
��������	�
����	��������������

��� ����!��"�����#�������

�$��$%���&�!'$�

������(���)���������***��+���������

© 2010, IJARCS All Rights Reserved 125

ISSN No. 0976-5697

Comparisons Amongst Different Techniques for Conversion of Deterministic Finite

Automata to Regular Expression

Kulwinder Singh*
Student M.E.(CSE),

Computer Science and Engineering Department

Thapar University, TU

Patiala, India

kulwinder.thaparian@gmail.com

Ajay Kumar Loura
Assistant professor,

Computer Science and Engineering Department

Thapar University, TU

Patiala, India

ajaykumar@thapar.edu

Abstract: Regular expression is widely used in the field of computer science. For conversion of deterministic finite automata to regular

expression, several techniques like Transitive closure method, Brzozowski Algebraic method and state elimination method are proposed. None

of the proposed techniques is able to find the smallest regular expression. This paper investigates and compares different techniques for

converting deterministic finite automata to regular expression. Inclusion of bridge state method in state elimination method leads to smaller

regular expression as compared to other techniques.

Keywords: Regular expression; computer science; deterministic finite automata; bridge state; techniques

I. INTRODUCTION

Regular expressions denotes regular languages and regular
languages are used in Compiler design, Text editor, search for
an email- address, grep filter of unix, data validation, fridge
thermostats, elevators, train track switches, context switching
and in programming languages to search and manipulate text
based on patterns [3][4][8] [9][13][15].

Kleene proves that there is equivalent regular expression
corresponding to deterministic finite automata [12]. For
converting deterministic finite automata to regular expression
Kleene provides first technique known as transitive closure
approach. Brzozowski extends this transitive closure approach,
called Brzozowski algebraic approach [5]. Brzozowski’s
approach is a recursive approach and also uses Arden’s Rule
[14] for generating regular expression from deterministic finite
automata. In this approach system of equations is created and
regular expression is obtained by solving these equations. State
elimination method [2][10] is most widely used approach for
converting deterministic finite automata to regular expression.
In this approach states (except start and final state) of
deterministic finite automata are removed one by one and
finally regular expression is generated equivalent to given
deterministic finite automata. In state elimination method
concept of bridge state [16] is also used for obtaining smaller
regular expression.

In this paper we analyse the different techniques for
converting deterministic finite automata to regular expression
and test which is efficient technique for converting
deterministic finite automata to regular expression. Paper is
organized as follow. In the next section 2 some basic
definitions and notations are reviewed. In Section 3, conversion
of deterministic finite automata to regular expression is
explained using techniques transitive closure approach,
Brzozowski algebraic approach, state elimination method and
concept of bridge state. In Section 4 comparisons of different
techniques is carried out and finally Section 5 include
conclusion and future scope.

II. BASIC DEFINITIONS AND NOTATIONS

Alphabet is defined as finite non-empty set of symbols on

which the language is defined. Alphabets are denoted by .

Language [10] is defined as a subset *. Empty string and null

language are denoted by � and � respectively. Various kinds
of formal languages can be classified as regular, context free,
context sensitive and recursive language. Regular language can
be described by regular expression, finite automata
(Deterministic or Non-deterministic).

A regular expression (RE) [14] is a pattern that describes
some set of strings. Regular expression over a language can be
defined as

1) Regular expression for each alphabet will be
represented by itself. The empty string (�) and null language (
�) are regular expression denoting the language {�} and {�}
respectively.

2) If E and F are regular expressions denoting the
languages L(E) and L(F) respectively, then following rules can
be applied recursively

• Union of E and F will be denoted by regular
expression E+F and representing language L(E) U
L(F).

• Concatenation of E and F denoted by EF and
representing language L(E*F) = L(E) * L(F).

• Kleene closure will be denoted by E*and represent
language (L(E))*

3) Any regular expression can be formed using 1-2 rules
only.

Deterministic finite automata (DFA) [14][6] can be defined by

5-tuples (Q, , , q0 , F), where Q is a finite set of states, is a

finite set of symbols, is the transition function, that is,

�: Q × � � Q.
q0 is the start state and F is a set of states of Q (i.e. F�Q)

called accept states.
A Non-deterministic finite automata (NFA) [14][6] is a

same as DFA except the transition function. Transition function
in NFA is defined as Q × � � 2Q

Kulwinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,125-128

© 2010, IJARCS All Rights Reserved 126

III. CONVERSION OF DFA TO RE

First, Kleene proves that every RE has equivalent DFA and
vice versa. On the basis of this theoretical result, it is clear that
DFA can be converted into RE and vice versa using some
algorithms or techniques. For converting RE to DFA, First we
convert RE to NFA(Thomson Construction) and then NFA is
converted into DFA(Subset construction).For conversion of
DFA to regular expression following methods have been
introduced [1][2][5].

• Transitive closure method
• Brzozowski Algebraic method
• State elimination method

A. Transitive Closure Method

 Kleene's transitive closure method [1][2] defines regular

expressions and proves that there is equivalent RE

corresponding to a DFA. Transitive closure is the first

technique, for converting DFAs to regular expressions. It is

based on the dynamic programming technique. In this method

we use Rk
ij, which denotes set of all the strings in �* that take

the DFA from state qi to qj without entering or leaving any

state higher than qk. There are finite sets of Rk
ij so that each of

them is generated by a simple regular expression that lists out

all the strings.

Let regular expression Rij represents the set of all strings that

transition the automata from node qi to qj.

Rij can be constructed by successively constructing R1
ij, R2

ij

,…….. Rm
ij

.R
k

ij is recursively defined as:

Rk
ij = R

k-1
ik (R

k-1
kk)

* Rk-1
kj + Rk-1

ij (1)

 Assuming we have initialized R0
ij to be:

 r if i�j and r transitions from qi to qj

 R0
ij = r +� if i=j and r transitions from qi to qj

 � otherwise

Using “(1)” Rk
ij = R

k-1
ik (R

k-1
kk)

* Rk-1
kj + Rk-1

ij [1] , we obtain

Regular expression Rij.
Consider the DFA given in “fig. 1” and applying transitive
closure method on it.

Fig.ure 1. DFA for the language having odd number of 0’s

 r0
11 = 1 + � r

0
22 = 1 + � r

0
12 = 0 r0

21 = 0

r1
12 = r0

12 + r0
11 (r

0
11)

* r0
12 = 0 + (1+ �) + 0

r1
22 = r

0
22 + r

0
21(r

0
11)

* r0
12 = (1+�) + 0(1+�)*0

 r2
12 = r

1
12 + r1

12(r
1

22)
* r1

2=
 (1+�)*0(1+�+01*0)

 r2
12

 = (1)*0(1+ 01*0)*

 L(M) = L(r2
12)

B. Brzozowski Algebraic Method

Brzozowski method [1][5] is a unique approach for

converting deterministic finite automata to regular

expressions. In this approach we create characteristics

equations for each state which represent regular expression for

that state. After solving the equation of Rs (regular expression

associated with starting state qs).

If Ri is regular expression for state qi and there is transition a

from state qi to qj , then term aRj is added in the equation for Ri

. If qi is final node then term � (null index) is added in the

equation. This leads to a system of equations in the form:

R1 = a1R1 + a2R2 + ………

R2 = a1 R1 + a2R2 + a3R3 +………

Rm = a1 R1 + a2R2 + …+ … � � is added if Rm is final

node

Where ax = � if there is no transition from Ri to Rj.

Using Arden’s Theorem [14] we solve the obtained equations.

It states that if an equation is of the form

 X = AX + B , its solution is X = A* B

For example DFA shown in the “fig. 2” is converted to its

corresponding regular expression using Brzozowski algebraic

method.

Figure 2. DFA for strings with an odd no of 1’s

 Characteristics equations are as follow:

A = 0A + 1B (2)

B = 1A + 0B + �

(3)

Solving these equations by Arden’s theorem

B = 1A + 0B + �= 0B + (1A + �)=0*(1A + �)

B= 0*(1A) + 0*(�)= 0*1A + 0*

(4)

Using “(4)” we obtain

A = 0A + 1B= 0A + 1(0*1A + 0*)

A= 0A + 10*1A + 10*

A= (0 + 10*1)*(10*) (Using Arden’s rule)

C. State Removal Method

The state removal approach [1][14] is widely used

approach for converting DFA to regular expression. In this

approach states of DFA are removed one by one until we left

with only starting and final state, for each removed state

regular expression is generated. This newly generated regular

expression act as input for a state which is next to removed

state. The advantage of this technique over the transitive

closure method is that it is easier to visualize. This technique

is described by Du and Ko [2], but a much simpler approach is

given by Linz [10]. At first, if there are multiple edges from

one node to other node, then these are unified into a single

edge that contains the union of inputs. Suppose from q1 to q2

there is an edge weighted ‘a’ and an edge weighted ‘b’, those

would be unified into one edge from q1 to q2 that has the

weight a + b. If there are n accepting states, take union of

different regular expressions.

For example DFA shown in “fig. 3” is converted to its

corresponding regular expression using state elimination

method

Fig.ure 3. An example of state elimination method for generating regular

expression corresponding to given DFA.

Kulwinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,125-128

© 2010, IJARCS All Rights Reserved 127

Equivalent regular expression corresponding to given DFA is

(0+10)*11(0)*

Han and Wood have worked on the concept of bridge state in

the state elimination method. A state qb of automata A is said

to be bridge state [16], if it satisfies the following conditions:

1) State qb is neither a start nor a final state.

2) For each string w � L(A), its path in A must pass

through qb at least once.

3) Once string w’s path passes through qb for the first time,

the path can never pass through any states that have been

visited before apart from state qb.

By using different removal sequences of states, we obtain

different regular expressions for the same language. We

require a removal sequence which gives smaller regular

expression. Elimination of non-bridge state before bridge state

gives us smaller regular expression. [16].

Figure 4. An example of different RE by different removal sequences

for a given DFA .

State 1 and state 4 are bridge states of DFA shown in

“fig. 4”.

R1=a(ba+ab)(ab)*(aa+b) using state elimination

sequence 2-3-5-1-4

R2=(ab(ab+aa(ba)*(a+bb))+aa(bb+ba(ba)*(a+bb))) using

state elimination sequence 1-4-5-2-3

R3=[(aba+aab)b+(aba+aab)a(ba)*(a+bb)] using state

elimination sequence 2-1-3-4-5

Removing the bridge states 1 and 4 at last gives smaller

regular expression.

IV. COMPARISON OF APPROACHES USED FOR

CONVERTING DFA TO RE

We will apply these three methods on DFA which accepts

the string having even number of 0’s and 1’s.

Figure 5. DFA for string having even no of 1’s and 0’s

A. Transitive Closure Approach

Applying transitive closure approach on DFA shown in

“fig. 5”.

R = Rc
aa = Rd

aa + Rd
ac (R

d
cc)

* Rd
ca. (5)

Rd
aa = Rb

aa + Rb
ad (R

b
dd)

* Rb
da

 R
b

aa = Ra
aa + Ra

ab (R
a
bb)

* Ra
ba

Ra
aa = R0

aa + R0
aa (R

0
aa)

* R0
aa = � + � (�)* � = �

 Ra
ab = R0

ab + R0
aa (R

0
aa)

* R0
ab = 1 + � (�)* 1 =1

Similarly we will get

Ra
bb = 1 , Ra

ba = 1 , Rb
aa = 1 (1)* 1 , Rb

ad = 1 (1)* 0

 Rd
aa = [1 (1)* 1] + [1 (1)* 0] [0 (1)* 0] [0 (1)*]

Rd
ac = [0+1(1)*0]+[1(1)*0][0 (1)* 0] [1 + 0 (1)* 1]

Rd
cc = [00+01(1)*10]+(1) [0 (1)* 0] [0 + 0 (1)* 10]

Rd
ca = 0 [(0 + 00) + 111] + 1 [0 (1)* 0] [0 (1)* 1]

By Putting these values in “(5)”

R= [1(1)* 1] + [1(1)*0] [0(1)*0] [0(1)*] + [0 + 1(1)*0] + [

1(1)*0] [0 (1)*0] [1+0(1)* 1] ([00 + 01(1)*10] + (1) [

0(1)*0] [0 + 0(1)*10])*0 [(0+00) + 111] + 1[0 (1)* 0] [0

(1)*1]

B. Brzozowski Algebraic method

 Set of equations for generating regular expression for

automata shown in “fig..5”.

A = 0C + 1B +� (6)

B = 0D + 1A (7)

C = 0A + 1D (8)

D = 0B + 1C (9)

Using “(7)”

A = 0C + 10D + 11A + � D = 00D + 01A + 1C

Using “(8)".

 A = 00A + 01D + 10D + 11A + �

 A = (00 + 11)A + (01 + 10)D + �

 D = (00 + 11)D + (01 + 10)A

 D= (00 + 11)*(01 + 10)A (10)

(using Arden's rule)

 Using “(10)”

 A = (00 + 11)A + (01 + 10)(00 + 11)*(01 + 10)A + �

A= [00 + 11 + (01 + 10)(00 + 11)*(01 + 10)]A + �

 A = [(00 + 11) + (01 + 10)(00 + 11)*(01 + 10)]* (using

Arden’s rule)

C. State Removal Method

Applying state elimination method on DFA shown in “fig. 5”

Figure 6. DFA after eliminating state B and state C respectively

Kulwinder Singh et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,125-128

© 2010, IJARCS All Rights Reserved 128

Figure 7. Final DFA after eliminating state D

Regualr expression corresponding to DFA shown in “fig. 5” is

R= [(11 + 00) + (10 +01) (00 + 11)*(01 + 10)]*

Due to repeated union of concatenated terms transitive closure

method is very complex and gives very long regular

expression as compared to Brzozowski algebraic method and

state elimination method. Brzozowski algebraic method is

recursive approach and generates reasonably compact regular

expressions. For recursion oriented languages, like functional

languages, transitive closure method is difficult to implement,

in that case Brzozowski algebraic method is used.

Brzozowski method takes more time as compared to state

elimination method, in which regular expression is obtained by

manual inspection. State elimination method using bridge state

concept gives shorter regular expression as compared to

Brzozowski algebraic method.

V. CONCLUSION AND FUTURE SCOPE

State elimination method takes less time, and generally
gives smaller regular expression as compared to Transitive
closure and Brzozowski algebraic method. In state elimination
method the removal of sequences also give us different regular
expression. By choosing a good removal sequence, we can
obtain a shorter regular expression.

There is need to develop a software that convert a given
deterministic finite automata into regular expression using
bridge state. New heuristics can be designed to find smaller
regular expression from DFA using state elimination method.
Although algorithm exist for finding bridge state, but there is a
need of an efficient algorithm for finding bridge state.

VI. REFERENCES

[1] Christoph Neumann ,Converting Deterministic Finite
Automata to Regular Expressions, Mar 16, 2005

[2] Ding-Shu Du and Ker-I Ko. Problem Solving in
Automata, Languages, and Complexity. John Wiley &
Sons, New York, NY, 2001.

[3] H. Hosoya, Regular expression pattern matching – a
simpler design. Technical Report 1397, RIMS, Kyoto
University, 2003.

[4] Larkin, H.; , "Object oriented regular expressions,"
Computer and Information Technology, 2008. CIT 2008.

8th IEEE International Conference on , vol., no., pp.491-
496,8-11 July,2008

[5] Janusz A. Brzozowski. Derivatives of regular expressions.
J. ACM,11(4):481{494, 1964.

[6] Mishra K.L.P.& N. Chandrasekaran, Theory of Computer
Science (Automata Language and. Computation), PHI,
Second edition, 1998

[7] M. Delgado, J. Morais, Approximation to the smallest
regular expression for a given regular language, in:
Proceedings of CIAA’04, in: Lecture Notes in Computer
Science, vol. 3317, 2004, pp. 312–314.

[8] M. Lesk and E. Schmidt. Lex - A Lexical Analyzer
Generator. Computing Science Technical Report No. 39,
Bell Laboratories, USA, 1975.

[9] Mulder,M.;Nezlek,G.S., Creating protein sequence
patterns using efficient regular expressions in
bioinformatics research , 28th International Conference
2006 ,Page(s):207 – 212

[10] Peter Linz. An introduction to Formal Languages and
Automata. Jones and Bartlett Publishers, Sudbury, MA,
third edition, 2001.

[11] R. McNaughton, H. Yamada, Regular expressions and
state graphs for automata, IEEE Transactions on
Electronic Computers 9 (1960) 39–47.

[12] S. C. Kleene. Representation of events in nerve nets and
_nite automata. In Automata studies, pages 3{40. Ann. of
Math. Studies No. 34, Princeton University Press,
Princeton, NJ, 1956.

[13] Ulman, J., A. V. Aho and R. Sethi. Compiler Design:
Principles, Tools, and Techniques. Reading, Pearson
Education Inc, ISBN 0-201-10088-6,1986.

[14] Ullman, J., J. E. Hopcroft and R. Motwani. Introduction to
Automata Theory, Languages, and Computation. Pearson
Education Inc, ISBN 0-201-44124-1. Reading, MA:
Addison Wesley, 2001.

[15] Will Drewry and Tavis Ormandy, Google, Inc., Insecure
Context Switching: Inoculating regular expressions for
survivability

[16] Yo-Sub Han, Derick Wood, Obtaining shorter regular
expressions from finite-state automata, Theoretical
Computer Science, Volume 370, Issues 1-3, 12 February
2007, Pages 110-120, ISSN 0304-3975, DOI:
10.1016/j.tcs.2006.09.025.

[17] Y.-S. Han, D. Wood, The generalization of generalized
automata: Expression automata, International Journal of
Foundations of Computer Science 16 (3) (2005) 499–510.

