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Abstract: Comparing behaviours of program models has become an important task in software maintenance and regression testing. 
Combinatorial testing focuses on recognizing faults that happen due to interaction of values of a small number of input parameters.In this paper 
presents the Black-Box Regression Maximization (BBM) Algorithm with Density-based Spatial Clustering Algorithm (DSC) using Greedy 
Search optimization algorithm focuses on combinatorial testing and proactively exposes behavioural deviations by checking inside block 
transitions. In this method presents new approach of BBM with Internal block transitions to measure the dissimilarity statements in large 
program data. To identify specific faults, an adaptive testing rule repeatedly constructs and tests configurations in order to determine, for each 
interaction of interest, whether it is faulty or not. 
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1.  INTRODUCTION 

 
Software testing is an expensive and time consuming 

activity that leads to production of reliable software systems 
[1,2]. Due to its importance, testing process is allocated a 
large share of the software development resources [3]. 
However, it is often observed that when the usage of large 
data-intensive software increases, the modules which have 
passed conventional testing methods start developing 
undetected errors [4]. The possible reasons include addition 
of records with an oddball combination of values that has not 
occurred before in the software. It is observed that these rare 
combinations of values which have escaped testing process 
and usage of software can cause interaction failures. To 
avoid such failures, it is desirable to test all combinations of 
values in an exhaustive manner. However, exhaustive testing 
is not feasible either due to time or resources availability. 
Thus a technique is required that focuses on testing 
combination of values. 

Testing software is a very important and challenging 
activity. Nearly half of the software production development 
cost is spent on testing. The main objective of software 
testing with clustering approach is to eliminate as many 
errors as possible to ensure that the tested software meets an 
acceptable level of quality. 

Combinatorial (t-way) testing focuses on testing 
combinations of values. It is based on the observation that a 
large number of faults are caused by interactions of a few 
input parameters. Hence rather than testing all combinations 
in an exhaustive manner, combinations of only few 
parameters are tested. In order to generate test set, values for 
input parameters are selected such that every possible 
combination of values of any t parameters occurs at least 
once [5]. It is also known as the strength of coverage or 
interaction strength. 

As an example, let us consider 3 input parameters, A, B 
and C, each can have 2 possible values, 0 and 1. Pairwise 
testing (where t = 2) would require the following 4 test cases 
as given in Table 1. Test cases are designed such that all 
possible pairs of values are getting covered. As per studies, it 
is observed that maximum value of interaction strength is 4–
6 for most of the systems [4]. As the value of interaction 
strength increases, the total number of detectable errors 
increases. But, an increase in interaction strength leads to an 
increase in the test set size, and hence increases the cost of 
testing. On the other hand, lower interaction strength leads to 
reduction in test set size which affects faults detection rate. 
Thus an optimal value of interaction strength can 
substantially reduce the testing costs without compromising 
fault detection capability. However, not much research is 
done in this area. 

 
Table 1: Pair-wise test set for a problem where each 

variable can have 2 possible values. 
A B C 
0 0 0 
0 1 0 
1 0 1 
1 1 0 

 
There are two types of interaction failures as defined in [11]. 

These are type 1 interaction failures and type 2 interaction 
failures. Type 1 interaction failures occur when a code segment 

in which a fault exists is executed. Due to interaction among 
variables, the faulty code is executed. For the pseudo code 
given in Fig. 1, a software system is observed to fail only for a 
set of customers residing at a particular location. Due to an 
interaction of two or more variables, a block of code is 
executed in which fault exists. Type 2 interaction failures occur 
when performing some computation on two or more variables 
leads to an incorrect result. 
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Fig. 1: Pseudo code illustrating type 1 interaction failure. 
 
Type 2 interaction failures are illustrated using pseudo code 

in Fig. 2. Here, placing an erroneous operator causes the set of 

variables involved in computation to produce an incorrect 
result.  

 
Begin 
float x, y, z; 
float result=(x*y)/z// it should be (x*y)-z 
//block of code 

End 
 

Fig. 2: Pseudo code illustrating type 2 interaction failure. 
 
In this paper, we aim to identify interactions that may cause 

these two types of interaction failures to occur. Data flow 
analysis techniques derive the information about the flow of 
data that exist in the program [6]. At each step in the program, 
the information about definition and usage of variables is 
obtained. 

The rest of this paper is organized as follows. In Section 2 
review the related work. The Proposed methodology described 
in Section 3. Finally conclude the paper in Section 4. 

 
2. RELATED WORK 
 

D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton [5] 
discussedthe combinatorial design method substantially 
reduces testing costs. The authors describe an application in 
which the method reduced test plan development from one 
month to less than a week. In several experiments, the 
method demonstrated good code coverage and fault detection 
ability. 

 
S. Varshney, M. Mehrotra[6] presented a search-based 

approach that generates test data for data-flow dependencies 
of a program using dominance concepts, branch distance, and 
elitism. Genetic algorithm is used for the proposed approach 
and Gray encoding is used to encode test data. A set of 
subject programs is taken from the research literature to 
evaluate efficiency and effectiveness of the proposed 
approach. For the proposed approach, the measures 
considered are the mean number of generations and mean 
percentage coverage achieved. The performance of the 
proposed approach is evaluated by comparing the results 
with those of random search and earlier studies on data-flow 
testing. 

 
S. Sabharwal, M. Aggarwal[7] proposeda Combinatorial 

(t-way) testing has been proved to be an effective technique 
that identifies faults caused by interactions among a small 
number of input parameters. However, the degree of 
interaction to be considered for testing is still an open issue. 
Although higher strength t-way testing improves fault 
detection, it leads to a considerable increase in number of 
interactions to be tested and hence the test set size. The 
authors proposed that attempts to reduce the number of 
interactions to be tested. The source code is transformed into 
a flow graph and data flow analysis is applied to it to identify 
the interactions that exist in the system. The initial results 
suggest that the approach is able to achieve a considerable 
reduction in the number of interactions to be tested. 

 
C. Nie, H. Leung[8] discussed Combinatorial Testing 

(CT) can detect failures triggered by interactions of 
parameters in the Software Under Test (SUT) with a 

covering array test suite generated by some sampling 
mechanisms. It has been an active field of research in the last 
twenty years. This article aims to review previous work on 
CT, highlights the evolution of CT, and identifies important 
issues, methods, and applications of CT, with the goal of 
supporting and directing future practice and research in this 
area. First, we present the basic concepts and notations of 
CT. Second, we classify the research on CT into the 
following categories: modeling for CT, test suite generation, 
constraints, failure diagnosis, prioritization, metric, 
evaluation, testing procedure and the application of CT. For 
each of the categories, we survey the motivation, key issues, 
solutions, and the current state of research. Then, we review 
the contribution from different research groups, and present 
the growing trend of CT research. Finally, we recommend 
directions for future CT research, including: (1) modeling for 
CT, (2) improving the existing test suite generation 
algorithm, (3) improving analysis of testing result, (4) 
exploring the application of CT to different levels of testing 
and additional types of systems, (5) conducting more 
empirical studies to fully understand limitations and 
strengths of CT, and (6) combining CT with other testing 
techniques. 

 
L.G. Hernandez, N.G. Valdez, J.T. Jimenez [9] proposed 

adevelopment of a new software system involves extensive 
tests of the software functionality in order to identify possible 
failures. Also, a software system already built requires a fine 
tuning of its configurable options to give the best 
performance in the environment where it is going to work. 
Both cases require a finite set of tests that avoids testing all 
the possible combinations (which is time consuming); to this 
situation mixed covering arrays (MCAs) are a feasible 
alternative. MCAs are combinatorial structures having a case 
per row. MCAs are small, in comparison with exhaustive 
search, and guarantee a level of interaction among the 
involved parameters (a difference with random testing). We 
present a tabu search algorithm (TSA) for the construction of 
MCAs. Also, we report the fine tuning process used to 
identify the best parameter values for TSA. The analyzed 
TSA parameters were three different initialization functions, 
five different tabu list sizes and the mixture of four 

Begin 
if (customer belongs to set B){ 
//some code here 
if(customer.habitation==US){ 
//defective code here 
} 
else{ 
//block of code-executes normal 
} 
} 

End 
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neighborhood functions. The performance of TSA was 
evaluated with two benchmarks previously reported. 

 
S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng[10] 

discussed a component based software development is prone 
to unexpectedinteraction faults. The goal is to test as 
manypotential interactions as is feasible within time and 
budgetconstraints. Two combinatorial objects, the 
orthogonalarray and the covering array, can be used to 
generate testsuites that provide a guarantee for coverage of 
all t-setsof component interactions in the case when the 
testing ofall interactions is not possible. Methods for 
constructionof these types of test suites have focused on two 
main areas.The first is finding new algebraic constructions 
that producesmaller test suites. The second is refining 
computationalsearch algorithms to find smaller test suites 
more quickly. Inthis paper authors explored one method for 
constructing coveringarrays of strength three that combines 
algebraic constructionswith computational search. This 
method leveragesthe computational efficiency and optimality 
of size obtainedthrough algebraic constructions while 
benefiting from thegenerality of a heuristic search. We 
present a few examplesof specific constructions and provide 
some new bounds forsome strength three covering arrays. 

 
3. PROPOSED METHODOLOGY 
 

This paper aims to collect and consider papers that deal 
with combinatorial testing using Black-Box Regression 
Maximization (BBM) Algorithm and Density-based Spatial 
Clustering Algorithm (DSC) with Greedy Search 
optimization algorithm. Our objective is not to undertake a 
logical review, but quite to provide a broad state-of-the-art 
view on these related fields. Many different approaches have 
been projected to assistcombinatorial testing, which has 
mentioned in a body of literature that is spread over a wide 
variety of fields and periodicallocations. However, the 
combinatorial testing attempts to reduce the number of 
interactions to be tested. The source code is transformed into 
a flow graph and data flow analysis is applied to it to identify 
the interactions that exist in the system. In this proposed 
methodology we will discuss about the Black-Box 
Regression Maximization (BBM) Algorithm in detail.The 
overall architecture in figure 3 follows combinatorial testing 
from begins to end state. The users initialize the input 
parameter instances, features and classes as initial parameters 
in which the testing process is to be evaluated. 

 

 
Fig. 3:Proposed System Architecture 

 
In figure 3, input procedure with conditional statement is 

taken as testing process. The first process is called 
preprocessing methods namely scale of the procedure and 
removing empty spaces with help of filtering method. After 
that test case generation is linked into the regression result. 
The BBM algorithm performs partitioning the statement 
according to the test case. In that each variable and statement 
is separated in to individual blocks. The internal block 
transitions execute a test case in sequence of internal 
program states into separate blocks. In that each blocks is 
called DD path non-reduced graph generation. The DSFG 

mapping with greedy search algorithm involves reducing the 
non-reduced graph with small number of blocks. 

 
A. Preprocessing 

 
The preprocessing work to “clean” the data by filling in 

missing values, smoothing noisy data, identifying or 
removing anomalies, and resolving inconsistencies. If users 
believe the data are dirty, they are unlikely to trust the results 
of any data that has been applied. Furthermore, unwanted 
data can cause confusion for the mining procedure, resulting 
in unreliable output. Although most mining routines have 
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some procedures for dealing with incomplete or noisy data, 
they are not always robust. Instead, they may concentrate on 
avoiding over fitting the data to the function being modeled. 
In this process, the dimension of the program is calculated 
(i.e, number of lines in the procedure or program) and the 
filtering process is to estimate the number node corresponds 
to a block of sequential statements. To identify the usage at a 
node, a node is associated with the data identified for the 
statements that correspond to that node. 

 
Example:Scanf   (x) into scanf(x) 
 

B. Black-Box Regression Maximization (BBM) Algorithm 
 
The block-box regression maximization prediction 

provides for clustering in the multiple regressions setting in 
which you have a dependent variable Y and one or more 
independent variables, the X’s. The algorithm partitions the 
data into two or more clusters and performs an individual 
multiple regression on the data within each cluster. The BBM 
program spectrum may characterize a program’s behavior 
statically; a program spectrum is usually used in 
characterizing dynamic behavior exhibited by the execution 
of a test or multiple tests. One of the earliest proposed 
program spectra are Decision-to-Decision (DD) path. Path 
spectra are represented by the executed paths in a program. 
There are variants of path spectra depending on whether to 
use the complete paths or partial paths (loop-free intra 
procedural paths) as well as whether to track the frequency of 
path occurrences. 

 
Algorithm : Consider a procedure with independent features 
{X’i}j

i=1 and an multiple regression class Y . To keep the 
notation simple, to transform the features {X’i}j

i=1into DD 
path features{Xi}n

i=1, i.e., {Xi}n
i=1Binarize({X’i}j

i=1). The 
inputs to the BBM algorithm are the preprocessed features 
{Xi}n

i=1, the corresponding labels Y  and a pre-specified 
condition α. 

Algorithm1: Black-Box Regression Maximization 
(BBM) Algorithm 

Input:Procedure statement (features X1, X2,…Xn and 
label Y ), α 
Output: Path Generation 
for i = 1 to procedure length do 
Select the independent feature X*, which gives the 
maximum α -divergence criterion 
if (number_of_lines<proce_length) then 
Process independent variable(i.e, variable datatypes)  
Add a path node to the independent variable 
ifcondition_statement is achieved then 
Add a path to the corresponding node 
else 
Add a path to the next node 
end if 
Else if(proce_length is achieved) then 
Stop growing. 
End if 
Partition the training data into two paths, based on 
the value of X* 
endfor 

 
C. Internal Block Transitions 

 

The internal block transitions execution of a program can 
be considered as a sequence of internal program states. Each 
internal block state comprises the program’s in-scope 
variables and their values at a particular execution point. 
Each program execution unit (in the granularity of statement, 
block, code fragment, function, or component) receives an 
internal program state and then produces a new one. The 
program execution points can be the entry and exit of a user-
function execution when the program execution units are 
those code fragments separated by user-function call sites. 
Program output statements (usually output of I/O operations) 
can appear within any of those program execution 
units.Since it is relatively expensive in practice to capture all 
internal program states between the executions of program 
statements, we focus on internal program states in the 
granularity of user functions, instead of statements. 

 
Example 
 
(1) scanf(x); 
(2) scanf(y); 
(3) r=x%y; 
(4) if[r==0] goto (8);   [Internal block transitions] 
(5) x=y; 
(6) y=r; 
(7) goto (3); 
(8) printf(y); 
(9) stop; 
 

D. Mathematical Model for Greedy Search 
 

The mathematical model for Greedy Search with 
Directed Statement Flow Graph (DSFG) mapping algorithm 
shows global prior probabilities for Combinatorial Testing 
process. Let Ti be an input source code with n number of 
lines (Ti1,Ti2,…,Tin) where Ti = (i = 1,2, …, n). The equation 
(1) initialize the undirected graph for the input test file and 
find the path is defined as follows: 

 
  eqn. (1) 

The Graph edge weights we is defined as, 
    eqn. (2) 

 
The Greedy search feature represents the nth 

combinations value of conditional test defined as, 
    eqn. (3) 

 
where, w1,… ,wn∈N be weights, and let C∈N be a 

weight. For each S ⊆ {1, …,n} let G(S) = eqn. (2) 
 

Algorithm: Identifying Interactions with Greedy 
Search algorithm –Data Flow Techniques 

 
1. Read the Input Test case features from the input 

file T = {Parameter, Constraints and Test set } 
2. Train the  input test features in N number of 

combinations to covariance set 
3. Read the test program procedure file for 

identifying the interactions testing 
4. Convert the input procedure file to Directed 

Statement Flow Graph (DSFG)  
5. Find the Conditional statement and goto 

procedure using Greedy search method. 
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6. Sorting the DSFG graph in ascending order 
7. For each test conditions finding the reduced 

DSFG to the point in candidate test set 
a. Determine the each code entry element 

weight position 
b. Search conditions set on to program 

that are active in the conditional 
delimiters statement 

c. To map the conditional points 
according to the exact line number. 

d. Greedy search method is to search the 
exact paths to connected the graph. 

e. Calculate the Execution Time is 
Elapsed Time = (End time – Start 
Time) / 1000 

f.  
 
4. RESULT AND DISCUSSION 
 

The research work results describe a preliminary 
experimental evaluation of the Identifying Interactions for 

Combinatorial Testing using Data Flow Technique using 
Graph based Greedy Search algorithms results described in 
figure 4. The research work implemented the proposed 
algorithms in JAVA and compared them against a few other 
prominent Combinatorial Testing techniques. The proposed 
system performed all the experiments on a Windows 
machine with a dual core 2.8 Ghz processor and 2 GB of 
RAM. In this experiment study, we compare the 
performance of Computational Time of the testing source 
code. 

    eqn.(3) 
Table 1 describes the performance of the system using 
metrics such as Time metrics. Computational time metrics is 
analyzed in terms of combinatorial testing and Graph path 
generation in figure 2. Computational Time is defined as 

 
Table 2: Comparison of Computational Time 

 
Methods 1 2 3 4 5 6 

DERIVING INTERACTIONS FOR 
COMBINATORIAL TESTING 

1.8 0.99 2.40 1.14 0.78 1.5 

GREEDY DECISION PATH GRAPH 0.5 0.9 0.2 0.45 0.68 0.14 
 
 
 
 

 
 

Fig.5: Combinatorial testing and Graph path generation 
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Fig.5: Geedy decision path graph results. (a) Input procedure conditiona statement; (b) Non-reduced graph path; (c) Final 

Reduced Graph path result. 
 
 

5. CONCLUSION 
 

In this paper presentsthe Black-Box Regression 
Maximization (BBM) Algorithm approach with Density-
based Spatial Clustering Algorithm (DSC) with Greedy 
Search optimization algorithm focuses on combinatorial 
testing and proactively exposes behavioral deviations by 
checking inside block transitions. In this method presents 
new approach of BBM with Internal block transitions to 
measure the dissimilarity statements in large program data. 
To identify specific faults, an adaptive testing rule repeatedly 
constructs and tests configurations in order to determine, for 
each interaction of interest, whether it is faulty or not. In 
order to perform such testing in a procedure environment, it 
is imperative that testing results can be combined from block 
transitions. 

The further work enhancedand expandedfor the 
automation of Decision-to-Decision path with Density-based 
Spatial Clustering Algorithm (DSC)for black-box regression 
testing using Greedy Search optimization algorithm.  
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