
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 394

ISSN No. 0976-5697

An Automated Methodology to Design a Clustered Class

Ajeet A. Chikkamannur*
Department of Computer Science and Engg.

Sri Venkateshwara College of Engineering

Bangalore,India

ac.ajeet@ gmail.com

Dr. Shivanand M. Handigund
Department of Computer Science and Engg.

Bangalore Institute of Technology

Bangalore,India

smhandigund@gmail.com

Abstract: Object oriented design process for an application is a bottom-up approach in which the class or object of class are designed at the

bottom level of design granularity. The current practice of designing a class is modeled with a class diagram by the Unified Modeling Language

(UML) but in a design the grouping of an attributes and the functionalities pertaining to a class is made arbitrarily by the intuition of a designer

with his/her expertise. The design process depends on the expertise and perception of a designer without any strong foundation, which may lead

to the design and development of imperfect information systems. Hence, there is a need of sound and correct design methodology to bifurcate

the attributes and the function’s signatures applied to an attributes for a class. In the literature, we have not observed any scientific and sound

methodology to design implicitly a class with related attributes and function’s signature.

This paper proposes a methodology that utilizes the dependency matrix constituted by an attributes and functional dependencies among

attributes taken from a Software Requirements Specification (SRS). Then the attributes and functional dependencies of an individual class are

structured by the aid of pseudo-transitive axiom and subset theory of mathematics. This procedure is automated to purge the ambiguity of

designer(s) decisions and developed based on the harnessing of the axiom and mathematical rigor, which authenticates the sound and

correctness.

Keywords: attributes, functional dependency, class, relation, normalization, pseudo-transitive

I. INTRODUCTION

The object oriented design process for an application is a

bottom up approach in which the classes or objects of classes

are designed at the lowest level of design granularity. The

pragmatic practice of designing a class uses four approaches

[1], viz. noun phrase approach, common class pattern

approach, use case driven approach, and ‘classes,

responsibilities, and collaborators approach. Then the UML

class diagram models the abstracted class. While depicting the

UML class diagram, it is observed that the attributes and

function’s signatures to a particular class is designated by the

designer depending on his/her expertise and domain

knowledge. This may lead to ambiguity in the design when

more number of designers is involved in the decision. Hence,

there is a need of sound and correct design methodology for a

class to bifurcate the attributes and their function’s signature

from the group of attributes and functional dependencies.

This paper proposes an automated procedure to cluster the

attributes and functional dependencies of a class by blending

the good database design principles and the mathematical

rigor. The sound theory “normalization” is the way of good

database design principle in which the attributes are grouped

from the large set of attributes to minimize the redundancy and

many researchers [2, 3, 4, 5, 6, 7, 8, 9, 10] have provided the

algorithms for the normalization process with mathematical

rigor. Further, the authors [20] suggested that the

normalization process could be cautiously used to cluster the

attributes for a class. At present, in the literature, we have not

observed sound and scientifically proved methodology of

grouping attributes and the function’s signature operating on

the grouped attributes.

Hence, a methodology is designed and developed for

grouping of an attributes and the functional dependencies are

bifurcated pertaining to the grouped attributes, by the blend of

second normal form of good database design principle and

subset theory of mathematics. Then each categorized group is

designated as one class with attributes and the functional

dependencies.

II. TAXONOMY

This section discusses the definition and axioms used for the

design of methodology

Independence Axiom:

 The “independence axiom” states that each function of a

system and the design choice that satisfies it should not

interfere with other functions of the system. In object

technology, this axiom states, “the components are to be

maintained independently” [1].

Information Axiom:

 The “information axiom” states that when choosing

between two designs with similar functional properties, the

design with the highest probability of success is the best. In

object technology, the axiom states, “the information content

of the component design is to be minimized” [1].

Pseudo-transitivity Axiom:

The pseudo-transitivity axiom [2] is equivalent to three

axioms viz. reflexivity, augmentation and transitivity. The

axiom of pseudo-transitivity between attributes is depicted

below.

Ajeet A.Chikkamannur et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 394-398

© 2010, IJARCS All Rights Reserved 395

If X � Y and WY � Z then WX � Z (1)

Functional Dependency

The relationship among attributes is modeled by the

mathematical theory of “functional dependency” (FD). The

functional dependency [13, 14] over a set of attributes U

asserted from an application is a statement or function, Y =

f(X) where X, Y ⊂ U are attributes sets. A set of non-trivial

functional dependencies F represented [17] with following:

E = {(X, Y) |Y = f(X) ∈∈∈∈ F and Y ⊄⊄⊄⊄ X} (2)

Dependency Matrix:

The “dependency matrix” [15, 17, 18] is matrix

representation of attributes and functional dependencies, in

which each row i represents the attribute position in the

existing functional dependencies and each column j represents

a functional dependency. Thus aij represents the status of

attributes in the jth functional dependency such that;

 1 If attribute exists in left hand side of fd

 aij = 0 If attribute exists in right hand side of fd (3)

 x otherwise

III. FRAME WORK

The design of business process in object-oriented

paradigm [19, 20] commences with design of class at the

lowest level of design granularity in the bottom up approach.

The UML provides the modeling of the class by the class

diagram perceived, designed and developed by the human

expertise. The class diagram consist of three parts, viz. class

name, attributes of the class, functions/methods pertaining to

the class, which is shown in the figure 1.

Figure1. UML class diagram

The designer domain knowledge and the expertise assign

the contents in the three components of a class. This may lead

to wrong judgments or decisions because of the art or skill

involved in the bifurcation process from the large set of

attributes and functions. Further, the use of human

intelligence in the design process will lead to an ambiguity

when more number of designers is involved. The view of

abstraction of a class, the categorization of attributes and

method’s signature is dissimilar and herculean task in the large

set by the human effort.

Hence, a methodology is developed to group the attributes

and their functional dependencies for a clustered class by

presuming that the attributes, functional dependencies among

the attributes are abstracted from the SRS [14] are available.

To group an attributes and their corresponding functional

dependencies, a methodology is designed by the aid of

“pseudo-transitive axiom”. The axiom is harnessed to identify

the pseudo-transitive link between two functional

dependencies i.e. the subset relationship between right-hand

side attribute of an one functional dependency and the left-

hand side attribute set of another functional dependency and

the new functional dependency is derived by the substitution.

Then the functional dependencies are merged with exclusively

identical left-hand side attribute set of another functional

dependency to constitute attribute set and the functional

dependencies operating on them.

The stepwise explanation of designed methodology is

as follows:

Step 1. The methodology developed by Shivanand et al [14]

endows with set of functional dependencies and

attributes of an application as an input to our

methodology.

Step 2. The functional dependencies are refined to a

canonical form, i.e. there is only one attribute on the

right-hand side. Then the assignment of each attribute

to a column and functional dependency to each row

assembles a dependency matrix. By using the

symbols of the Boolean algebra, the assignment of an

element value is made depending on the type of

attribute in a functional dependency, viz. the

determinant attribute assigns the value as 1, the

dependent attribute assigns the value 0 and the non-

existence of attribute assigns the ‘x’.

Step 3. The sorting of rows in ascending order is carried out

depending on the number of determinant attributes in

each functional dependency.

Step 4. In this process, the pseudo-transitive link between the

two functional dependencies is known by the

existence of element values as 1 -1 in different rows,

and the same column. The devised method is

identifying the condition to provide the true or false

state. On the true condition, the determinant

attributes of test functional dependency are included

in the linking functional dependency by eliminating

the linking attribute. For example, consider the

functional dependencies X �Y, WY � Z and WX

� Z. The pseudo-transitive link is exists between

X� Y and WY� Z due to the presence of Y as

determinant and dependent attribute in two different

functional dependencies. Hence, the functional

dependency WY � Z is revamps to WX � Z by

substituting the X in a functional dependency

WY � Z.

Step 5. This process recognizes the exclusively identical

determinant attribute(s) in two or more functional

dependencies to take the union of the attribute set of

functional dependencies, e.g. Consider the functional

dependencies, f1: X � Y, f2: WX �Z and f3: WY �

Z to illustrate the process. By the execution of step 4

the functional dependency f2: WX � Z is revamping

to the f2: WY � Z. The functional dependency f2 and

f3 have the identical determinant attributes and hence,

the attributes W, X and Y are grouping for the

Class name

Attributes

Functions

Ajeet A.Chikkamannur et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 394-398

© 2010, IJARCS All Rights Reserved 396

functional dependencies f2 and f3. Then the merged

rows are marked as “traced”.

Step 6. This process identifies the subset relationship

between among the determinant attributes of two or

more untraced functional dependencies for

elimination of dependent attribute from linking

functional dependencies, e.g. Consider the functional

dependencies f1: X � S, f2: WX � ZS for

demonstration. The subset relationship among f1 and

f2 is exists due to the attribute X and hence, the

attribute S is discarded from the WX � ZS. The

resulting functional dependency is WX � Z.

Step 7. Here the process is assigning the attributes of each

untraced rows to the attribute section and the

functional dependencies to the method section of a

class. Hence, the constitution of number of classes

depends on the number of untraced rows of the

dependency matrix.

 The algorithm for designing class with attributes and their

functional dependencies is shown in the figure 2.

Figur 2. Algorithm to construct a class

IV. CASE STUDY

 Consider the attributes property No (A), iDate (B), iTime

(C), pAddress (D), comments (E), staffNo (F), sName (G) and

carReg (H) and the functional dependency among attributes

are F1: A�D, F2: F�G, F3: BF�H F4: AB�CEFGH and

F5:BCH�ADEFG [16, 17, 18]. The dependency matrix for

the attributes and functional dependencies is depicted in the

figure 3.

 The pseudo-transitive link exists among {4, 9, 10, 11, 12,

13}, {8, 9, 10, 11, 12, 13} and {6, 2, 3}. The attribute C is

discarded by revamping the element’s value as ‘x’ and

substituting the element’s value as ‘1’ for attributes A, B in

rows {9, 10, 11, 12, 13}. Similarly for the case {8, 9, 10, 11,

12, 13} the attribute F is discarded by changing element’s

value as ‘x’ attributes A, B is added to the rows 9, 10, 11, 12,

13 by changing the element’s value as ‘1’. The revamped

dependency matrix is shown in figure 4.

 Then the functional dependencies with exclusively

identical left-hand attributes are merged. Hence, the attributes

of functional dependencies from 2 to 13 are grouped to form a

set of attributes. The resulting matrix is shown in the figure 5.

 There is a subset link between two rows of result

dependency matrix shown in figure 5 by the attribute A. The

attribute A determines the attribute D and hence it is to be

discarded in the other functional dependency. This is depicted

Input: attributes and functional dependencies

Output: class with attributes and methods

 Represent dependency matrix in accord with

 equation 3

for (i =0; i++; i < no of functional dependencies)

 {Identify pseudo transitive link between i and i+1

 row by element’s value 0 in i row and 1 in i+1

 row but in a same column

 if link is existing then

 eliminate attribute causing the link in i+1 row

 & substitute it by LHS attributes of i row

 }

for (i =0; i++; i < no of functional dependencies)

 {Identify exclusively identical set of LHS

 attributes in i and i+1 row

 if link is true then

 group the functions of i and i+1 row

 }

for (i =0; i++; i < no of functional dependencies)

 {Identify subset link among LHS attributes in i

 and i+1 row

 if link is true then

 discard the RHS attribute in i+1 row

 corresponding to RHS attribute of ith row

 }

Construct a class corresponding to each functional

dependency’s attributes and function’s signature

with merged functional dependencies.

 A B C D E F G H

1 1 x x 0 x x x x F1

2 x x x x x 1 0 x F2

3 x 1 x x x 1 x 0 F3

4 1 1 0 x x x x x F4

5 1 1 x x 0 x x x F4

6 1 1 x x x 0 x x F4

7 1 1 x x x x 0 x F4

8 1 1 x x x x x 0 F4

9 0 1 1 x x x x 1 F5

10 x 1 1 0 x x x 1 F5

11 x 1 1 x 0 x x 1 F5

12 x 1 1 x x 0 x 1 F5

13 x 1 1 x x x 0 1 F5

Figure3. Dependency Matrix of attributes

and functional dependency

 A B C D E F G H

1 1 x x 0 x x x x F1

2 1 1 x x x x 0 x F2

3 1 1 x x x x x 0 F3

4 1 1 0 x x x x x F4

5 1 1 x x 0 x x x F4

6 1 1 x x x 0 x x F4

7 1 1 x x x x 0 x F4

8 1 1 x x x x x 0 F4

9 1 1 x x x x x x F5

10 1 1 x 0 x x x x F5

11 1 1 x x 0 x x x F5

12 1 1 x x x 0 x x F5

13 1 1 x x x x 0 x F5
Figure 4. Dependency Matrix of attributes

and functional dependency

A B C D E F G H

1 x x 0 x x x x F1

1 1 0 x 0 0 0 0 F2.F3, F4, F5
Figure 5. Result Dependency Matrix

Ajeet A.Chikkamannur et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 394-398

© 2010, IJARCS All Rights Reserved 397

by marking element’s value as ‘x’ for attribute D in the second

row. Then the set attributes and functional dependencies

corresponding to each row is utilized to constitute a class. The

resulting classes with their attributes and their functions are

given below

Class 1: attribute: A, D

 functional dependency: F1

Class 2: attributes A, B, C, E, F, G, H

 functional dependency: F2, F3, F4, F5

V. DISCUSSION

The methodology eliminates the possible human

intervention in the design of a class by automating the process

with foundation of good database design principles and

mathematical rigor. The methodology takes the number of

attributes and functional dependencies as input to represent a

dependency matrix. The two-dimensional array data structure,

supported by many programming languages, satisfies the

implementation process. The use of array data structure is

quite efficient in the process of accessing the elements for a

manipulation in accord with axiom and mathematical

requirements. The time complexity of the designed algorithm

is:

1. With number of functional dependencies n, the testing of

each functional dependency for a transitive link with other

functional dependencies takes the n* (n-1) � n2 comparisons.

2. For n number of functional dependencies, the testing of

each functional dependency for recognition of exclusively

identical determinant attributes and the subset association

determinant attributes have the n* (n-1) � n2 number of

comparisons.

Hence the time complexity of the algorithm is:

� (n) = n2 / 2 + n2 /2 � n2

This methodology is developed based on the pseudo-transitive

axiom, which is natural and sound. The compartment of

attributes are done with amalgamation of “second normal

form” [3] of good database design principle, which is sound ,

proven and minimizes the information content by categorizing

the attribute set based on pseudo-transitive link, which is

nothing but fulfillment of “Information axiom”. The

categorization of functional dependencies leads to function’s

signature, which are applied exclusively to a group of

attributes, are abstracted. This is an independent maintenance

of the class, which is fulfilling the “Independence axiom”.

Since the methodology is designed by the incorporation of

axioms, hence it is sound and correct.

VI. CONCLUSION

In object oriented system design, the UML class diagram

models the class. While depicting the class diagrams the

attributes and function’s signature of class is designated by the

designer depending on his/her expertise and domain

knowledge. This may lead towards the wrong design by

inviting ambiguity in the design when more number of

designers is involved in the decision.

The developed methodology utilizes the dependency

matrix constituted by the functional dependencies and

attributes. Then the matrix elements are manipulated in accord

with pseudo-transitive link and subset link among key

attributes of functional dependencies to categorize them. The

scratch class is designed from the attribute(s) and function’s

signature from categorized functional dependencies. Since the

methodology is developed by underpinning the axiom and

mathematical rigor, hence it evidences the correctness. The

methodology is illustrated with a case study. Further, the

harnessing of other normal form design principles and the

recognition of function’s signature depending on the clustered

functional dependencies are to be refined for a stronger

foundation and design.

VII ACKNOWLEDGEMENT

We acknowledge the International Conference on

Computing Business Applications and Legal Issues (ICCBALI

2011) held at Institute of Management and Technology

Ghaziabad, India, where the paper is accepted for presentation

and published.

VI. REFERENCES

[1] Ali Bahrami “ Object Oriented Systems Development

using UML”, 2nd Edition, Tata McGraw-Hill New

Delhi, 2008

[2] Abraham Silberschatz, Henery F. Korth, S. Sudarshan,

“Database System Concepts”, 5th Edition, McGraw-Hill

International Edition, 2006

[3] Elmasri, Navathe, “Fundamentals of Database

Systems”, 5th Edition, Pearson Education, 2008

[4] C. J. Date, A. Kannan, S. Swaminathan, “An

Introduction to Database Systems”, 8th Edition, Pearson

Education (Dorling Kindersley (India) Pvt. Ltd.), 2008.

[5] George C. Philip “Teaching Database Modeling and

Design: Areas of Confusion and Helpful Hints” Journal

of Information Technology Education Volume 6, page

481-497, 2007

[6] W. Kent, “A Simple Guide to Five Normal Forms in

Relational Database Theory”, Communications of the

ACM, Vol. 26, No. 2, page 110-114, 1983.

[7] Patric O’Neil, Elizabeth O’Neil, “Database: principles,

programming and performance”, 2nd Edition, Morgan

Kaufmann, page 369, 2001.

[8] Fangjie Xu, Huichuan Duan, “A CAI Tool for the

Theory of Relation Normalization”, 1-4244-1285-0/07

IEEE page 532-534, 2007

[9] Tauqeer Hussain, Shafay Shamail, Mian M. Awais,

“Eliminating process of Normalization in Relational

Database design” Proceedings IEEE INMIC, page

408-412, 2003.

[10] Amir Hassan Bahmani, Mahmoud Naghibzadeh,

Behnam Bahmani “Automatic database normalization

and primary key generation” IEEE CCECE/CCGEI

May 5-7, Niagara Falls, Canada, 2008.

[11] E.F. Codd, "A Relational Model of Data for Large

Shared Data Banks", Comm. ACM 12 (6), June 1970,

page 377-387.

[12] E.F. Codd, "Normalized Data Base Structure: A Brief

Tutorial", ACM SIGFIDET Workshop on Data

Description, Access, and Control, San Diego,

California, 1971

Ajeet A.Chikkamannur et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 394-398

© 2010, IJARCS All Rights Reserved 398

[13] Simon Bennett, Steve McRobb, Ray Farmer, “Object

Oriented Systems Analysis and Design using UML”,

Second Edition, Tata Mc-Graw Hill Pvt. Ltd., New

Delhi, page 456, 2009

[14] S M. Handigund, “Reverse Engineering of Legacy

COBOL systems”, Ph. D. thesis Indian Institute of

Technology Bombay, 2001

[15] A. A. Chikkamanur, S. M. Handigund, “Categorization

of Functional Dependencies for a Minimal Cover”,

ICSTC, San Diego, USA, page 213-217, 2008

[16] Thomos Connolly, Carolyn Begg, “Database Systems:

A practical approach to design, implementation and

management”, Third Edition, Pearson Education, 2005.

[17] A. A. Chikkamannur, S. M. Handigund “An ameliorated

methodology to design normalized relations” ACS /

IEEE sponsored, 7th international Conference on

Computer Systems and Applications (AICCSA09),

Rabat, Morocco, 2009, page 861-864.

[18] A. A. Chikkamannur, S. M. Handigund “Design of

Normalized Relation: An Ameliorated Tool”

International Journal of Computing and Information

Sciences (IJCIS), ISSN 1708-0460, in press.

[19] Mark Priestley “ Practical Object-Oriented Design with

UML”, 2nd edition, Tata McGraw-Hill, 2008

[20] Simon Bennet, Steve McRobb, Ray Farmer “ Object-

Oriented Systems Analysis and Design Using UML”,

2nd edition , Tata McGraw-Hill, page 365, 2009.

Ajeet A. Chikkamannur received his M. Tech. degree in

Computer Science and Engineering in

2001 from the Visvesvaraya

Technological University, India.

Currently pursuing the Ph.D. and the

research is focused on “Design of Fourth

Generation Language”. His research

interests are Object Oriented System

Development, Database Management

Systems, System Simulation and

Modeling. Presently working as Professor, Department of

Computer Science and Engineering and teaching for graduate

courses for last twenty-two years.

Prof. Shivanand M. Handigund received his Ph.D. degree

from Department of Computer Science &

Engineering, Indian Institute of

Technology, Bombay in 2001. Currently,

he is working as a full time Professor and

Head, Super Computer, M. Tech. CSE

Programme and Research Centre at

Department of Computer Science and

Engineering, Bangalore Institute of

Technology, Bangalore. His research interests are Software

Engineering, Reverse Engineering, Database Management

Systems, Object Technology and Computer Graphics. He

teaches several courses to Academia and Industry engineers.

He has organized number of conferences and delivered

keynote addresses & invited talks at several conferences. He is

a Ph. D. referee and IEEE technical papers reviewer.

