
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4977
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 221

ISSN No. 0976-5697

AN EFFICIENT BLACK-BOX REGRESSION MAXIMIZATION (BBM) FOR
COMBINATORIAL TESTING USING GREEDY SEARCH ALGORITHM

K.Rekha

M.Phil Research Scholar, Department of Computer Science
Sri,RamakrishnaCollege of Arts and Science forWomen

Coimbatore, India

Dr.D.Gayathri Devi
Assistant Professor, Department of Computer Science

Sri,Ramakrishna College of Arts and Science for Women
Coimbatore, India

Abstract: Comparing behaviours of program models has become an important task in software maintenance and regression testing.
Combinatorial testing focuses on recognizing faults that happen due to interaction of values of a small number of input parameters.In this paper
presents the Black-Box Regression Maximization (BBM) Algorithm with Density-based Spatial Clustering Algorithm (DSC) using Greedy
Search optimization algorithm focuses on combinatorial testing and proactively exposes behavioural deviations by checking inside block
transitions. In this method presents new approach of BBM with Internal block transitions to measure the dissimilarity statements in large
program data. To identify specific faults, an adaptive testing rule repeatedly constructs and tests configurations in order to determine, for each
interaction of interest, whether it is faulty or not.

Keywords: Testing, Greedy, Black-box, DD Path.

1. INTRODUCTION

Software testing is an expensive and time consuming

activity that leads to production of reliable software systems
[1,2]. Due to its importance, testing process is allocated a
large share of the software development resources [3].
However, it is often observed that when the usage of large
data-intensive software increases, the modules which have
passed conventional testing methods start developing
undetected errors [4]. The possible reasons include addition
of records with an oddball combination of values that has not
occurred before in the software. It is observed that these rare
combinations of values which have escaped testing process
and usage of software can cause interaction failures. To
avoid such failures, it is desirable to test all combinations of
values in an exhaustive manner. However, exhaustive testing
is not feasible either due to time or resources availability.
Thus a technique is required that focuses on testing
combination of values.

Testing software is a very important and challenging
activity. Nearly half of the software production development
cost is spent on testing. The main objective of software
testing with clustering approach is to eliminate as many
errors as possible to ensure that the tested software meets an
acceptable level of quality.

Combinatorial (t-way) testing focuses on testing
combinations of values. It is based on the observation that a
large number of faults are caused by interactions of a few
input parameters. Hence rather than testing all combinations
in an exhaustive manner, combinations of only few
parameters are tested. In order to generate test set, values for
input parameters are selected such that every possible
combination of values of any t parameters occurs at least
once [5]. It is also known as the strength of coverage or
interaction strength.

As an example, let us consider 3 input parameters, A, B
and C, each can have 2 possible values, 0 and 1. Pairwise
testing (where t = 2) would require the following 4 test cases
as given in Table 1. Test cases are designed such that all
possible pairs of values are getting covered. As per studies, it
is observed that maximum value of interaction strength is 4–
6 for most of the systems [4]. As the value of interaction
strength increases, the total number of detectable errors
increases. But, an increase in interaction strength leads to an
increase in the test set size, and hence increases the cost of
testing. On the other hand, lower interaction strength leads to
reduction in test set size which affects faults detection rate.
Thus an optimal value of interaction strength can
substantially reduce the testing costs without compromising
fault detection capability. However, not much research is
done in this area.

Table 1: Pair-wise test set for a problem where each

variable can have 2 possible values.
A B C
0 0 0
0 1 0
1 0 1
1 1 0

There are two types of interaction failures as defined in [11].

These are type 1 interaction failures and type 2 interaction
failures. Type 1 interaction failures occur when a code segment

in which a fault exists is executed. Due to interaction among
variables, the faulty code is executed. For the pseudo code
given in Fig. 1, a software system is observed to fail only for a
set of customers residing at a particular location. Due to an
interaction of two or more variables, a block of code is
executed in which fault exists. Type 2 interaction failures occur
when performing some computation on two or more variables
leads to an incorrect result.

K.Rekha et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,221-226

© 2015-19, IJARCS All Rights Reserved 222

Fig. 1: Pseudo code illustrating type 1 interaction failure.

Type 2 interaction failures are illustrated using pseudo code

in Fig. 2. Here, placing an erroneous operator causes the set of

variables involved in computation to produce an incorrect
result.

Begin
float x, y, z;
float result=(x*y)/z// it should be (x*y)-z
//block of code

End

Fig. 2: Pseudo code illustrating type 2 interaction failure.

In this paper, we aim to identify interactions that may cause

these two types of interaction failures to occur. Data flow
analysis techniques derive the information about the flow of
data that exist in the program [6]. At each step in the program,
the information about definition and usage of variables is
obtained.

The rest of this paper is organized as follows. In Section 2
review the related work. The Proposed methodology described
in Section 3. Finally conclude the paper in Section 4.

2. RELATED WORK

D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton [5]
discussedthe combinatorial design method substantially
reduces testing costs. The authors describe an application in
which the method reduced test plan development from one
month to less than a week. In several experiments, the
method demonstrated good code coverage and fault detection
ability.

S. Varshney, M. Mehrotra[6] presented a search-based

approach that generates test data for data-flow dependencies
of a program using dominance concepts, branch distance, and
elitism. Genetic algorithm is used for the proposed approach
and Gray encoding is used to encode test data. A set of
subject programs is taken from the research literature to
evaluate efficiency and effectiveness of the proposed
approach. For the proposed approach, the measures
considered are the mean number of generations and mean
percentage coverage achieved. The performance of the
proposed approach is evaluated by comparing the results
with those of random search and earlier studies on data-flow
testing.

S. Sabharwal, M. Aggarwal[7] proposeda Combinatorial

(t-way) testing has been proved to be an effective technique
that identifies faults caused by interactions among a small
number of input parameters. However, the degree of
interaction to be considered for testing is still an open issue.
Although higher strength t-way testing improves fault
detection, it leads to a considerable increase in number of
interactions to be tested and hence the test set size. The
authors proposed that attempts to reduce the number of
interactions to be tested. The source code is transformed into
a flow graph and data flow analysis is applied to it to identify
the interactions that exist in the system. The initial results
suggest that the approach is able to achieve a considerable
reduction in the number of interactions to be tested.

C. Nie, H. Leung[8] discussed Combinatorial Testing

(CT) can detect failures triggered by interactions of
parameters in the Software Under Test (SUT) with a

covering array test suite generated by some sampling
mechanisms. It has been an active field of research in the last
twenty years. This article aims to review previous work on
CT, highlights the evolution of CT, and identifies important
issues, methods, and applications of CT, with the goal of
supporting and directing future practice and research in this
area. First, we present the basic concepts and notations of
CT. Second, we classify the research on CT into the
following categories: modeling for CT, test suite generation,
constraints, failure diagnosis, prioritization, metric,
evaluation, testing procedure and the application of CT. For
each of the categories, we survey the motivation, key issues,
solutions, and the current state of research. Then, we review
the contribution from different research groups, and present
the growing trend of CT research. Finally, we recommend
directions for future CT research, including: (1) modeling for
CT, (2) improving the existing test suite generation
algorithm, (3) improving analysis of testing result, (4)
exploring the application of CT to different levels of testing
and additional types of systems, (5) conducting more
empirical studies to fully understand limitations and
strengths of CT, and (6) combining CT with other testing
techniques.

L.G. Hernandez, N.G. Valdez, J.T. Jimenez [9] proposed

adevelopment of a new software system involves extensive
tests of the software functionality in order to identify possible
failures. Also, a software system already built requires a fine
tuning of its configurable options to give the best
performance in the environment where it is going to work.
Both cases require a finite set of tests that avoids testing all
the possible combinations (which is time consuming); to this
situation mixed covering arrays (MCAs) are a feasible
alternative. MCAs are combinatorial structures having a case
per row. MCAs are small, in comparison with exhaustive
search, and guarantee a level of interaction among the
involved parameters (a difference with random testing). We
present a tabu search algorithm (TSA) for the construction of
MCAs. Also, we report the fine tuning process used to
identify the best parameter values for TSA. The analyzed
TSA parameters were three different initialization functions,
five different tabu list sizes and the mixture of four

Begin
if (customer belongs to set B){
//some code here
if(customer.habitation==US){
//defective code here
}
else{
//block of code-executes normal
}
}

End

K.Rekha et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,221-226

© 2015-19, IJARCS All Rights Reserved 223

neighborhood functions. The performance of TSA was
evaluated with two benchmarks previously reported.

S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng[10]

discussed a component based software development is prone
to unexpectedinteraction faults. The goal is to test as
manypotential interactions as is feasible within time and
budgetconstraints. Two combinatorial objects, the
orthogonalarray and the covering array, can be used to
generate testsuites that provide a guarantee for coverage of
all t-setsof component interactions in the case when the
testing ofall interactions is not possible. Methods for
constructionof these types of test suites have focused on two
main areas.The first is finding new algebraic constructions
that producesmaller test suites. The second is refining
computationalsearch algorithms to find smaller test suites
more quickly. Inthis paper authors explored one method for
constructing coveringarrays of strength three that combines
algebraic constructionswith computational search. This
method leveragesthe computational efficiency and optimality
of size obtainedthrough algebraic constructions while
benefiting from thegenerality of a heuristic search. We
present a few examplesof specific constructions and provide
some new bounds forsome strength three covering arrays.

3. PROPOSED METHODOLOGY

This paper aims to collect and consider papers that deal
with combinatorial testing using Black-Box Regression
Maximization (BBM) Algorithm and Density-based Spatial
Clustering Algorithm (DSC) with Greedy Search
optimization algorithm. Our objective is not to undertake a
logical review, but quite to provide a broad state-of-the-art
view on these related fields. Many different approaches have
been projected to assistcombinatorial testing, which has
mentioned in a body of literature that is spread over a wide
variety of fields and periodicallocations. However, the
combinatorial testing attempts to reduce the number of
interactions to be tested. The source code is transformed into
a flow graph and data flow analysis is applied to it to identify
the interactions that exist in the system. In this proposed
methodology we will discuss about the Black-Box
Regression Maximization (BBM) Algorithm in detail.The
overall architecture in figure 3 follows combinatorial testing
from begins to end state. The users initialize the input
parameter instances, features and classes as initial parameters
in which the testing process is to be evaluated.

Fig. 3:Proposed System Architecture

In figure 3, input procedure with conditional statement is

taken as testing process. The first process is called
preprocessing methods namely scale of the procedure and
removing empty spaces with help of filtering method. After
that test case generation is linked into the regression result.
The BBM algorithm performs partitioning the statement
according to the test case. In that each variable and statement
is separated in to individual blocks. The internal block
transitions execute a test case in sequence of internal
program states into separate blocks. In that each blocks is
called DD path non-reduced graph generation. The DSFG

mapping with greedy search algorithm involves reducing the
non-reduced graph with small number of blocks.

A. Preprocessing

The preprocessing work to “clean” the data by filling in

missing values, smoothing noisy data, identifying or
removing anomalies, and resolving inconsistencies. If users
believe the data are dirty, they are unlikely to trust the results
of any data that has been applied. Furthermore, unwanted
data can cause confusion for the mining procedure, resulting
in unreliable output. Although most mining routines have

K.Rekha et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,221-226

© 2015-19, IJARCS All Rights Reserved 224

some procedures for dealing with incomplete or noisy data,
they are not always robust. Instead, they may concentrate on
avoiding over fitting the data to the function being modeled.
In this process, the dimension of the program is calculated
(i.e, number of lines in the procedure or program) and the
filtering process is to estimate the number node corresponds
to a block of sequential statements. To identify the usage at a
node, a node is associated with the data identified for the
statements that correspond to that node.

Example:Scanf (x) into scanf(x)

B. Black-Box Regression Maximization (BBM) Algorithm

The block-box regression maximization prediction

provides for clustering in the multiple regressions setting in
which you have a dependent variable Y and one or more
independent variables, the X’s. The algorithm partitions the
data into two or more clusters and performs an individual
multiple regression on the data within each cluster. The BBM
program spectrum may characterize a program’s behavior
statically; a program spectrum is usually used in
characterizing dynamic behavior exhibited by the execution
of a test or multiple tests. One of the earliest proposed
program spectra are Decision-to-Decision (DD) path. Path
spectra are represented by the executed paths in a program.
There are variants of path spectra depending on whether to
use the complete paths or partial paths (loop-free intra
procedural paths) as well as whether to track the frequency of
path occurrences.

Algorithm : Consider a procedure with independent features
{X’i}j

i=1 and an multiple regression class Y . To keep the
notation simple, to transform the features {X’i}j

i=1into DD
path features{Xi}n

i=1, i.e., {Xi}n
i=1Binarize({X’i}j

i=1). The
inputs to the BBM algorithm are the preprocessed features
{Xi}n

i=1, the corresponding labels Y and a pre-specified
condition α.

Algorithm1: Black-Box Regression Maximization
(BBM) Algorithm

Input:Procedure statement (features X1, X2,…Xn and
label Y), α
Output: Path Generation
for i = 1 to procedure length do
Select the independent feature X*, which gives the
maximum α -divergence criterion
if (number_of_lines<proce_length) then
Process independent variable(i.e, variable datatypes)
Add a path node to the independent variable
ifcondition_statement is achieved then
Add a path to the corresponding node
else
Add a path to the next node
end if
Else if(proce_length is achieved) then
Stop growing.
End if
Partition the training data into two paths, based on
the value of X*
endfor

C. Internal Block Transitions

The internal block transitions execution of a program can
be considered as a sequence of internal program states. Each
internal block state comprises the program’s in-scope
variables and their values at a particular execution point.
Each program execution unit (in the granularity of statement,
block, code fragment, function, or component) receives an
internal program state and then produces a new one. The
program execution points can be the entry and exit of a user-
function execution when the program execution units are
those code fragments separated by user-function call sites.
Program output statements (usually output of I/O operations)
can appear within any of those program execution
units.Since it is relatively expensive in practice to capture all
internal program states between the executions of program
statements, we focus on internal program states in the
granularity of user functions, instead of statements.

Example

(1) scanf(x);
(2) scanf(y);
(3) r=x%y;
(4) if[r==0] goto (8); [Internal block transitions]
(5) x=y;
(6) y=r;
(7) goto (3);
(8) printf(y);
(9) stop;

D. Mathematical Model for Greedy Search

The mathematical model for Greedy Search with
Directed Statement Flow Graph (DSFG) mapping algorithm
shows global prior probabilities for Combinatorial Testing
process. Let Ti be an input source code with n number of
lines (Ti1,Ti2,…,Tin) where Ti = (i = 1,2, …, n). The equation
(1) initialize the undirected graph for the input test file and
find the path is defined as follows:

 eqn. (1)

The Graph edge weights we is defined as,
 eqn. (2)

The Greedy search feature represents the nth

combinations value of conditional test defined as,
 eqn. (3)

where, w1,… ,wn∈N be weights, and let C∈N be a

weight. For each S ⊆ {1, …,n} let G(S) = eqn. (2)

Algorithm: Identifying Interactions with Greedy
Search algorithm –Data Flow Techniques

1. Read the Input Test case features from the input

file T = {Parameter, Constraints and Test set }
2. Train the input test features in N number of

combinations to covariance set
3. Read the test program procedure file for

identifying the interactions testing
4. Convert the input procedure file to Directed

Statement Flow Graph (DSFG)
5. Find the Conditional statement and goto

procedure using Greedy search method.

K.Rekha et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,221-226

© 2015-19, IJARCS All Rights Reserved 225

6. Sorting the DSFG graph in ascending order
7. For each test conditions finding the reduced

DSFG to the point in candidate test set
a. Determine the each code entry element

weight position
b. Search conditions set on to program

that are active in the conditional
delimiters statement

c. To map the conditional points
according to the exact line number.

d. Greedy search method is to search the
exact paths to connected the graph.

e. Calculate the Execution Time is
Elapsed Time = (End time – Start
Time) / 1000

f.

4. RESULT AND DISCUSSION

The research work results describe a preliminary
experimental evaluation of the Identifying Interactions for

Combinatorial Testing using Data Flow Technique using
Graph based Greedy Search algorithms results described in
figure 4. The research work implemented the proposed
algorithms in JAVA and compared them against a few other
prominent Combinatorial Testing techniques. The proposed
system performed all the experiments on a Windows
machine with a dual core 2.8 Ghz processor and 2 GB of
RAM. In this experiment study, we compare the
performance of Computational Time of the testing source
code.

 eqn.(3)
Table 1 describes the performance of the system using
metrics such as Time metrics. Computational time metrics is
analyzed in terms of combinatorial testing and Graph path
generation in figure 2. Computational Time is defined as

Table 2: Comparison of Computational Time

Methods 1 2 3 4 5 6

DERIVING INTERACTIONS FOR
COMBINATORIAL TESTING

1.8 0.99 2.40 1.14 0.78 1.5

GREEDY DECISION PATH GRAPH 0.5 0.9 0.2 0.45 0.68 0.14

Fig.5: Combinatorial testing and Graph path generation

K.Rekha et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,221-226

© 2015-19, IJARCS All Rights Reserved 226

Fig.5: Geedy decision path graph results. (a) Input procedure conditiona statement; (b) Non-reduced graph path; (c) Final

Reduced Graph path result.

5. CONCLUSION

In this paper presentsthe Black-Box Regression
Maximization (BBM) Algorithm approach with Density-
based Spatial Clustering Algorithm (DSC) with Greedy
Search optimization algorithm focuses on combinatorial
testing and proactively exposes behavioral deviations by
checking inside block transitions. In this method presents
new approach of BBM with Internal block transitions to
measure the dissimilarity statements in large program data.
To identify specific faults, an adaptive testing rule repeatedly
constructs and tests configurations in order to determine, for
each interaction of interest, whether it is faulty or not. In
order to perform such testing in a procedure environment, it
is imperative that testing results can be combined from block
transitions.

The further work enhancedand expandedfor the
automation of Decision-to-Decision path with Density-based
Spatial Clustering Algorithm (DSC)for black-box regression
testing using Greedy Search optimization algorithm.

REFERENCES

[1] R.S. Pressman, Software Engineering: A Practitioner’s

Approach, third ed., McGraw Hill, New York, 1992.

[2] P.Aditya Mathur, Foundations of Software Testing, 2/e,
Pearson Education, India, 2008.

[3] G.J. Myers, C. Sandler, T. Badgett, The Art of Software
Testing, third ed., Wiley, New York, NY, USA, 2011.

[4] D.R. Chicago Kuhn, R.N. Kacker, Y. Lei, Practical
Combinatorial Testing, NIST Special Publication, 2010. 800-
142.

[5] D.M. Cohen, S.R. Dalal, J. Parelius, G.C. Patton, The
combinatorial design approach to automatic test generation,
IEEE Softw. 13 (5) (1996) 83–88.

[6] S. Varshney, M. Mehrotra, Search-based test data generator
for data-flow dependencies using dominance concepts, branch
distance and elitism, Arabian J. Sci. Eng. (2015) 1–29.

[7] S. Sabharwal, M. Aggarwal, Identifying interactions for
combinatorial testing using data flow techniques, in:
SIGSOFT, vol. 39, issue 6, ACM, New York, NY, 2014.

[8] C. Nie, H. Leung, A survey of combinatorial testing, ACM
Comput. Surv. J. 43 (2) (2011) 11:1–11:29.

[9] L.G. Hernandez, N.G. Valdez, J.T. Jimenez, Construction of
mixed covering arrays of strengths 2 through 6 using a tabu
search approach, Discrete Math.: Algorithms Appl. 4 (3)
(2012) 1–20.

[10] M.B. Cohen, C.J. Colbourn, A.C.H. Ling, Augmenting
simulated annealing to build interaction test suites, in: Proc. of
the 14th International Symposium on Software Reliability
Engineering (ISSRE’03), IEEE Computer Society, Los
Alamitos, CA, 2003, pp. 394–405.

[11] P.Aditya Mathur, Foundations of Software Testing, 2/e,
Pearson Education, India, 2008.

	2. RELATED WORK
	3. PROPOSED METHODOLOGY
	Preprocessing
	Black-Box Regression Maximization (BBM) Algorithm
	Internal Block Transitions
	Mathematical Model for Greedy Search

	4. RESULT AND DISCUSSION
	/
	Fig.5: Geedy decision path graph results. (a) Input procedure conditiona statement; (b) Non-reduced graph path; (c) Final Reduced Graph path result.
	5. CONCLUSION
	REFERENCES

