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Abstract: Regular expression is widely used in the field of computer science. For conversion of deterministic finite automata to regular 

expression, several techniques like Transitive closure method, Brzozowski Algebraic method and state elimination method are proposed. None 

of the proposed techniques is able to find the smallest regular expression. This paper investigates and compares different techniques for 

converting deterministic finite automata to regular expression. Inclusion of bridge state method in state elimination method leads to smaller 

regular expression as compared to other techniques. 
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I. INTRODUCTION  

Regular expressions denotes regular languages and regular 
languages are used in Compiler design, Text editor, search for 
an email- address, grep filter of unix, data validation,  fridge 
thermostats, elevators, train track switches, context switching 
and in programming languages to search and  manipulate text 
based on patterns [ 3][ 4 ][8] [9][13][15 ]. 

Kleene proves that there is equivalent regular expression 
corresponding to deterministic finite automata [12]. For 
converting deterministic finite automata to regular expression 
Kleene provides first technique known as transitive closure 
approach. Brzozowski extends this transitive closure approach, 
called Brzozowski algebraic approach [5]. Brzozowski’s 
approach is a recursive approach and also uses Arden’s Rule 
[14] for generating regular expression from deterministic finite 
automata. In this approach system of equations is created and 
regular expression is obtained by solving these equations. State 
elimination method [2][10] is most widely used approach for 
converting deterministic finite automata to regular expression. 
In this approach states (except start and final state) of 
deterministic finite automata are removed one by one and 
finally regular expression is generated equivalent to given 
deterministic finite automata. In state elimination method 
concept of bridge state [16] is also used for obtaining smaller 
regular expression. 

In this paper we analyse the different techniques for 
converting deterministic finite automata to regular expression 
and test which is efficient technique for converting 
deterministic finite automata to regular expression. Paper is 
organized as follow. In the next section 2 some basic 
definitions and notations are reviewed. In Section 3, conversion 
of deterministic finite automata to regular expression is 
explained using techniques transitive closure approach, 
Brzozowski algebraic approach, state elimination method and 
concept of bridge state. In Section 4 comparisons of different 
techniques is carried out and finally Section 5 include 
conclusion and future scope. 

II. BASIC DEFINITIONS AND NOTATIONS 

Alphabet is defined as finite non-empty set of symbols on 

which the language is defined. Alphabets are denoted by .  

Language [10] is defined as a subset *. Empty string and null 

language are denoted by � and � respectively. Various kinds 
of formal languages can be classified as regular, context free, 
context sensitive and recursive language. Regular language can 
be described by regular expression, finite automata 
(Deterministic or Non-deterministic).  

A regular expression (RE) [14] is a pattern that describes 
some set of strings. Regular expression over a language can be 
defined as  

1) Regular expression for each alphabet will be 
represented by itself. The empty string ( � ) and null language ( 
� ) are regular expression denoting the language {�} and {�} 
respectively. 

2)  If  E and F are regular expressions denoting the 
languages L(E) and L(F) respectively, then following rules can 
be applied recursively 

• Union of E and F will be denoted by regular 
expression E+F and representing language L(E)  U 
L(F). 

• Concatenation of E and F denoted by EF and 
representing language L(E*F) = L(E) * L(F). 

• Kleene closure will be denoted by E*and represent 
language (L(E))* 

3) Any regular expression can be formed using 1-2 rules 
only. 

Deterministic finite automata (DFA) [14][6] can be defined by 

5-tuples (Q, , , q0 , F), where Q is a finite set of states,  is a 

finite set of symbols,  is the transition function, that is, 

�: Q × � � Q. 
q0 is the start state and F is a set of states of Q (i.e. F�Q) 

called accept states. 
A Non-deterministic finite automata (NFA) [14][6] is a 

same as DFA except the transition function. Transition function 
in NFA is defined as Q × � � 2Q        
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III. CONVERSION OF DFA TO RE 

First, Kleene proves that every RE has equivalent DFA and 
vice versa. On the basis of this theoretical result, it is clear that 
DFA can be converted into RE and vice versa using some 
algorithms or techniques. For converting RE to DFA, First we 
convert RE to NFA(Thomson Construction) and then NFA is 
converted into DFA(Subset construction).For conversion of 
DFA to regular expression following methods have been 
introduced [1][2][5]. 

• Transitive closure method  
• Brzozowski Algebraic method  
• State elimination method 

A. Transitive Closure Method 

 Kleene's transitive closure method [1][2] defines regular 

expressions and proves that there is equivalent RE 

corresponding to a DFA. Transitive closure is the first 

technique, for converting DFAs to regular expressions. It is 

based on the dynamic programming technique.  In this method 

we use Rk
ij, which denotes set of all the strings in �* that take 

the DFA from state qi to qj without entering or leaving any 

state higher than qk. There are finite sets of Rk
ij so that each of 

them is generated by a simple regular expression that lists out 

all the strings.  

Let regular expression Rij represents the set of all strings that 

transition the automata from node qi to qj. 

Rij can be constructed by successively constructing R1
ij, R2

ij 

,…….. Rm
ij 

.R
k

ij is recursively defined as: 

Rk
ij =   R

k-1
ik (R

k-1
kk )

* Rk-1
kj  + Rk-1

ij                                          (1)           

   Assuming we have initialized R0
ij to be:     

                      r       if i�j and r transitions from qi to qj 

     R0
ij =       r +�    if i=j and r transitions from qi to qj 

                                             �      otherwise 

 

Using “(1)”  Rk
ij = R

k-1
ik (R

k-1
kk )

* Rk-1
kj  + Rk-1

ij  [1] , we obtain  

Regular expression Rij. 
Consider the DFA given in “fig. 1” and applying transitive 
closure method on it. 

 
Fig.ure 1.  DFA for the language having odd number of 0’s 

 r0
11 =  1 +  �          r

0
22  = 1 +  �         r

0
12 = 0         r0

21 = 0 

r1
12 = r0

12  + r0
11 (r

0
11)

* r0
12   = 0 + (1+ �) + 0          

r1
22 =  r

0
22 +  r

0
21(r

0
11)

* r0
12      = (1+� ) + 0(1+�)*0 

 r2
12   =   r

1
12 + r1

12(r
1

22)
* r1

2=
   (1+�)*0(1+�+01*0)  

 r2
12 

  =  (1)*0(1+ 01*0)* 

  L(M)    =      L(r2
12) 

B. Brzozowski Algebraic Method 

Brzozowski method [1][5] is a unique approach for 

converting deterministic finite automata to regular 

expressions. In this approach we create characteristics 

equations for each state which represent regular expression for 

that state. After solving the equation of Rs (regular expression 

associated with starting state qs ).  

If Ri is regular expression for state qi and there is transition a 

from state qi to qj , then term aRj  is added in the equation for Ri 

. If qi is final node then term � (null index) is added in the 

equation. This leads to a system of equations in the form: 

R1 = a1R1 + a2R2 + ………            

R2 = a1 R1 + a2R2 + a3R3 +………  

Rm = a1 R1 + a2R2 + …+ … �        � is added if Rm is final 

node  

Where ax = � if there is no transition from Ri to Rj. 

Using Arden’s Theorem [14] we solve the obtained equations. 

It states that if an equation is of the form 

 X = AX + B , its solution is X = A* B 

For example DFA shown in the “fig. 2” is converted to its 

corresponding regular expression using Brzozowski algebraic 

method. 

 
Figure 2.  DFA for strings with an odd no  of 1’s 

 Characteristics equations are as follow:                                                   

A = 0A + 1B                                                                           (2)     

B = 1A + 0B + �                                                                     

(3)  

Solving these equations by Arden’s theorem   

B = 1A + 0B + �= 0B + (1A + �)=0*(1A + �) 

B= 0*(1A) + 0*( �)= 0*1A + 0*                                            

(4) 

Using “(4)” we obtain  

A = 0A + 1B= 0A + 1(0*1A + 0*)  

A= 0A + 10*1A + 10* 

A= (0 + 10*1)*(10*)    (Using Arden’s rule) 

C. State Removal Method 

The state removal approach [1][14] is widely used 

approach for converting DFA to regular expression. In this 

approach states of DFA are removed one by one until we left 

with only starting and final state, for each removed state 

regular expression is generated.  This newly generated regular 

expression act as input for a state which is next to removed 

state. The advantage of this technique over the transitive 

closure method is that it is easier to visualize. This technique 

is described by Du and Ko [2], but a much simpler approach is 

given by Linz [10]. At first, if there are multiple edges from 

one node to other node, then these are unified into a single 

edge that contains the union of inputs. Suppose from q1 to q2 

there is an edge weighted ‘a’ and an edge weighted ‘b’, those 

would be unified into one edge from q1 to q2 that has the 

weight a + b. If there are n accepting states, take union of 

different regular expressions.        

For example DFA shown in “fig. 3” is converted to its 

corresponding regular expression using state elimination 

method 

           

 
Fig.ure 3. An example of state elimination method for generating regular 

expression corresponding to given DFA. 

 



Kulwinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,125-128 
 

© 2010, IJARCS All Rights Reserved  127   

Equivalent regular expression corresponding to given DFA is 

(0+10)*11(0)* 

Han and Wood have worked on the concept of bridge state in 

the state elimination method. A state qb of automata A is said 

to be bridge state [16], if it satisfies the following conditions: 

1) State qb is neither a start nor a final state. 

2) For each string w � L(A), its path in A must pass 

through qb at least once. 

3) Once string w’s path passes through qb for the first time, 

the path can never pass through any states that have been 

visited before apart from state qb. 

By using different removal sequences of states, we obtain 

different regular expressions for the same language. We 

require a removal sequence which gives smaller regular 

expression. Elimination of non-bridge state before bridge state 

gives us smaller regular expression. [16].     

 
Figure  4.  An example of different RE by different removal sequences 

for a given DFA . 

 

State 1 and state 4 are bridge states of  DFA shown in 

“fig. 4”. 

R1=a(ba+ab)(ab)*(aa+b)  using state elimination 

sequence 2-3-5-1-4  

R2=(ab(ab+aa(ba)*(a+bb))+aa(bb+ba(ba)*(a+bb))) using 

state elimination sequence 1-4-5-2-3 

R3=[(aba+aab)b+(aba+aab)a(ba)*(a+bb)]  using state 

elimination sequence 2-1-3-4-5 

Removing the bridge states 1 and 4 at last gives smaller 

regular expression. 

IV. COMPARISON OF APPROACHES USED FOR 

CONVERTING DFA TO RE 

We will apply these three methods on DFA which accepts 

the string having even number of 0’s and 1’s. 

 

Figure 5.  DFA for string having even no of 1’s and 0’s 

A. Transitive Closure Approach 

Applying transitive closure approach on DFA shown in  

“fig. 5”. 

R = Rc
aa  =  Rd

aa  +  Rd
ac  (R

d
cc )

* Rd
ca.   (5) 

Rd
aa  =  Rb

aa  +  Rb
ad  (R

b
dd )

* Rb
da          

 R
b

aa  =  Ra
aa  +  Ra

ab  (R
a
bb )

* Ra
ba    

Ra
aa  =  R0

aa  +  R0
aa  (R

0
aa )

* R0
aa   =  �  +  �  (�)* �  =  � 

 Ra
ab  =  R0

ab  +  R0
aa  (R

0
aa )

* R0
ab =  1  +  �  (�)* 1 =1 

Similarly we will get     

Ra
bb = 1   , Ra

ba  = 1 , Rb
aa = 1 (1)* 1  , Rb

ad = 1 (1)* 0  

 Rd
aa = [1 (1)* 1] + [ 1 (1)* 0] [ 0 (1)* 0] [0 (1)* ]         

Rd
ac =   [ 0+1(1)*0]+[1(1)*0][ 0 (1)* 0 ] [1 + 0 (1)* 1] 

Rd
cc =  [ 00+01(1)*10]+(1) [ 0 (1)* 0] [ 0 + 0 (1)* 10 ]  

Rd
ca = 0 [ (0 + 00) + 111 ] + 1 [ 0 (1)* 0 ] [ 0 (1)* 1 ] 

By Putting these values in “(5)” 

R= [1(1)* 1] + [ 1(1)*0 ] [ 0(1)*0 ] [ 0(1)* ] + [ 0 + 1(1)*0 ] + [ 

1( 1)*0 ] [ 0 (1)*0 ] [1+0(1)* 1] ( [ 00 + 01(1)*10 ] + (1) [ 

0(1)*0 ] [ 0 + 0(1)*10] )*0 [ (0+00) + 111 ] + 1[0 (1)* 0] [0 

(1)*1 ]  

B. Brzozowski Algebraic method 

    Set of equations for generating regular expression for 

automata shown in “fig..5”.  

A = 0C + 1B +�     (6)                                                       

B = 0D + 1A     (7)                                                          

C = 0A + 1D     (8)                                                           

D = 0B + 1C     (9)                                                          

Using  “(7)” 

A = 0C + 10D + 11A + �       D = 00D + 01A + 1C 

Using  “(8)".  

 A = 00A + 01D + 10D + 11A + �    

 A =  (00 + 11)A + (01 + 10)D + � 

 D = (00 + 11)D + (01 + 10)A   

 D= (00 + 11)*(01 + 10)A           (10) 

(using Arden's  rule)             

 Using  “(10)” 

 A = (00 + 11)A + (01 + 10)(00 + 11)*(01 + 10)A + �       

A= [00 + 11 + (01 + 10)(00 + 11)*(01 + 10)]A + � 

 A = [(00 + 11) + (01 + 10)(00 + 11)*(01 + 10)]*  (using 

Arden’s rule) 

C. State Removal Method 

Applying state elimination method on DFA shown in “fig. 5” 

 

 
 

Figure  6.   DFA after eliminating state B and state C respectively 
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Figure 7.  Final DFA after eliminating state D 

 

Regualr expression corresponding to DFA shown in “fig. 5” is 

R= [(11 + 00 ) + ( 10 +01 ) (00 + 11)*( 01 + 10) ]* 

Due to repeated union of concatenated terms transitive closure 

method is very complex and gives very long regular 

expression as compared to Brzozowski algebraic method and 

state elimination method. Brzozowski algebraic method is 

recursive approach and generates reasonably compact regular 

expressions. For recursion oriented languages, like functional 

languages, transitive closure method is difficult to implement, 

in that case Brzozowski algebraic method is used. 

Brzozowski method takes more time as compared to state 

elimination method, in which regular expression is obtained by 

manual inspection. State elimination method using bridge state 

concept gives shorter regular expression as compared to 

Brzozowski algebraic method. 

V. CONCLUSION AND FUTURE SCOPE 

State elimination method takes less time, and generally 
gives smaller regular expression as compared to Transitive 
closure and Brzozowski algebraic method. In state elimination 
method the removal of sequences also give us different regular 
expression. By choosing a good removal sequence, we can 
obtain a shorter regular expression.   

There is need to develop a software that convert a given 
deterministic finite automata into regular expression using 
bridge state. New heuristics can be designed to find smaller 
regular expression from DFA using state elimination method. 
Although algorithm exist for finding bridge state, but there is a 
need of an efficient algorithm for finding bridge state. 
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