [ i ] =  1 / (1+exp( -(σ) * ( x - split point))) 
x4[i] = x3 [ i] * µ  
}  } 
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Crisp decision tree algorithms almost faces the trouble of 
arriving at sharp decision boundaries and to overcome those 
problems, In this model the fuzzification [5] [6] of decision 
boundary at each node of the decision tree is proposed to 
provide gradual transitions between attribute values. For the 
set of above records above the split point is treated as top 
partition, the set of records below the split point is treated as 
bottom partition and the fuzzy value is computed for all the 
records of both top, bottom partitions. 
Fuzzy value (top partition) = 1- 1/(1+exp( -(σ) * (a2-split 
point))) 
Fuzzy value (bottom partition) = 1/(1+exp( -(σ) * (a2-split 
point))) 
Now, let’s compute the fuzzy values for attribute a2 (refer 
table2). Here, the records from 58 to 66 of attribute a2 would 
be treated as top partition and 68 to last 69 as bottom 
partition. It means, x1 is computed for attribute a2 from 58 to 
66 and other records it is taken as zero value. And x2 is 
computed for attribute a2 from 68 to last 69 and other 
records it is taken as zero value. And x1*µ, x2*µ are 
computed in the similar manner. The final fuzzy value is 
computed by merging both x1*µ, x2*µ. Lastly, the “sno” is 
sorted to get the records from 1 to the end of training data 
set. 
Gini index / coefficient tells that “If all persons hold the same 
percentage of a resource, inequality is at a minimum, and If a 
single person holds all of a given resource, inequality is at a 
maximum”. That means the minimum / least value of gini 
index of an attribute tells that the records of that attribute are 
well distributed and would be classified with more accuracy. 
 
Then the gini index is computed using the final fuzzy value f  
as  
 
 Gi ( split point )  =       

 
Where p is the total number of partitions [7] , c is the total 
number of class labels, S is the sum of fuzzy membership 
values, Sp  is the sum of fuzzy membership values of a 
partition, Spc  is the sum of fuzzy membership values of a 
partition of a class. 
From the table 2, the number of class labels  c = 2, the 
number of partitions p =2,  from the column “f”, the sum of 
all fuzzy values s= 9.798203799, Above the split point 67, 
the sum of fuzzy values Sp= 6.346317672 , and below the 
split point 67, the sum of fuzzy values Sp= 3.451886127. 
Above the split point 67, the sum of fuzzy values with class 
label =1,  Sp1 = 4.846317672, with class label 2, Sp2 = 1.5, 
below the split point 67, the sum of fuzzy values with class 
label=1, Sp1=0, with class label 2 , Sp2= 3.451886127. 
 
Now,gi(67)=(6.346317672/9.798203799)*(1–
(4.846317672/6.346317672)2-(1.5/6.346317672)2) 
+(3.451886127/9.798203799)*(1-(0/3.451886127)2-
(3.451886127/3.451886127)2) 
= 0.648 * (1- 0.58 – 0.057)  +  0.352 * (1 – 0  - 1) = 0.234 
For each attribute, at every change in the class label, split 
points would be computed and the gini index is calculated for 
every split point of all the attributes. Let’s say, there are  four 

split points for the first attribute a1 and the gini index is 
computed for all the four points and pick the attribute with 
least value of gini index. Similarly, the gini index is 
calculated for all the other attributes and the least gini index 
value of all the attributes is picked. It means the least gini 
index value from all the attributes is taken and selected as the 
best classifier attribute and also as the ROOT of the decision 
tree.  
In the proposed work, using Wisconsin data set , “a3” at split 
point 3.5 and at 311 record  with 0.1448 gini index value is 
chosen as ROOT which can be observed in fig 1. 
 
3. FUZZY DECISION TREE CONSTRUCTION 

 
The ROOT is chosen and it is required to determine the other 
nodes of the decision tree [8] [9] [10]. The crucial part is, 
how to compute the left subtree, right subtree of the Root in 
order to build the decision tree.  
Now, from table 2, observe the values of the x1*µ, x2*µ. 
Firstly, lets modify the x1*µ records. Here, the values of 
x1*µ  from 58 to 66 of a2 attribute remain the same , but 
from 68 to 69 of a2 attribute, the records would be replaced 
by (0.5- x2*µ) that is, at 68 of a2 attribute  (sno 14), the x1*µ 
is replaced with (0.5- 0.4846318) = 0.015 and it is calculated 
for the other records in the similar manner. 
 similarly , lets modify the x2*µ records. Here the values of 
x2*µ  from 58 to 66 of a2 attribute would be replaced by 
(0.5- x1*µ) , but from 68 to 69 of a2 attribute, the records 
remain the same. That is, at 58 of a2 attribute  (sno 3), the 
x2*µ is replaced with (0.5- 0.5) = 0, at 66 of a2 attribute (sno 
7),  the x2*µ is replaced with (0.5- 0.48463177) = 0.015 and 
it is repeated for the other records. 
Now the x1*µ and  x2*µ list of values were updated. Then 
the updated x1*µ values are taken as the fuzzy values to 
compute the left node for the ROOT a3. Now, the gini index 
is calculated for all the attributes a1 to a9 at various split 
points excluding a3 (As a3 is the ROOT).  Now, the attribute 
having least value of gini index at a split point would become 
the left node for ROOT “a3”. That is a6 attribute at split 
point 6.5 at 344 record with gini index value as 0.0759 has 
become the left node for ROOT a3 which can be observed in 
the fig 1. 
Similarly, the updated x2*µ values are taken as the fuzzy 
values to compute the right node for the ROOT a3. Now, the 
gini index is calculated for all the attributes a1 to a9 at 
various split points excluding a3 and a6 (As a3 is the ROOT, 
a6 is the left child) .  Now, the attribute having least value of 
gini index at a split point would become the right node for 
ROOT “a3”. That is a2 attribute at split point 1.5 with gini 
index value as 0.1750 has become the right node for ROOT 
a3 which can be observed in the fig 1. 
Then the fuzzified decision tree is constructed shown in fig 
1, using gini index as the best classifier attribute. The tree 
would be , ( Root – A3, split point - 3.5, gini index value - 
0.1448), (left child - A6, split point - 6.5, gini index value - 
0.0759), (right child - A2 ,split point -1.5, gini index value -
0.1750) and so on and the complete decision tree is built in 
the same manner. 
 



S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417 

© 2015-19, IJARCS All Rights Reserved                    414 

 
Fig 1 – The decision tree with Root, and other nodes with 
their gini index values.  
 
4. PROPOSED METHODOLOGY  

 
The KEY point is, the gini index is calculated for all the 
attributes at various split points and the least value of gini 
index of an attribute is decided as the ROOT which is 
considered as the Best classifier attribute for the complete 
fuzzified decision tree. Similarly, all the other nodes of the 
decision tree is built using the least value of gini index as 
explained above in the Fuzzy decision tree section. Now, the 
gini index values of the nodes(attributes) of the decision tree 
are considered as the weight of that corresponding attributes 
in our proposed work.  
This point is like a Bridge from Decision tree to Neural 
Networks which works collaboratively. That is, the results of 
fuzzy decision tree are taken and implemented for the neural 
network. That is, the least gini index values of a1,a2,a3, ...a9 
attributes which are 0.1140, 0.1750, 0.1448, …0.2422 were 
considered as the “weights” of those corresponding attributes 
to classify using neural networks. 
 
The Weight Adjustment Algorithm for the complete 
proposed methodology is as follows (refer fig 5) : 

1. Read the data set,   // 9 attributes and a class label 
2. Sort an attribute and find the split point, 
3. Compute the fuzzy values of attribute above the 

split point and below the split point, 
4. Calculate the gini value of that attribute using the 

fuzzy values, 
5. Similarly calculate the gini values for all the 

attributes and pick the least gini value, 
6. Choose one attribute with least gini index value as 

the ROOT of fuzzy decision tree, 
7. Similarly compute the other nodes and build the 

fuzzy decision tree, 
8. Pick the gini values of all the nodes(attributes) of 

fuzzy decision tree and assign them as weights to 
the corresponding attributes, 

9. The data set which is normalized and multiplied 
with gini weights are given to the different types of 
neural network such as Deep Learning, 
Backpropagation, Multi Layer Feed forward, Run 

and compute the classification execution time and 
accuracy. 

 

 
 
Using the above weights, the testing is done with three types 
of input data such as a) Wisconsin data set b) normalized 
Wisconsin data set, c) normalized data with gini weights 
(gini weighted inputs) and implemented on various types of 
neural networks such as Deep Learning, Backpropagation 
and Multi Layer Feed Forward and effective results are 
observed in all three cases. 
Implementation using  Deep Learning 
Deep Learning [11] [12] [13] [14] is gaining lot of 
importance in the recent times. Deep learning has become so 
popular in the fields of pattern recognition and computer 
vision etc.. Deep learning generally uses two types of 
networks such as convolutional neural network and 
Autoencoders. The Sparse Autoencoder is used for the 
proposed work. The network comprises of input layer, two 
hidden layers, softmax layer, output layer. The two hidden 
layers are implemented using encoders. First the hidden 
layers are trained in an unsupervised fashion and train the 
softmax layer and finally join all the hidden and softmax 
layers to form a deep network which is trained in a 
supervised fashion. The first hidden layer’s encoder reads the 
input and extract main features and the second hidden layer’s 
encoder reads the features that were extracted by the first 
hidden layer (encoder) and still learns the small 
representations (micro level features) of the input data.  
In fact the deep learning neural networks (refer Fig – 2) 
classifies the data in a most efficient way. Hence, the testing 
is performed by giving the normalized Wisconsin data set 
and gini weighted inputs to the network and verified the total 
execution time. It is observed that the classification 
efficiency is same for the two cases, but the gini weighted 
inputs have executed the code much faster than the 
normalized data. The corresponding observations are 
presented in Results section. 
Implementation using Back Propagation neural networks 
Backpropagation [15] [16] is nothing but propagating the 
error backward, and after the adjustment of the weights, the 
optimal classification is achieved. In this paper, it is proposed 
to measure and compare the classification accuracy in three 
aspects. They are  
1) check the classification accuracy of the data set using 
fuzzy decision tree, 
2) check the classification accuracy of the data set by 
normalizing the data between 0 and 1 using neural networks,  
3) check the classification accuracy for the normalized data 
set with the multiplied gini weights using neural networks. 

//W – weight of attribute  , m – number of attributes,  
n – number of records 
Function Giniweight() 
{ 
for( i = 1 to m) 
{ 
for( j = 1 to n) 
{ 
X I j = ( j – j min ) / (j max - j min )   // 
normalize the data between 0 and 1 
y I j  = X I j  * W I    //gini weight is 
multiplied to the input attribute  
}   }   } 
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The first aspect would be, the generation of the fuzzy 
decision tree using the train data set. Then the classification 
accuracy is measured by applying the test data set for the 
fuzzy decision tree. After generating the Rules from the 
fuzzy decision tree, then the test data set is given to the Rules 
and classification accuracy is measured and it is observed 
that the code is run with eight errors out of 232 test records 
with this fuzzy decision tree which comes to 96.55% 
efficiency. 
The second aspect would be, the same data set is taken, 
normalize the data set between 0 and 1(refer function 
giniweight() ) ,  and then classify the data using neural 
networks. It means, the train data, test data, and the neural 
network configuration file which contains  “Input_Neurons, 
Hidden_Neurons, Output_Neurons, Learning Rate, 
Momentum, Train_Input_Records, Train_Output_Records, 
No_of_Iteration” are given to the neural network code, run it, 
and  measure the classification accuracy. Regarding the 
neural networks, the multi layer(Input layer, hidden layer, 
output layer) neural network model(refer fig (3)) with back 
propagation is considered. The input layer comprises of 9 
neurons, hidden layer of 8 neurons and the output layer with 
3 neurons and learning rate of 0.25 ,the momentum of 0.9 is 
considered and the training, testing records, number of 
iterations are given to the neural network model. The input 
layer is given with the 9 attributes of the normalized data set, 
and the output layer gives an output of 001(1) or 010(2) to 
three neurons where (001)1 is benign and (010)2 is 
malignant. The sigmoid Activation function ( 1/ (1+e(-x)) )  
is used in our model where x is the linear function of weight, 
attribute and the bias. The error is calculated at the output 
layer and it is shared back to the neurons of the model using 
the concept of back propagation. It is observed that the code 
is run with four errors out of 232 test records with the neural 
networks which comes to 98.27% accuracy. 
The third aspect would be, the same data set is taken, 
normalize the data set between 0 and 1 and multiply with the 
gini weights (refer function giniweight() ),  and then classify 
the data using neural networks with back propagation as it is 
done in the second aspect . It means, the train data, test data, 
and the neural network configuration file are given to the 
neural network code and measure the classification accuracy. 
It is observed that the code is run with three errors out of 232 
test records with the neural networks which comes to 98.7% 
accuracy which is a biggest improvement of the classification 
accuracy . 
Implementation using Multi Layer Feed Forward neural 
networks 
The network which does not contain cycles or the feedback 
loops is called a feed forward neural network. Here, the 
network comprises of input layer, hidden layer and output 
layer. The testing is done using the Wisconsin data set, 
normalized  Wisconsin data set and gini weighted inputs on 
the network comprising of single, two, three and four hidden 
layers (refer Fig – 4)  and got good results in all the cases. 
The gini index is computed using the final fuzzy value [17] 
Please refer Results. 
 
5. RESULTS  

 
The Results related to the Deep Learning, Backpropagation 
and Multi Layer Feed Forward neural networks are 
illustrated in the following. 

Deep Learning 
When the different forms of input data(as explained above) 
are given to the Deep Learning, the Results are in the 
following manner (Refer table 3, Fig 6) and the execution 
speed is increased by 150%. 
 

 
Fig 2 – Deep Learning 
 

 
Fig 3 – Backpropagation network 
 

 
Fig 4 – Multi Layer Feed Forward neural network 
 



S.V.G.Reddy et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,411-417 

© 2015-19, IJARCS All Rights Reserved                    416 

 
Fig 5 – flow chart for the complete methodology 

  
Table 3 – Execution time of Deep Learning 
 
Implementation 

 
Total time of 
Execution(seconds) 

Normalized Wisconsin 
data set 

6.3 ± 0.1 

Gini weighted inputs 2.5 ± 0.1 
 

 
 
Fig 6 – Deep Learning execution time 
 
 
 
 

Back Propagation neural networks  

When the different forms of input data(as explained above) 
are given to the Backpropagation neural network, the Results 
are in the following manner (refer table 4, Fig 7 ). 
 
Table 4 – classification accuracy of decision tree & neural 
networks 

Sno Description of the implementation 
Classification 

Accuracy 

1 
Wisconsin Data set using Decision 
tree 

96.5% 

2 
Wisconsin Data set which is 
normalized and using neural 
networks 

98.2% 

3 
Wisconsin Data set which is 
normalized and multiplied with 
gini weights using neural networks 

98.7% 

 

 
Fig 7 – Backpropagation Neural Network Classification 
Accuracy 
 
Multi Layer Feed Forward neural networks  
When the different forms of input data(as explained above) 
are given to the Multi Layer Feed Forward neural networks 
with different number of hidden layers, the Results are in the 
following manner. (Refer table 5, Fig 8) 
 
Table 5 – classification accuracy of Multi Layer Feed 
Forward neural network 
 
Implementation 

Classification Accuracy 
Using 1 
Hidden 
layer 

Using 2 
Hidden 
layers 

Using 3 
Hidden 
layers 

Using 4 
Hidden 
layers 

Wisconsin data 
set 

95.5 95.9 96 96.3 

Normalized 
Wisconsin data 
set 

97 97.1 97.2 97.2 

Gini weighted 
inputs 

97.1 97.4 97.7 98 
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Fig 8 – Multi Layer Feed Forward Neural Network 
Classification Accuracy 
 
6. CONCLUSION  

 
The fuzzy decision tree is constructed using gini index as the 
best split measure. To enhance the speed & accuracy of the 
classification using neural networks , the least gini index 
value of each attribute is taken as the Weight of the 
corresponding attribute for the weight adjustment algorithm 
and tested using Deep Learning, Backpropagation, Multi 
Layer Feed Forward neural networks and achieved very good 
results. And as a future work, there are few parameters like 
Information gain, HSM which plays a dominant role in the 
classification of the data using various supervised learning 
algorithms and the values of those parameters can be taken as 
the weight and compare all the parameters and choose the 
one which would give the best classification accuracy. Even 
the genetic algorithm can be applied to suggest the best 
optimal parameter to derive the weights. 
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