
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*����������

�

© 2010, IJARCS All Rights Reserved 6

ISSN No. 0976-5697

Towards Pattern-Based Refactoring: Abstract Factory

Davoud Keshvari Ghourbanpour*
Department of Computer Science and Engineering,

Islamic Azad University of Arak

Arak, Iran

davidkeshvari@yahoo.com

Mohammad Hossein Yektaie
Faculty Member of Islamic Azad University of Abadan

Abadan, Iran

mh.yektaie@gmail.com

Abstract: Many agile software development methodologies use from refactoring process for improving codes. Amount of effort and using from

different types refactoring techniques for improving the structural models of the system vary in different projects, depending on time and

knowledge of developers and it’s not specified how much must be done for refactoring in order to deodorizing existing bad smells in codes,

clearly. Using design patterns can help refactoring process as target of refactoring for avoiding unclear process. So, when and how to apply the

design patterns in codes by pattern-directed refactoring is very important. We intent to show when and how we can refactor codes towards using

Abstract Factory design pattern and present a mechanics for that in agile software development methodologies where design models are lacking

in detail. The presented mechanics cause low cost and clear refactoring process.

Keywords: Agile software development methodology; design patterns; code refactoring

I. INTRODUCTION

Code refactoring is "a change in the internal structure

of software will be easier to understand and apply for cheaper

change without a change in its behavior to be observed" [5].

Many software development methodologies use refactoring in

order to increase simplicity, maintainability, reusability and

readability of the codes.

Agile software development methodologies (eXtreme

Programming Feature Driven Development, Scrum, etc.)

which they are lightweight methodologies use from refactoring

more than the other methodologies [11, 7, 4]. In some agile

methodologies such as eXtreme Programming (XP)

refactoring process is one of the main and fundamental

processes in software development, but in others such as

Feature Driven Development (FDD) refactoring process is an

optional process [1, 2].

Code refactoring has advantages and limitations.

Code refactoring leads to change the structures of the codes in

order to increase the simplicity, readability, maintainability

and usability, so developers gain a better understanding of the

system and confidence to develop the system, because in agile

development methods, there is little documentation and the

code itself contains all the details especially in XP [10, 3].

Despite the advantages code refactoring has, some software

developers and software methodologies prefer not to use

refactoring or less use. There are some reasons for that as

follows.

• Programmers don’t know when that refactoring is needed or

not.

• Programmers do not know what mechanisms should be used

to solve the detected bad smells.

• Time duration of refactoring is not clear and depends on the

programmer’s experience and the programming language that

features how to do code refactoring.

• Refactoring process will be expensive process if not done

correctly and systematically.

The above restrictions cause the programmers less

use from code refactoring and they prefer to develop new user

stories (use cases) instead of refactoring. In this paper we will

show that design patterns can be used as the target of

refactoring processes and show how they can be use for

targeting and structuring refactoring process. We show this for

the Abstract Factory pattern.

The rest of the paper is structured as follows. In

section 2, we show a brief history and related works. In

Section 3, we will describe refactoring process by using

Abstract Factory pattern and show how to identify what areas

of code need refactoring towards the Abstract Factory pattern.

In Section 4, the process described in Section 3 is presented

with an example to present applicability of this process. The

last section shows the conclusions and future works.

II. BACKGROUND

Refactoring process is an important process in various
software development methodologies and that is used for
increasing the quality of the system’s structures and detecting
defects. And also many software development methodologies
use from design patterns for solving different recurring
problems in their systems. Design patterns can be used by
software development methodologies (RUP, FDD, etc.) for
solving design problems in their design models. [9] Presents
how improve the design models of object-oriented systems by
using design patterns. [5] Introduced different kinds of bad
smells in codes and models and then presented some
refactoring techniques to deal with them. [8] Presented a way to
refactoring codes towards design patterns and showed that
design patterns can be as a target for code refactoring process.
He showed his idea for some design patterns. Although, most
of the researches are related to identifying design patterns in
codes and those help to programmers to increase their
understanding from the system and codes. In this paper, we
follow [8]’s approach for refactoring codes towards design
patterns, and we present this idea for the Abstract Factory
pattern that this can be added to [8]’s collection as technique
for refactoring.

Davoud Keshvari Ghourbanpour et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,06-09

© 2010, IJARCS All Rights Reserved 7

III. REFACTORING TOWARDS DESIGN

PATTERNS

A. Abstract Factory Pattern

We introduce the Abstract Factory pattern in this section.

1) Intent

According to [6], the intent of the Abstract Factory

pattern is to "provide an interface for creating families of

related or dependent objects without specifying their concrete

classes."

2) Applicability

According to [6], Abstract Design pattern can be used at

following situations:

• A system should be independent of how its products

are created, composed, and represented.

• A system should be configured with one of multiple

families of products.

• A family of related product objects is designed to be

used together, and you need to enforce this constraint.

• You want to provide a class library of products, and

you want to reveal just their interfaces, not their

implementations.

Figure 1 shows structure of the Abstract Factory pattern.

Figure 1: structure of Abstract Factory pattern [6].

3) Participants

• Abstract Factory: provides an interface for operations that

produce a set of various products.

• Concrete Factory: implements the operations that present in

Abstract Factory.

• Abstract Product: an interface for a type of product object.

• Concrete Product: defines a product object to be created by

the corresponding concrete factory and implements the

Abstract Product interface.

• Client: uses only interfaces declared by Abstract Factory and

Abstract Product classes.

4) Consequences

Using Abstract Factory pattern will have the following

benefits:

•it isolates concrete classes.

•it makes exchanging product families easy.

•it promotes consistency among products.

In this section, we describe code refactoring process by using

Abstract Factory pattern.

When there are conditional logic statements in a

method and multi related objects are created at each

conditional’s block, at this time it’s better to refactor the codes

due the following issue.

5) Problem

Client is responsible for creating a group of related

objects that is caused complexity and high coupling.

If there are Switch/case or if-else clauses statements

in the code and a set of related objects are created in each

case’s block (if’s black), it’s better to refactor the codes by

using Abstract Factory pattern that leads to increase

readability, cohesion and lowing coupling. Figure 2 shows this

issue.

Figure 2: Switch/case statements and creating related objects.

B. Mechanics

1. First, a class for each product that is created in case’s

block is defined by applying Extract Class [5]. We

repeat this for all objects which are created in case’s

block.

2. An abstract class is defined by applying Extract

Supperclass [5] for the objects which have the same

structure and behavior.

3. A concrete class is defined by applying Extract class

[5] for each case of switch statement as concrete

factory and then a method is defined in that class by

applying Extract Method [5] and then the statements

of the case’s block are moved into that method by

applying Move Field [5]. We repeat this for all cases

in switch statement.

4. An abstract class is defined for all concrete classes

which have been defined at step 3 as abstract factory

class by applying Extract supperlcass [5] and then the

required fields and operations for creating products

are moved into this class by applying Move Filed [5].

The concrete factory classes inherent from this class.

5. The statements in case’s block of switch statement

are replaced with calling creator method of the related

concrete factory class. This is done in the method of

client class.

Figure 3 shows the structure of the code in Figure 2 after

applying refactoring to Abstract Factory pattern.

Davoud Keshvari Ghourbanpour et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,06-09

© 2010, IJARCS All Rights Reserved 8

Figure 3: Structure of the code in Figure 2 after applying refactoring
towards Abstract Factory Pattern

IV. EXAMPLE

An example is provided in this section to demonstrate

the applicability of towards Abstract Factory patterns process

for making the codes simplifier, maintainable, and reusable.

We refactor the code presented in Figure 4 by using the

Abstract Factory pattern.

Figure 4: Sample Code

As we can see in Figure 4 some objects are created in

each case’s block. So we follow the step 1 of the mechanics in

section 3, then the following classes are defined:
Class SqlConnection{… }

Class SqlCommand{… }

Class OleDbConnection{… }

Class OleDbCommand{… }

According to Step 2, interfaces are defined for related

and the same type of objects as supperclass, and then the

concrete product classes are inherited from the supperclass as

follow:
Abstract Class IConnection {…}

Abstract Class ICommand {…}

Class SqlConnection: IConnection {… }

Class SqlCommand: ICommand {… }

Class OleDbConnection: IConnection {… }

Class OleDbCommand: ICommand {… }

Then a concrete class is defined for each case’s block

in codes as concrete factory class according to step 3. After

that some methods are defined to create product objects and

the required data are moved into these classes as follow:
Class SqlFactroy: AbsFactDBP {

 ICommand createCommand(){ return new SqlCommand(…)}

 IConnection createConnection(){ return new SqlConnection(…)}

Void execQuery(){…

 sqlconn.Open();

 sqlcomm.ExecuteNonQuery();

 sqlconn.Close();… }

Class OledbFactroy: AbsFactDBP {

 ICommand createCommand(){return new OleDbCommand(…)}

 IConnection createConnection(){ return new

OleDbConnection(…)}

Void execQuery(){…

 sqlconn.Open();

 sqlcomm.ExecuteNonQuery();

 sqlconn.Close();… }

… }

According to step 4 an abstract class (AbsFactDBP)

is defined as abstract factory class and then the concrete

factories (SqlFactroy and OledbFactroy) are inherited from the

AbsFactDBP and the created methods in SqlFactroy and

OledbFactroy are defined as abstract methods in AbsFactDBP

too. Following codes show this.
Class AbsFactDBP {

 virtual ICommand createCommand(){…}

 virtual IConnection createConnection(){…}

virtual Void execQuery();

…}

 Class SqlFactroy: AbsFactDBP {…}

Class OledbFactroy: AbsFactDBP {… }

The statements in case’s block are replaced with instantiation

of the factory classes as follow:
class Form1 { ���

AbsFactDBP AbsFactDProv;

 void Insertrecord(){ ���

 switch (DbProvider) {

 case DbProviderSQL:

 AbsFactDProv= new SqlFactroy();

 break;

 case DbProviderOL:

 AbsFactDProv= new OleDbFactroy();

 break;
 }}���}

V. CONCLUSIONS

In software development methodologies in general

and agile development methodologies as particular refactoring

Davoud Keshvari Ghourbanpour et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,06-09

© 2010, IJARCS All Rights Reserved 9

process is use for finding defects and making codes

maintainable, simplify, reusable and readable. Software

developers usually use from design patterns for solving

recurring design problems in object oriented designs. This

article introduced refactoring process and its importance in

agile software development methodologies where the design

models are not rich. Code refactoring by using design patterns

as target of refactoring process has been shown and a

mechanics for refactoring towards the Abstract Factory pattern

presented. Besides, this paper showed where and how codes

can be refactored towards the Abstract Factory pattern and

showed this with an example.

The proposed approach for refactoring towards Abstract

Factory design patterns can be added into the [8]’s collection.

In the future we can provide various refactoring mechanics for

more design patterns and add them to the [8]’s collection and

also we can use from the presented mechanics for refactoring

test codes in automated tests.

VI. REFERENCES

[1] P. Abrahamsson, O.J. Salo, J. Ronkainen, and J. Warsta,

“Agile Software Development Methods: Review and

Analysis,” Published by VTT, 2002.

[2] K. Beck, “Extreme Explained: Embrace, Programming

Change,” published by Addison-Wesley, 2004. (2nd Ed.)

 [3] T. Bozheva, and M. Gallo, “Framework of Agile

Patterns,” in Proceedings of the SPI Conference, Europe,

2005.

[4] J. Ferreira, “Interaction Design and Agile Development: A

Real World Respective,” M.S Thesis, Victoria University,

2007. (Thesis)

[5] M. Fowler, Refactoring: Improving the Design of Existing

Code. MacGrow-Hill, 2003.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object Oriented Software.

Reading, Mass.: Addison-Wesley, 1995.

[7] R. Jeffries, “Patterns and Extreme Programming,” Portland

Pattern Repository, Dec, 1999.

[8] J. Kerievsky, Refactorings to Patterns. Industrial logic, Inc,

2001.

[9] C. Larman, Agile Modeling with UML, Patterns and Test-

Driven Development, 2008.

[10] F. Padberg, “Lean Production Methods in Modern System

Development,” Wirtsheafts informatik, vol. 3, no. 49, pp. 162-

170, 2007. (Journal)

[11] S.R. Palmer, and J.M. Felsing, A Practical Guide to

Feature-Driven Development. Prentice-Hall, 2002.

