
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4940 
Volume 8, No. 9, November-December 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                    152 

ISSN No. 0976-5697 

CLASSIFICATION OF SPARQL QUERIES INTO EQUIVALENCE CLASSES OF 
RELEVANT QUERIES 

 
Theodore Andronikos 

Department of Informatics 
Ionian University 

Corfu, Greece  
 

Abstract: This paper is inspired by ideas from the field of theoretical Mathematics, used for the partitioning of abstract spaces into equivalence 
classes, and applies analogous concepts in order to propose a classification of SPARQL queries into equivalence classes. The novel concepts of 
relevant queries and covering query are introduced in a manner appropriate for the study of SPARQL queries. These new definitions shed new 
light on the relations among SPARQL queries. They enable the formal identification of similar queries and this leads to the partition of SPARQL 
queries into equivalence classes of relevant queries. This work also discusses how the covering query relating two or more relevant queries can 
be useful from the perspective of computational cost when evaluating composite queries composed of simpler relevant queries. Hence, the 
introduction of the concept of relevance between queries provides not only obvious theoretical advantages, but also concrete practical ones, 
which in many cases have the potential to lower the computational cost of query evaluation.  
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1. INTRODUCTION  

 
Today one of the most important areas of research is 

undoubtedly the Semantic Web. During the last decade, 
Semantic Web, combined with a spectrum of related 
technologies, e.g., Linked Open Data [1], has forever 
transformed the way we perceive the World Wide Web. One 
of the key reasons for the success of Semantic Web is the 
fact that it is based on standards. The Resource Description 
Framework (RDF) and SPARQL are probably the two most 
important standards of the Semantic Web.  

The Resource Description Framework is used to store 
data in the form of a directed graph [2]. The contents of the 
directed graph are viewed as triples (subject, predicate, 
object), where the subject is related to the object through the 
predicate. SPARQL [3] is the de facto standard language that 
is used for querying RDF datasets. Of particular importance 
from our viewpoint is the class of Regular Path Queries 
(RPQ for short). These are SPARQL queries that concern 
pairs of nodes of the RDF graph. An underlying path 
consisting of directed edges of the RDF graph begins from 
the first node and terminates at the second node. This path 
satisfies certain properties and these properties are 
formulated in terms of simple regular expressions that are 
suitable for this purpose.  

In this context, the so called “transitive” predicates play a 
particularly important role. A predicate R, which can 
conveniently be viewed as a label of one or more directed 
edges of the RDF graph, is called transitive if one can validly 
infer the triple that (a, R, c) from the existence of the two 
triples (a, R, b) and (b, R, c) in the RDF dataset.  

SPARQL queries taking advantage and utilizing 
transitive predicates are the most suitable examples for 
demonstrating the concept of “relevant” queries, which is the 
main theme of this paper. This work is inspired by theoretical 
ideas from the field of Mathematics which are used in order 
to access the similarity between abstract mathematical 
notions. We investigate how these ideas can be infused in the 

context of SPARQL queries so as to provide a theoretical 
partition of the set of SPARQL queries into equivalence 
classes, where each class contains “relevant” queries, that is 
queries that are connected in a precise formal way.  

Contribution. The main contribution of this work lies in 
its novelty. This paper advocates the use of mathematical 
notions for the classification of SPARQL queries into 
equivalence classes. Mathematical ideas have always been 
used in a fruitful way to tackle concrete computational 
problems. Following this line of thought, this work proposes 
the use of abstract mathematical concepts as a tool for the 
classification and subsequent evaluation of SPARQL queries. 
The idea of relevant SPARQL queries, which is introduced 
here, has far-reaching ramifications because it reveals hidden 
connections between queries. These connections, apart from 
being of interest in their own right, can also be used to 
improve the computational cost of evaluating those 
composite SPARQL queries that are comprised of relevant 
queries. In such composite queries, which are often 
encountered in practice, a covering query, that is a query that 
establishes the formal connection among the relevant queries, 
can be used instead of the individual relevant queries. The 
use of a covering query is advantageous because it will 
enable the evaluation of the composite query in a more 
efficient manner, requiring less computational time.  

The paper is organized as follows: Section 2 contains 
references to other related works, Section 3 presents the 
definitions and the notation used in this work, Section 4 lists 
and analyzes the main results, and, finally, Section 5 
summarizes conclusions and suggests some possible ideas 
for future work.  

 
2. RELATED WORK 

 
The notion of “similar” queries in the general context of 

web searching has been studied extensively (see [4] and [5] 
for some recent progress and more references on the subject). 
However, it should be emphasized that in this context the 
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query is not a SPARQL query applicable to a RDF dataset, 
but just a keyword based query, typically submitted by the 
user when searching for some information in the internet. 
The present paper focuses on SPARQL queries and 
establishes a type of similarity among such queries based 
upon a rigorous definition. To avoid any potential confusion, 
we shall henceforth use the characterization “relevant” in our 
study of SPARQL queries. In the rest of this section we 
briefly mention a few other works that are related to the 
present article in the sense that they focus on SPARQL and 
RDF graphs from a theoretical viewpoint.  

In [6] Schmidt et al. study equivalences in the context of 
SPARQL algebra. The main theme of their work is the 
classification of SPARQL fragments in complexity classes. 
They extensively use SPARQL set algebra and study both set 
and bag semantics. Our work is different from theirs in that 
we give a totally different and completely new definition for 
the equivalence of SPARQL queries, introducing at the same 
time the novel concept of covering query, and we also avoid 
the use SPARQL algebra.  

Zhang et al. [7] proposed an extension of navigational 
path queries using elements from the theory of context-free 
languages. Since context-free constructs are more expressive 
than regular expressions, this approach enhances the 
expressive power of SPARQL queries. The resulting 
language is named cfSPARQL and, as the name suggests, 
endows standard SPARQL with context-free grammars. 
cfSPARQL enables the user to formulate more powerful and 
complex queries that SPARQL. The authors claim that the 
increased expressive power does not come up with an 
increased computational cost, i.e., in most practical examples 
query evaluation in cfSPARQL remains efficient.  

An important theoretical work by Sistla et al. [8] 
demonstrated the relationship of database queries with finite 
automata. In [8] the authors developed a technique by which 
database queries, e.g., nearest neighbor queries, are 
expressed using an automata-theoretic approach. Ideas and 
methods from the theory of finite automata motivated Wang 
et al. in [9] to devise an algorithm suitable for evaluating 
RDF queries. They also presented experimental results that 
confirm that the methodology they propose is capable of 
handling efficiently certain categories of regular path queries 
on large scale RDF graphs.  

Another theoretical work that investigated the correlation 
of queries on RDF datasets to certain types of finite automata 
appeared in [10]. There the emphasis was on the practically 
infinite nature of Linked Data apothecaries, which is a 
reasonable abstraction if one takes into account their ever 
increasing size. This line of thought was further pursued in 
[11], where a connection between SPARQL queries 
involving transitive predicates and ω-regular languages, i.e., 
the analog of regular languages in case of infinite words, and 
finite automata accepting infinite inputs is established. Tools 
and techniques from the theory of probabilistic automata can 
also be used when dealing with data characterized by a 
certain degree of uncertainty, e.g., biomedical data, as was 
demonstrated in [12].  

All the previous references serve to indicate that ideas 
and methods originating from theoretical disciplines can be 
successfully adopted to more concrete and practical 
environments, such as evaluation of SPARQL queries. It is 
this point of view that characterizes this paper, where the 
inspiration comes from the field of mathematics and leads to 

the introduction of novel notion like relevant queries and 
covering query.  

 
3. DEFINITIONS AND NOTATION 

 
SPARQL queries return information stored in a RDF 

graph. The underlying syntax is rather user-friendly and 
enables the user to retrieve data that match a certain pattern. 
In this work we shall use the notation designated in the 
following definition for the answer set returned by a query q 
when applied on the dataset D. The examples used to 
demonstrate the concept of relevant queries will rely on the 
use of so called transitive predicates and will take advantage 
of the new navigational capabilities of SPARQL 1.1 [2].  

 
Definition 1. Let q(x1, …, xn) be a SPARQL query 

involving the n projection variables ?x1, …, ?xn in the 
SELECT clause of the query, and let D be a RDF dataset. 
The result of applying q(x1, …, xn) on D will be called the 
answer set of q over D and will be denoted by q(x1, …, 
xn)[D].  

 
Consider a simple SPARQL query Q(x1, x2) like the one 

shown in Figure 1a.  
 
 
SELECT ?x1 ?x2  
WHERE {  
 ?x1 IsConnectedTo ?x2 . 
}  
 
Figure 1a. The above SPARQL query lists the 
ordered pairs (x1, x2) such that there is an edge from x1 
to x2 labeled by the predicate IsConnectedTo.  
 
SELECT ?x1  
WHERE {  
 ?x1 IsConnectedTo destination .  
}  
 
Figure 1b. The above SPARQL query outputs the 
nodes x1 connected to destination by the predicate 
IsConnectedTo.  
 
SELECT ?x2  
WHERE {  
 source IsConnectedTo ?x2 .  
}  
 
Figure 1c. The above SPARQL query returns the 
nodes x2 for which there is an edge from the node 
source to x2 labeled by the predicate IsConnectedTo.  
 
 
If the projection variable x2 is removed from the SELECT 

clause of Q(x1, x2) and all other occurrences of x2 are 
replaced by the constant destination, then the result would be 
another query Q´(x1), shown in Figure 1b, containing the 
single projection variable x1. Symmetrically, if the projection 
variable x1 is removed from the SELECT clause of Q(x1, x2) 
and all other occurrences of x1 are replaced by the constant 
source, then the result would be the query Q´´(x2), shown in 
Figure 1c, containing the single projection variable x2. It will 
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be convenient to introduce the following notation to describe 
such substitutions of variables by constants. 

 
Definition 2. Let q(x1, …, xn) be a SPARQL query 

involving the n projection variables ?x1, …, ?xn in the 
SELECT clause of the query. We write q(x1, …, xn){xi1|c1, 
…, xim|cm} to denote the query q´ arising from q, if all the m 
projection variables ?xi1, …, ?xim are removed from the 
SELECT clause of q(x1, …, xn) and all remaining occurrences 
of ?xi1, …, ?xim are replaced by the m constants c1, …, cm, 
respectively. Obviously, m ≤ n.  

 
With the above notation, the queries Q´(x1) and Q´´(x2), 

depicted in Figure 1b and Figure 1c, respectively, can be 
written as Q(x1, x2){x2|destination} and Q(x1, x2){x1|source}, 
which immediately reveals that are special instances of the 
more general query Q(x1, x2) of Figure 1a. In the sequel, we 
will often refer to such an action as the application of a 
substitution to a given query, e.g., applying the substitution 
{x2|destination} to Q(x1, x2), will give rise to the Q´(x1).  

 
Remark 1. If a query q´(y1, …, yn) containing exactly n 

projection variables, results from the query q(x1, …, xn), also 
containing exactly n projection variables, by renaming all 
occurrences of x1, …, xn to y1, …, y, respectively, then the 
queries q and q´ will be considered identical. In other words, 
consistent renaming of the projection variables in a query 
leaves the query unchanged and so q(x1, …, xn) and q´(y1, …, 
yn) are in fact the same query.  

 
Consider two SPARQL queries q1 and q2 and let us 

further assume that both queries involve n projection 
variables. We call q1 and q2 relevant if they can be related by 
another query Q that utilizes at least n variables. Formally, 
the following definition captures the notion of relevance 
between queries.  

 
Definition 3. Let q1(x1, …, xn) and q2(x1, …, xn) be two 

queries with exactly n projection variables. The query q1(x1, 
…, xn) is relevant to the query q2(x1, …, xn), if there exists a 
query Q(x1, …, xn, xn+1, …, xn+m), where m ≥ 0, such that for 
every RDF dataset D:  

(1) q1(x1, …, xn)[D] = Q1(xi1, …, xin)[D], where Q1(xi1, …, 
xin) = Q(x1, …, xn, xn+1, …, xn+m){xj1|c1, …, xjm|cm}, and  

(2) q2(x1, …, xn)[D] = Q2(xk1, …, xkn)[D], where Q2(xk1, 
…, xkn) = Q(x1, …, xn, xn+1, …, xn+m){xr1|c1, …, xrm|cm}.  

The query Q(x1, …, xn, xn+1, …, xn+m) is a covering 
query for both q1(x1, …, xn) and q2(x1, …, xn).  

We write q1 ~ q2 to denote that q1 and q2 are relevant.  
 
Some clarifications are perhaps necessary in order to 

better understand the above definition.  
• First, we emphasize that the covering query Q 

involves n+m, where m ≥ 0, projection variables, whereas 
each of the two relevant queries q1 and q2 involve exactly n 
projection variables.  

• In writing Q1(xi1, …, xin) and Q2(xk1, …, xkn), the 
meaning is that both Q1(xi1, …, xin) and Q2(xk1, …, xkn) result 
from the covering query Q(x1, …, xn, xn+1, …, xn+m) by 
substituting the m remaining projection variables by m 
constants. In the first case the m constants are c1, …, cm and 
in the second case the m constants are d1, …, dm.  

• The resulting query Q1(xi1, …, xin) involves the n 
projection variables xi1, …, xin. Likewise, Q2(xk1, …, xkn) 
involves the n projection variables xk1, …, xkn. These n 
projection variables are in general different and are also 
different from the n initial variables x1, …, xn of the covering 
query Q.  

• The answer sets Q1(xi1, …, xin)[D] and Q2(xk1, …, 
xkn)[D] are sets of n tuples, as required to achieve the equality 
with the answer sets q1(x1, …, xn)[D] and q2(x1, …, xn)[D], 
respectively.  

• The constants c1, …, cm and d1, …, dm correspond to 
URIs appearing in D and will also in general be different.  

 
The following example will hopefully serve as a useful 

introduction to the notion of relevant queries. 
 
Example 1. Consider the SPARQL query q1 shown in 

Figure 2a. This query when applied to a RDF graph that 
contains the transitive predicate P will return all those nodes 
that are connected to the node destination through one or 
more edges labeled by the same transitive predicate P.  

Let us emphasize that in this query we regard predicate P 
as transitive in sense that if (a, P, b) and (b, P, c) are two 
triples stored in the RDF dataset, then, on a semantic level, 
we may infer that (a, P, c). Moreover, q1 utilizes the 
capabilities of SPARQL 1.1 [3], the syntax of which enables 
us to define and process path properties. The special symbol 
+ is interpreted as asserting the existence of one or more 
edges labeled by the transitive predicate P.  

 
 
SELECT ?x  
WHERE {  
 ?x P+ destination .  
}  
 
Figure 2a. The SPARQL query q1 lists the nodes that 
are connected to the node destination through one or 
more edges labeled by the transitive predicate P.  
 
SELECT ?x1  
WHERE {  
 source P+ ?x .  
}  
 
Figure 2b. The SPARQL query q2 outputs the nodes 
that are connected to the initial node source via one or 
more edges labeled by the transitive predicate P.  
 
SELECT ?x1 ?x2  
WHERE {  
 ?x1 P+ ?x2 .  
}  
 
Figure 2c. The SPARQL query Q returns the pairs of 
nodes that are connected by a path consisting of one 
or more edges labeled by the transitive predicate P.  
 
 
Let us consider now the SPARQL query q2 shown in 

Figure 2b. This query when applied to an appropriate RDF 
graph will return all those nodes that can be reached from the 
node source through one or more edges labeled by P.  
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The two queries q1 and q2 can be regarded as similar in 
view of the fact that both return nodes that form a path of 
length at least one, which is labeled by the same predicate (in 
our case the transitive predicate P). The difference is that in 
the first case the path terminates at a specific node, namely 
the node destination, whereas in the second case the path 
begins at a specific node (the node source).  

It should therefore come as no surprise that there is 
another SPARQL query Q, the one depicted in Figure 2c, 
which is closely related to both queries q1 and q2, or, from 
another viewpoint, that relates explicitly q1 and q2. It is rather 
straightforward to see that Q returns all the ordered pairs (x1, 
x2) such that there exists a path of length at least one from x1 
to x2 labeled by the transitive predicate P. This of course 
means that all nodes in q1(x)[D] appear as the first element of 
an ordered pair of Q(x1, x2)[D] and symmetrically all 
elements of q2(x)[D] appear as the second element of an 
ordered pair of Q(x1, x2)[D]. Moreover, by substituting the 
constant destination for all occurrences of the projection 
variable x2 in Q, the resulting query Q1(x1) = Q(x1, 
x2){x2|destination} is none other than the query q1(x). 
Symmetrically, by substituting the constant source for all 
occurrences of the projection variable x1 in Q, the resulting 
query Q2(x2) = Q(x1, x2){x1|source} becomes precisely the 
query q2(x). Therefore, according to Definition 3, Q(x1, x2) is 
indeed a covering query for q1(x) and q2(x) because q1(x)[D] 
= Q1(x1)[D] and q2(x)[D]  = Q2(x2)[D].   ▲ 

 
The previous Example 1 is quite simple, but the 

following example will demonstrate that relevant queries can 
be significantly more complex. From now for brevity we 
shall adopt the following terminology: a path consisting of 
edges labeled by the same transitive predicate P will simply 
be called a P-path. Whenever we want to express the fact that 
x is the first node and y is the terminal node of such a P-path 
we shall write x ⇒P y.  

 
 
SELECT ?x1 ?x2  
WHERE {  
 ?x1 P+ ?x2 .  
 ?x2 R+ destination .  
}  
 
Figure 3a. The SPARQL query q1 lists the ordered 
pairs (x1, x2) such that x1 is connected to x2 via a P-
path and x2 is connected to the node destination 
through an R-path. Both paths are of length at least 
one.  
 
SELECT ?x1 ?x3  
WHERE {  
 ?x1 P+ intermediate .  
 intermediate R+ ?x3 .  
}  
 
Figure 3b. The SPARQL query q2 outputs the 
ordered pairs (x1, x3) such that x1 is connected to the 
node intermediate via a P-path and intermediate is 
connected to x3 through an R-path. Both paths are of 
length at least one.  
 

SELECT ?x2 ?x3  
WHERE {  
 source P+ ?x2 .  
 ?x2 R+ ?x3 .  
}  
 
Figure 3c. The SPARQL query q3 returns the ordered 
pairs (x2, x3) such that there exists a P-path from 
source to x2, and x2, is connected to x3 through an R-
path. Both paths are of length at least one.  
 
SELECT ?x1 ?x2 ?x3  
WHERE {  
 ?x1 P+ ?x2 .  
 ?x2 R+ ?x3 .  
}  
 
Figure 3d. The above SPARQL query lists the 
ordered triples (x1, x2, x3) such that there exists a P-
path from x1 to x2, and an R- from x2 to x3. Both paths 
are of length at least one.  
 
 
Example 2. In this example, we begin by considering the 

SPARQL query q1 shown in Figure 3a. This query contains 
not just one but two transitive predicates: P and R and 
involves two variables x1 and x2. When applied on a suitable 
RDF graph it will return all those ordered pairs (x1, x2) such 
that x1 is connected to x2 via a P-path of length at least one 
and x2 is connected to the node destination through an R-path 
of length at least one. 

The SPARQL query q2 shown in Figure 3b will list all 
ordered pairs (x1, x3) such that x1 is connected to the node 
intermediate via a P-path of length at least one and, in turn, 
intermediate is connected to x3 through an R-path of length at 
least one.  

A similar examination of the query q3 of Figure 3c, 
shows that q3 outputs all ordered pairs (x2, x3) such that there 
exists a P-path of length at least one from the node source to 
x2 and there exists also an R-path of length at least one from 
the x2 to x3.  

The relevance of queries q1, q2 and q3 is rather obvious. 
All three of them return nodes that form precisely two paths: 
a P-path followed by an R-path. The difference among the 
three queries is in the specifics. For the q1 query the R-path 
must terminate at the node destination, for the q2 query the 
P-path must terminate at the node intermediate and the R-
path must begin at the node intermediate, and for the q3 
query the P-path must begin at the node source.  

The SPARQL query Q(x1, x2, x3) depicted in Figure 3d is 
the covering query for q1, q2 and q3. Q(x1, x2, x3) is more 
complex that q1, q2 and q3. While each of q1, q2 and q3 
involve two projection variables, Q(x1, x2, x3) involves three 
projection variables. As a result Q returns ordered triples (x1, 
x2, x3); in each such triple x1 is connected to x2 via a P-path 
and x2 is connected to x3 through an R-path. More formally, 
by evaluating Q to the dataset D, we get the answer set Q(x1, 
x2, x3)[D] = {(x1, x2, x3) : x1 ⇒P x2 and x2 ⇒R x3}.  

It is clear that by substituting the constant destination for 
all occurrences of the projection variable ?x3 in Q, the 
resulting query Q1(x1, x2) = Q(x1, x2, x3){x3|destination} is 
precisely the query q1(x1, x2). Reasoning in a similar manner, 
we see that by substituting the constant intermediate for all 
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occurrences of the projection variable ?x2 in Q, the resulting 
query Q2(x1, x3) = Q(x1, x2, x3){x2|intermediate} is just the 
query q2(x1, x3). Finally, by substituting the constant source 
for all occurrences of the projection variable ?x1 in Q, the 
resulting query Q3(x2, x3) = Q(x1, x2, x3){x1|source} is simply 
the query q3(x2, x3).  

Obviously, Q(x1, x2, x3) is a covering query for q1, q2 and 
q3, since q1(x1, x2)[D] = Q1(x1, x2)[D], q2(x1, x3)[D] = Q2(x1, 
x3)[D], and q3(x2, x3)[D] = Q3(x2, x3)[D].   ▲ 
 
4. FUNDAMENTAL PROPERTIES OF RELEVANT 
QUERIES 

 
From a theoretical point of view, the relevance relation 

between queries satisfies certain important properties. This is 
expressed in the next proposition.  

 
Proposition 1. The relevance relation ~ between queries 

is an equivalence relation.  
Proof.  
We must check that the relation ~ satisfies the following 

three properties that characterize equivalence.  
(1) The reflexive property requires to show that for every 

query q(x1, …, xn), it holds that q(x1, …, xn) ~ q(x1, …, xn). 
This is rather trivial because we can take the query q(x1, …, 
xn) itself as the covering query.  

(2) Suppose now that q1(x1, …, xn) ~ q2(x1, …, xn). We 
have to prove the symmetric property, i.e., that also q2(x1, …, 
xn) ~ q1(x1, …, xn). The fact that q1 and q2 are relevant implies 
that there exists a covering query Q(x1, …, xn, xn+1, …, xn+m), 
where m ≥ 0, and two substitutions θ1 and θ2, which are, in 
general, different, for m of the projection variables that 
satisfy the requirements of Definition 3. In particular, if Q(x1, 
…, xn, xn+1, …, xn+m) θ1 = Q1(xi1, …, xin) and Q(x1, …, xn, 
xn+1, …, xn+m) θ2 = Q2(xk1, …, xkn), then q1(x1, …, xn)[D] = 
Q1(xi1, …, xin)[D] and q2(x1, …, xn)[D] = Q2(xk1, …, xkn)[D] 
for every RDF database D. This immediately gives that q2(x1, 
…, xn) ~ q1(x1, …, xn) via the same covering query Q(x1, …, 
xn, xn+1, …, xn+m).  

(3) Finally, suppose that q1(x1, …, xn) ~ q2(x1, …, xn) and 
q2(x1, …, xn) ~ q3(x1, …, xn). To establish the transitive 
property, we must that also q1(x1, …, xn) ~ q3(x1, …, xn). The 
two hypotheses imply the existence of two covering queries 
Q1(x1, …, xn, xn+1, …, xn+m) and Q2(x1, …, xn, xn+1, …, xn+m´), 
and four substitutions θ1, θ2, θ3, θ4, such that q1(x1, …, xn)[D] 
= U1(xi1, …, xin)[D], q2(x1, …, xn)[D] = U2(xk1, …, xkn)[D], 
where U1(xi1, …, xin) = Q1(x1, …, xn, xn+1, …, xn+m) θ1, U2(xk1, 
…, xkn) = Q1(x1, …, xn, xn+1, …, xn+m) θ2, and q2(x1, …, xn)[D] 
= V1(xr1, …, xrn)[D], q3(x1, …, xn)[D] = V2(xt1, …, xtn)[D], 
where V1(xr1, …, xrn) = Q2(x1, …, xn, xn+1, …, xn+m´) θ3, V2(xt1, 
…, xtn) = Q2(x1, …, xn, xn+1, …, xn+m´) θ4. We construct a new 
query Q that contains as subqueries the queries Q1 and Q2. 
We may assume that Q1 and Q2 have no variable names in 
common. Even if this is not the case, we may rename the 
projection variables of Q2 to ensure that the all variables are 
distinct. This renaming does not change the semantics of Q2 
(recall Remark 1) and the resulting query is the semantically 
equivalent to Q2. The projection variables of Q are comprised 
of the projection variables of Q1, the projection variables of 
Q2 (after they have been renamed, if necessary), and a new 
variable, which we call ?choice. Moreover, we construct a 
new substitution θ1´ by augmenting θ1 with substitutions of 
the projection variables y1, …, yn, yn+1, …, yn+m´ of Q2 by 

constants d1, …, dn, dn+1, …, dn+m´, and the substitution of 
choice by a string constant, e.g., “first”. The resulting 
substitution θ1´ is θ1∪{y1|d1, …, yn|dn, yn+1|dn+1, ..., 
yn+m´|dn+m´, choice|“first”}. The subquery Q1 is also 
augmented with a FILTER statement testing whether ?choice 
is equal to the string constant used in θ1´, e.g., “first”. This 
guarantees that the augmented subquery returns exactly the 
same answer set as θ1´ when θ1´ is used and nothing 
whenever a different substitution for ?choice is used. 
Symmetrically, starting from θ4, we construct the new 
substitution θ4´ = θ4∪{x1|c1, …, xn|cn, xn+1|cn+1, ..., xn+m|cn+m, 
choice|“second”}. Likewise, Q2 is also augmented with a 
FILTER statement involving ?choice that passes the results 
only when the substitution θ4´ is used.  

Therefore, by the above construction, we conclude that 
q1(x1, …, xn)[D] = W1(xi1, …, xin)[D] and q3(y1, …, yn)[D] = 
W2(xt1, …, xtn)[D], where W1(xi1, …, xin) = Q(x1, …, xn, xn+1, 
…, xn+m, y1, …, yn, yn+1, …, yn+m´, choice) θ1´ and W2(xt1, …, 
xtn) = Q(x1, …, xn, xn+1, …, xn+m, y1, …, yn, yn+1, …, yn+m´, 
choice) θ4´. This proves that Q is a covering query for q1 and 
q3 and, thus, q1 ~ q3.      � 

 
Example 3. This example will shed some light on the 

construction we used in Proposition 1 in order to establish 
the transitive property of the ~ relation.  

The queries q1 and q2 shown in Figure 4a are relevant and 
the covering query Q1 that establishes this fact is also shown 
in Figure 4a. The two substitutions that, when applied to Q1, 
establish the relation q1 ~ q2 are {x3|IsSolid} and 
{x2|metallicObject} for q1 and q2, respectively.  

The queries q2 and q3, shown in Figure 4b, are also 
relevant. A covering query for q2 and q3 is the query Q2 also 
depicted in Figure 4b. The two substitutions that establish 
that q2 ~ q3 are {x2|metallicObject} for q2 and {x1|bolt} for q3, 
respectively.  

The algorithm described in Proposition 1 results in the 
construction of the query Q shown in Figure 4c. To avoid 
any clash of names and any possible ambiguity, the 
projection variables x1, x2, x3 of Q2 are consistently renamed 
to y1, y2, y3. This ensures that there are no variable names in 
common between Q1 and Q2. Moreover, this renaming does 
not change the semantics of Q2 (recall Remark 1), meaning 
that the resulting query is the same as Q2.  

 
 
 
 
SELECT ?x1 ?x2  
WHERE {  
 ?x1 IsInstanceOf ?x2.  
 ?x2 HasProperty IsSolid.  
} 

(q1) 

 
SELECT ?x1 ?x3  
WHERE {  
 ?x1 IsInstanceOf metallicObject.  
 metallicObject HasProperty ?x3.  
} 

(q2) 

 
SELECT ?x1 ?x2 ?x3  
WHERE {  
 ?x1 IsInstanceOf ?x2.  
 ?x2 HasProperty ?x3.  

(Q1) 
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} 

 
Figure 4a. The first SPARQL query q1 above is 
relevant to the second query q2. The covering query 
that establishes that q1 ~ q2 is the query Q1.  
 
SELECT ?x1 ?x3  
WHERE {  
 ?x1 IsInstanceOf metallicObject.  
 metallicObject HasProperty ?x3.  
} 

(q2) 

 
SELECT ?x2 ?x3  
WHERE {  
 bolt IsInstanceOf ?x2.  
 ?x2 HasProperty ?x3.  
} 

(q3) 

 
SELECT ?x1 ?x2 ?x3  
WHERE {  
 ?x1 IsInstanceOf ?x2.  
 ?x2 HasProperty ?x3.  
} 

(Q2) 

 
Figure 4b. Similarly, q2 ~ q3 and Q2 is a covering 
query for q2 and q3.  
 
SELECT ?x1 ?x2 ?x3 ?y1 ?y2 ?y3 ?choice  
WHERE {  
 {  
  SELECT ?x1 ?x2 ?x3  
  WHERE {  
   ?x1 IsInstanceOf ?x2 . 
   ?x2 HasProperty ?x3 .  
   FILTER ( ?choice = “first” )  
  }  
 }  
 {  
  SELECT ?y1 ?y2 ?y3  
  WHERE {  
   ?y1 IsInstanceOf ?y2 . 
   ?y2 HasProperty ?y3 .  
   FILTER ( ?choice = “second” )  
  }  
 }  
}  
 
Figure 4c. The above query Q is a covering query for 
q1 and q3.  
 
 
Hence, the variables appearing in the SELECT clause of 

Q are the variables x1, x2, x3 of Q1, the variables y1, y2, y3 of 
Q2, and a new projection variable ?choice, which will be 
used to filter the results returned by the two subqueries.  

 
 
SELECT ?x1 ?x2  
WHERE {  
 {  
  SELECT ?x1 ?x2  
  WHERE {  

   ?x1 IsInstanceOf ?x2 .  
   ?x2 HasProperty IsSolid .  
   FILTER ( “first” = “first” )  
  }  
 }  
 {  
  SELECT  
  WHERE {  
   d1 IsInstanceOf d2 .  
   d2 HasProperty d3 .  
   FILTER ( “first” = “second” )  
  }  
 }  
 }  
 
Figure 5a. The above SPARQL query W1(x1, x2) 
arises from the query Q(x1, x2, x3, y1, y2, y3, choice) of 
Figure 4c with the substitution {x3|IsSolid, y1|d1, y2|d2, 
y3|d3, choice|“first”}, where d1, d2, d3 are arbitrary 
constants. The FILTER statements in the two 
subqueries guarantee that W1 returns all ordered pairs 
(x1, x2) from subquery Q1 but none from subquery Q2.  
 
SELECT ?y2 ?y3  
 WHERE {  
 {  
  SELECT  
  WHERE {  
   c1 IsInstanceOf c2 .  
   c2 HasProperty c3 .  
   FILTER ( “second” = “first” )  
  }  
 }  
 {  
  SELECT ?y2 ?y3  
  WHERE {  
   bolt IsInstanceOf ?y2 .  
   ?y2 HasProperty ?y3 .  
   FILTER ( “second” = “second” )  
  }  
 }  
 } 
 
Figure 5b. The above query W2(y2, y3) arises from the 
query Q(x1, x2, x3, y1, y2, y3, choice) of Figure 4c with 
the substitution {x1|c1, x2|c2, x3|c3, y1|bolt, 
choice|“second”}, where c1, c2, c3 are arbitrary 
constants. The FILTER statements in the two 
subqueries guarantee that W2 returns all ordered pairs 
(y2, y3) from subquery Q2 but none from Q1.  
 
 
Applying the substitution {x3|IsSolid, y1|d1, y2|d2, y3|d3, 

choice|“first”}, where d1, d2, d3 are arbitrary constants, to the 
query Q(x1, x2, x3, y1, y2, y3, choice), results in the query 
W1(x1, x2) depicted in Figure 5a. In view of the fact that the 
second FILTER statement will exclude everything, while the 
first FILTER statement will allow everything, we conclude 
that W1(x1, x2) is equivalent to Q1{x3|IsSolid}. Therefore, 
W1(x1, x2)[D] = q1(x1, x2)[D].  

Similarly, the query W2(y2, y3) of Figure 5b results from 
the application of the substitution {x1|c1, x2|c2, x3|c3, y1|bolt, 
choice|“second”}, where c1, c2, c3 are arbitrary constants, to 
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Q(x1, x2, x3, y1, y2, y3, choice). In this case, the first FILTER 
statement will exclude everything, while the second FILTER 
statement will allow everything. This implies that W2(y2, y3) 
is equivalent to Q2{y1|bolt}, and, therefore, W2(y2, y3)[D] = 
q3(y2, y3)[D]. This concludes the proof that Q is a covering 
query for q1 and q3 and, thus, q1 ~ q3.    ▲ 

 
The construction the query Q that establishes the 

transitivity of the relevance relation ~ was somewhat 
artificial and mechanical. It serves only to complete the 
proof. Clearly, there is a high degree of redundancy in Q, 
which is not at all optimized. In most practical cases, things 
will be much easier. For instance, in Example 3, query Q1 
alone suffices to establish that q1 ~ q3. This is achieved with 
the substitutions {x3|IsSolid} and {x1|bolt} for q1 and q3, 
respectively.  

Proposition 1 is important because it means that the set of 
SPARQL queries is partitioned into equivalence classes, and 
each SPARQL query q belongs to one such class.  

 
Definition 4. Let q be a SPARQL query. The equivalence 

class to which q belongs is denoted by [q]. Alternatively, we 
say that q is a representative of the class [q].  

 
Having established this theoretical classification of 

SPARQL queries into equivalence classes, let us turn our 
attention into possible ways to take advantage of this 
situation for practical purposes.  

Consider a scenario where we have the two relevant 
queries q1 and q2. We may further assume that we know a 
third query Q that is a covering query for q1 and q2 via the 
substitutions θ1 and θ2, respectively. Whenever we are 
confronted with the evaluation of a more composite query, 
involving q1 and q2, we may use our knowledge of the 
covering query Q to our advantage in order to speed up the 
computation. Specifically, instead of having to compute two 
queries, we can arrive at the same answer set by computing 
just one.  

This can be achieved by applying the substitution θ = 
θ1∪θ2 to Q and then evaluation the resulting query Q´ = Qθ. 
Taking into account the properties of the covering queries, 
we see that the soundness of this method is immediate. 
Furthermore, and more importantly, this approach takes 
considerably less time.  

 
Example 4. In this example, we assume that we want to 

compute the SPARQL equivalent of the join of the query q1 
with the query q3, shown in Figures 3a and 3c, respectively. 
We also know that Q, depicted in Figure 3d, is a covering 
query for q1 and q3.  

We recall that q1 returns the ordered pairs (x1, x2) such 
that x1 is connected to x2 via a P-path and x2 is connected to 
the node destination through an R-path, while q3 lists the 
ordered pairs (x2, x3) such that there exists a P-path from 
source to x2 and an R-path from x2 to x3. All paths have 
length at least one.  

Formally, the answer sets of q1 and q3 on a dataset D are 
q1(x1, x2)[D] = {(x1, x2): x1 ⇒P x2 and x2 ⇒R destination} and 
q3(x2, x3)[D] = {(x2, x3): source ⇒P x2 and x2 ⇒R x3}, 
respectively. Therefore the answer set of their join is {x2 : 
source ⇒P x2 and x2 ⇒R destination}, that is the nodes x2 for 
which there exists a P-path from source to x2 and an R-path 
from x2 to destination.  

 
 
SELECT ?x2  
WHERE {  
 source P+ ?x2 .  
 ?x2 R+ destination .  
 }  
 
Figure 6. The above SPARQL query lists all the 
nodes x2 for which there exists a P-path from source 
to x2 and an R-path from x2 to destination. Again, both 
paths are of length at least one.  
 
 
The query Q lists the ordered triples (x1, x2, x3) such that 

there exists a P-path from x1 to x2 and an R-path from x2 to 
x3. More formally, applying Q to the dataset D produces the 
answer set Q(x1, x2, x3)[D] = {(x1, x2, x3) : x1 ⇒P x2 and x2 ⇒R 
x3}. By simultaneously substituting the constants source and 
destination for all occurrences of the projection variables x1 
and x3 in Q, we get the resulting query Q´(x2) = Q(x1, x2, x3){ 
x1|source, x3|destination} shown in Figure 6. It is easy to see 
that the answer set of Q´ is precisely {x2 : source ⇒P x2 and 
x2 ⇒R destination}.  

What this means in terms of efficiency, is that instead of 
evaluating two queries, each involving two projection 
variables, and then computing their join, we can, 
equivalently, evaluate a single query, involving one 
projection variable. This approach has the potential to reduce 
the computational cost significantly.    ▲ 

 
It is important to point out that this technique is not only 

valid for just two relevant queries but it can be readily 
generalized to an arbitrary (finite) number of relevant 
queries, due to the transitive nature of the ~ relation. 
 
5. CONCLUSION 

 
In this paper we have analyzed SPARQL queries using 

concepts and ideas inspired from the field of abstract 
mathematics. This novel approach, besides its theoretical 
merits, has the potential to provide important practical 
benefits regarding the computational aspects of SPARQL 
query evaluation. Quite often in practice we may encounter 
composite queries that are comprised of simpler queries that 
happen to be relevant. This situation was demonstrated in the 
toy scale Example 4, where the evaluation of the conjunction 
of two SPARQL queries was considered. The current 
approach requires the evaluation of both queries in order to 
achieve the evaluation of their conjunction. Knowledge of 
the fact that the queries in question happen to be relevant, 
along with a covering query establishing their relation, opens 
up another possibility. By using only one query, specifically 
one arising from the covering query via an appropriate 
substitution, the evaluation of the conjunction can be 
completed in a more efficient manner, requiring less 
computational time.  
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