
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4909
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 76

ISSN No. 0976-5697

SIZE ESTIMATION AT DESIGN STAGES OF SYSTEM DEVELOPMENT

Dr.Madhu Bhan
Department of Computer Applications

Ramaiah Institute of Technology
 Bangalore,India

Dr.Rajanikanth K
Department of Information Science and Engineering

Ramaiah Institute of Technology
Bangalore, India

Dr. T.V. Suresh Kumar
Department of Computer Applications
 Ramaiah Institute of Technology

 Bangalore,India

Abstract: Class Point approach has been proposed to estimate software size of Object-Oriented Systems, systems that involve classes,
encapsulation, inheritance and message passing. Another similar approach called Class Method Points has also been proposed in the literature to
estimate the size of Object-Oriented software systems. We demonstrate estimation of the effort and size of OLAP system using Class Point
approach and Class Method Points approach in the early stages of their development life cycle.

Keywords: class point; class method points; function point analysis; OLAP; software effort; software size

I. INTRODUTION

The Class Point approach[1,2] is based on the quantification
of classes in a program which is analogous to the function
counting performed in the Function Point Analysis FPA[3].
FPA is applicable to procedural paradigm where the basic
programming units are functions or procedures. In the
Object-Oriented systems, a framework called Class-point
approach which considers classes as the basic building
blocks is used. There are three phases in Class Point
approach [1,2]. In the first phase, the classes identified from
the design specifications are grouped into four types of
system components. These are the problem domain type
(PDT), the human interaction type (HIT), the data
management type (DMT) and the task management type
(TMT). In the second phase, each class identified from the
design document is allocated a complexity level, depending
on the number of external methods (NEM) and the number
of services requested (NSR). The complexity measure so
determined is used to derive a class point measure called
CP1 which is meant to be used at the beginning of the
development process. This CP1 gives a preliminary size
estimate. This is later refined, when more information is
available, by computing another measure called CP2 which
takes into account an additional parameter called the number
of attributes(NOA). Then the Total Unadjusted Class Point
value (TUCP) is computed as a weighted total of the four
components of the application as given by the formula

 iji j ij xwTUCP *4

1

3

1∑ ∑= =
= Equation 1

where xij is the number of classes of component type i
(PDT, HIT etc.) with complexity level j (low, average, or
high), and wij is the weighting value for type i and
complexity level j. In the last phase, an adjustment value
called Technical Complexity Factor (TCF) is determined by
assigning the degree of influence that 18 general system

characteristics such as User adaptivity, Rapid Prototyping,
Multiuser Interactivity, Multiple Interfaces have on the
application from designer’s point of view. The formula for
TCF is given below

∑=
+=

18

1
*01.055.0

i ifTCF Equation 2

Finally the Class Point value is determined by multiplying
the TUCP by TCF as given by the formula

 CP = TUCP * TCF Equation 3

The Class Method Points approach is another popular
approach for estimating the size of Object Oriented software
systems. There are five scope inputs in this approach [4].
These are:
1. The number of Control classes
2. The number of Interface classes
3. The number of other classes
4. The total number of Methods (member functions) within
all classes combined
5. The total number of Database Tables

Each of these may be converted to Function Points(FP) or
equivalent Source Lines of Code (eSLOC) using
organizational specific data or typical industry-standard
numbers [4] as given in the Table 1 below.

Table 1. Typical Conversion Factors

Metric Convert to FP Convert to eSLOC

Control Class 2 94

Interface Class 1.25 59

Other Class 1 47

Method 0.5 24

Database Table 6 282

Dr. Madhu Bhan et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,76-81

© 2015-19, IJARCS All Rights Reserved 77

Figure 1. Class Diagram for OLAP System

II. CASE STUDY-A TYPICAL OLAP SYSTEM

A demonstration of the use of Class Point approach and Class
Method Points approach for software size estimation of Data
Warehouse/OLAP Systems is presented using a case study
based on the TPC-H benchmark [5].
OLAP Systems considerably ease the process of analyzing
large amounts of data, stored in Data Warehouses [6,7]. The
UML class diagram in Figure 1 shows the static structure of a
typical OLAP System. The system has three categories of
classes namely Dimension, Fact, M.View and 10 other distinct
classes namely ORB, Metadata, OLAP Server, DW Server,
API, Query Execution, OLAP Operation, MVS, Aggregation
and User Interface. The category dimension includes classes to
which are mapped all the tables corresponding to all the
dimensions. The category Fact includes classes to which are
mapped all the tables corresponding to all the Facts. The
category M.View (Materialized View) includes classes to
which are mapped all the views. In this case study we are
assuming that the total number of classes belonging to
dimension category together with fact category are n and the
number of classes belonging to M.View category are m. There
are 2 other classes belonging to the data store group, 4
belonging to the access layer, 3 belonging to the Business
logic layer and 1 class representing the user interface. The
responsibilities of these classes are described below:
1. A class belonging to Dimension Category: Each table
corresponding to a dimension is mapped to a class. A
dimension has associated methods, such as an Add () to add a

record to the dimension, Remove() to delete a record,
Modify() to update a record and Get() to read a record from
the dimension table.
2. A class belonging to Fact Category: Facts are mapped to
classes. A Fact class has a Add () method to add a record to
the Fact, Remove () to delete a record from the Fact, Modify()
to update a record and Get () to read a record from the Fact
table.
3. A class belonging to M.View Category: Materialized views
are mapped to this class. Add (), Remove (), Update () and
Get () are methods of this class to add a record to the view, to
delete a record from a view, to update a record of a view and to
read a record of view.
4. ORB (Object Request Broker): This class is responsible for
sending and receiving messages to/from resources and other
services distributed across several servers. It has methods like
ORB-OLAP() and ORB-DW() to implement a communication
channel through which applications can access and request
data and other services. CORBA requires an Object Request
Broker both on the OLAP API client computer and on the
OLAP Services computer [8].
5. Metadata: The Metadata Class informs applications about
the data that is available within the database. It has methods
add(), Update() and search().
6. OLAP Server Class: Materialized views are managed by an
OLAP Server Class which is responsible for controlling access
and retrieval of data. The server dispenses information to
client applications. Methods like Route Query() route the
query to Data Warehouse server when the results are not

Dr. Madhu Bhan et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,76-81

© 2015-19, IJARCS All Rights Reserved 78

available with the OLAP Server. Execute Query() is a method
which executes the query sent by the user. Send-Results() to
send results to the client.
7. DW(Data Warehouse) Server Class: This class is
responsible for controlling access and retrieval of data between
client and the Data Warehouse. The server releases
information to client applications.
8. API (Application Program Interface) Class: The client and
the Server Classes communicate through a well defined set of
standard application program interfaces (API's) [8] This class
has methods like authenticate(), establish-conn() to
authenticate and establish connection with the client.
9. Query Execution Class: This class is responsible for query
execution which includes parsing of the input query,
optimizing the submitted SQL statements followed by
compilation and generation of the query execution plan.
10. OLAP Operations Class: This class has methods like
slice(), dice() roll-up (), drill-down () and pivot (). A rollup (
) query summarizes the data along one or more dimensions, a
drill-down () allows the user to step from the current data
cube to a more detailed data cube. Slice () method picks a
rectangular subset of a cube by choosing a single value for one
of the dimensions and the dice () method produces a sub-
cube based on specific values of multiple dimensions. Pivot (
) shows a rotated sub-cube.
11. MVS (Materialized View Selection): MVS Class
determines the views to be materialized and the existing
materialized views that should be dropped based on the
estimated space requirements. It also ensures that all
materialized views are refreshed each time the database is
updated.
12. Aggregation: Aggregate values of the measures are
computed through aggregate methods like Count (), Sum (),
Avg (), Min () and Max ().
13. User Interface: The end-user Interface class has methods
like login (), Select-objects (), Select- operations () and
Display ().

A. Application of the Class Point Approach

Following the Class Point approach, the phases for calculating
the class Point for OLAP System are as follows:

The data model incorporated into a database system defines a
framework of concepts that can be used to express the problem
domain. Thus the PDT classes of a typical OLAP System are
the Dimensions and Facts of the Data Warehouse. The classes
of HIT type are designed to satisfy the need for information
visualization and human-computer interaction. Thus the User
Interface class belongs to the type HIT. The DMT component
encompasses the classes that offer functionality for data
storage and retrieval. Thus Data Management in a typical
OLAP System is performed by classes OLAP Server, DW
Server, Materialized views, MVS and Metadata. Task
Management Classes are responsible for managing tasks.
This type of Class include classes responsible for
communication between subsystems and external systems.
Task Management in a typical OLAP system is performed by
classes ORB, Query Execution, API, OLAP operations and
Aggregation[8,9]. Table 2 shows this categorization of classes.

Phase 1:

Table 2. Categorization of Classes

Class Type Corresponding classes in the

OLAP System

Problem Domain

Type (PDT)

1. Classes belonging to

Dimension category

2. Classes belonging to

Facts category

 (A total of n classes)

Human Interface

 Type (HIT)

13.User-Interface

Data Management

 Type (DMT)

3. Classes belonging to

 M.View category

 (A total of m classes)

5. Metadata

6. OLAP Server

7. DW Server

11. MVS

Task Management

 Type (TMT)

4. ORB

8. API

9. Query Execution

10. OLAP operations

12. Aggregation

Here we will restrict our study to only CP1 inorder to find the
complexity and weights associated with various classes of
the OLAP system. The complexity level of a class is defined
by the range of values of NSR and NEM, as given in Table 3
[1].

Phase 2:

Table 3. Typical Conversion Factors

 0-4 NEM 5-8 NEM ≥9 NEM

0-1 NSR Low Low Average

2-3 NSR Low Average High

≥4 NSR Average High High

We identify the values of NSR and NEM for each class and
use this data as indicated by Table 3 to determine the
complexity of each class of the OLAP System. For example,
the Aggregation class as shown in Figure 1 has 5 public
methods namely Count(), Average(), Max(), Min() and
Sum(). The Aggregation class requests Get() of Fact, Get()
of Dimension, Add () and Update () of Metadata. Thus the
number of external method is 5 and that of services requested
is 4. Hence it is assigned a ‘High’ complexity level as per
Table 3. The Query Execution Class has 4 public methods
namely the Parse (), compile (), Generate-Execution Plan ()
and Optimize (). It requests the services Update (), Add (),

Dr. Madhu Bhan et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,76-81

© 2015-19, IJARCS All Rights Reserved 79

Search() of Metadata and Estimate-space() of MVS [8,9].
Thus The number of services requested is 4. It is assigned a
‘Average’ complexity level. A class belonging to dimension

category has 4 public methods, Add (), Remove (), Modify()
and Get (). Thus it is assigned a ‘Low’ complexity level [9].
The complexities of all the classes have been assigned in this
manner and are shown in Table 4.

Table 4. Complexity of Classes

Class NEM Type NSR Complexity

A Class belonging to Dimension category

4 PDT 0 Low

A Class belonging to Fact category 4 PDT 0 Low

MVS 0 DMT 9 Average
OLAP Server 2 DMT 7 Average
DW Server 2 DMT 9 Average
Metadata 3 DMT 2 Low
Aggregation 5 DMT 4 High
A Class belonging to M.Views category 1 DMT 1 Low

ORB 2 TMT 0 Low
 API 3 TMT 5 Average
Query Execution 4 TMT 4 Average
OLAP operation 5 TMT 5 High
User Interface 0 HIT 5 Average

We now count the number of classes under each type that
belong to each of the three complexity levels. These counts
are shown in Table 5 below.

Table 5. Count of Classes based on Complexities

System

Component

Type.

Low Average High

PDT n 0 0

HIT 0 1 0

DMT 1+m 3 1

TMT 1 2 1

 Table 6. Computation of CP1

After assigning a complexity level to each class, each class is
weighted in accordance with its type and complexity level.

The weighted sum is computed giving the Total Unadjusted
Class Point measure CP1. The template for these calculations
is shown in Table 6 [1].

The computation of CP1 for our case study of OLAP System,
is shown in Table 7 below.

Table 7. CP1 for the OLAP Case Study

System
Component
Type

Complexity

 Low Average High Total

PDT n*3=3n 0*6=0 0*10=0 3n

HIT 0*4=0 1*7=7 0*12=0 7

DMT (m+1)*5

=5m +5

3*8=24 1*13=13 42+5m

TMT 1*4=4 2*6=12 1*9=9 25

CP1=Total

Unadjusted

ClassPoint

(TUCP)

 74+3n+5m

Thus TUCP = 74 + 3n + 5m Equation 4

The Technical Complexity Factor (TCF) is computed in this
phase. We assign DI (degree of influence ranging from 0 to 5)
that these 18 general system characteristics have on the

Phase 3:

System

Component

Type

Complexity

 Low Average High Total

PDT …*3= …*6= …*10= …

HIT …*4= …*7= …*12= …

DMT …*5= …*8= …*13= …

TMT …*4= …*6= …*9= …

CP1=Total Unadjusted Class Point (TUCP)

Dr. Madhu Bhan et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,76-81

© 2015-19, IJARCS All Rights Reserved 80

application from the designer’s perspective[1]. Table 8 below
shows these estimates The justification for assigning weights
to each of these characteristics is given below:

Table 8. Computation of Total Degree of Influence for the OLAP Case Study

System Characteristic DI System Characteristic DI

Data Communication

Distributed Architecture

Performance

Cross-Platform Support

Transaction rate

On line data entry

End-user efficiency

Online update

Complex processing

5

5

5

4

1

0

5

1

4

Reusability

Installation ease

Operational ease

Multiple sites

Facilitation of change

User Adaptivity

Rapid Prototyping

Multiuser Interactivity

Multiple Interfaces

3

2

4

2

4

4

3

3

2

Total-Degree-of-Influence(TDI) =57

Data communication - Since Data communication between the
system components of an OLAP System is high, we assign a
value of 5 to this factor.
Distributed Architecture - The architecture of OLAP System is
Distributed. Hence we assign value of 5 to this factor.
Performance - The quickness of response for users is an
important (and non-trivial) factor. We assign a value of 5 to
represent increasing importance of response time of OLAP
queries.
Cross-Platform Support - Issues like multi-platform support
need to be handled by an OLAP System. We assign a value of
4 to this factor.
Transaction rate - Data Warehouse is a large repository of
information characterized by read-only queries. We assign a
low value of 1 to transaction rate factor.
On line Data entry - There is no online data entry for a Data
Warehouse system. We assign a value of 0 to On line Data
entry factor.
End user efficiency - OLAP System relies heavily on the
application to improve user efficiency. Hence we assign a
value of 5 to this factor.
Online update - There are very less online update operations
in a Data Warehouse system. We assign a value of 1 to Online
update factor.
Complex processing - Processing of OLAP cubes is complex.
Hence we assign a value of 4 to this factor.
Reusability - Code reuse reduces the amount of effort required
to deploy a System. The higher the level of re-use, the lower
the number. We assume a average level of code re-use and
assign a low value of 3 to this factor.
Installation ease - The higher the level of competence of the
users, the lower the number. We assign a value of 2 to this
factor, assuming that the users have an average competence
Operational ease - Since the importance of operational use of
an OLAP System is high, a high value of 4 is assigned to this
factor.
Multiple sites- This is not an overriding factor. Hence we
assign a low value of 2 to this factor.

Facilitation of change - The higher the level of competence of
the users, the lower the number. Since we expect the users to
be from top management, we assign a value of 4 to this factor.
User Adaptivity- An OLAP System should be able to adapt
for any given input based on subsequent interactions. Thus a
value of 4 has been assigned to user adaptivity factor.
Rapid Prototyping - A value of 3 has been assigned to this
factor since a user interface prototype is required which
presents an interface for various inputs to realize a usability
test.
Multiuser Interactivity - The system should provide simple
control of the order of interaction among users. Thus a value
of 3 is assigned to this factor.
Multiple Interfaces - Different Interfaces for novice and
experienced users are required. Thus a value of 2 is assigned to
this factor.
These 18 degrees of Influence as shown in Table 8 are added
together to arrive at total degree of influence.
The Technical Complexity Factor (TCF) is calculated as:

TCF = 0.55 + 0.01(57) = 0.55 + 0.57 = 1.12 Equation 5

The final value of the Adjusted Class Point (CP) is obtained by
multiplying the Total Unadjusted Class Point value by TCF.
For OLAP Systems the final class point value, CP1, is

 CP1 = 1.12(74 + 3n + 5m) Equation 6

Validation: The above approach is validated using TPC-H
Database [5]. The TPC-H consists of eight separate tables
belonging to Dimension category and Fact category. Thus the
value of n is 8. From our experimental study we found that
the performance after materializing 10 views. remains almost
constant and hence we do not materialize the remaining
possible views[9]. Thus m is taken as 10. Substituting these
values into Equation 6 given above we get CP1 as

CP1=1.12(74 + 3 * 8 + 5 * 10) = 165.56 Equation 7

We validate this value indirectly by estimating Effort using
this value of CP1 and then comparing the resulting Effort
estimate with Effort estimates reported in literature. Effort is
estimated using CP1 based on the regression equation reported
in [1]. Thus

Effort = 0.843 * (165.76) + 241.85.
 = 381 person hours(approx.) Equation 8

Effort estimates for typical OLAP System are reported in
literature [10]. These are as follows:
1) Simple OLAP of low complexity - 2 person-weeks
2) OLAP of medium complexity - 2 person-month
3) OLAP of high complexity - 2 person-years.
In our case study the OLAP System is of medium complexity
as the Data Warehouse is assumed to be already existing.
According to the calculation shown in Equation 8 above the
Effort estimate based on Class Point Approach is 381 person
hours. Assuming the typical 40 hours per week, this Effort
translates to approximately to 9.5 person-weeks which is very
close to the reported value of 2 person- months. This
demonstrates that the Class Point approach can be successfully
used for estimating the size of software for OLAP Systems.

http://tynerblain.com/blog/2006/04/02/competent-users-and-software-design/�
http://tynerblain.com/blog/2006/04/02/competent-users-and-software-design/�
http://tynerblain.com/blog/2007/01/10/usability-sells-software/�
http://tynerblain.com/blog/2006/04/02/competent-users-and-software-design/�
http://tynerblain.com/blog/2006/04/02/competent-users-and-software-design/�
http://tynerblain.com/blog/2006/04/02/competent-users-and-software-design/�

Dr. Madhu Bhan et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,76-81

© 2015-19, IJARCS All Rights Reserved 81

B. Application of the Class Method Points Approach

We analyze the Class diagram of Figure 1 to identify Control
classes and Interface classes in an OLAP System. A Control
Class is the one which provides an interface between the
application domain, user interface, and database subsystems
[11]. We identify three Control classes which are API, ORB
and OLAP operations as shown in Figure 2 below.

Figure 2. Control Classes

OLAP operations Class: The interface to the Application
domain of an OLAP System is provided through OLAP
operations.
ORB Class: This class provides an interface to the database
which implements a communication path through which
applications can access and request data from Database.
API Class: The class provides a well defined set of standard
application program interfaces which allow client and the
Application communicate. There is only one Interface Class,
the User Interface Class [8]. The total number of methods
throughout all the Classes is 46.
Thus applying the Class Method Points approach we get
Function Point (FP) measure as given below

FP = (3*2) + (1*1.25) + (9*1) + (46*0.5)
 FP = 39.25 Equation 9

In the above computation, we ignore Database tables as we
consider FP of an OLAP System for which the Data
Warehouse is already existing.
Validation:
We validate this value indirectly by estimating Effort using
this value of FP and then comparing the resulting Effort
estimate with Effort estimates computed earlier using CP1 .
Effort is calculated as

 Effort=FP/Productivity

Assuming an average Productivity of 18 Function points per
month [12], we get Effort by substituting the values of FP and
Productivity in the formula

 Effort = 39.25/18

 Effort = 2.18 person months Equation 10

This value of Effort is very close to the estimated Effort of 2
person months obtained previously in sub-section A.
This demonstrates that the Class Method Points approach can
also be successfully used for estimating the size of software
for OLAP Systems.

III. CONCLUSION

Software Size estimation is one of the important inputs for
performance assessment in the Software Performance
Engineering(SPE) approach. The Class Point approach
provides a size measure by suitably combining well known
Object-Oriented measures. The Class Method Points approach
estimates the size by considering distinct scope inputs. In this
paper we demonstrated the use of Class Point approach and
Class Method Points approach for effort and size estimation
of OLAP Systems.

IV. REFERENCES
[1] Gennaro Costagliola and Genoveffa Tortora, “Class Point: An

Approach for the Size Estimation of Object-Oriented Systems”,
IEEE Transactions on Software Engineering, Vol. 31, No. 1,
Jan.2005, pp 52-74.

[2] Wei Zhou and Q.Liu , ”Extended Class Point Approach of size
estimation for OO product”, in the Proc. of International
Conference on Computer Engineering and Technology,
ICCET, Vo.l 4, 2010, pp 117-122.

[3] Bingchiang Jeng, Dowming Yeh, Deron Wang, Shulan Chu
and Chia-Mei Chen, “A Specific Effort Estimation Method
Using Function Point”, Journal of Information Science and
Engineering 27, 2011, pp 1363-1376 .

[4] William Roetzheim, “Estimating Effort Using Use-Case and
UML Class-Method Points”, in the Proc. of UML & Design
World 2005, Austin, Texas, June 2005.

[5] www.tpc.org
[6] Veronika Stefanov, “Bridging the Gap between Data

Warehouses and Organizations”, 13th Doctoral Consortium on
Advanced Information Systems Engineering (CAiSE),
Luxembourg, 2006, pp 1160-1167.

[7] Codd, E.F., S.B. Codd, and C.T. Salley, “Providing OLAP (On
Line Analytical Processing) to User Analyst, An IT Mandate”,
1993, http://www.arborsoft.com/OLAP.html.

[8] Ali Bahrami, Object-Oriented System Development ,
International edition , 1999.

[9] Madhu Bhan,T.V.Suresh Kumar, K.Rajanikanth, “Size
Estimation of OLAP Systems” in the proceedings of Computer
Science and Information Technology(CS&IT) International
Conference on Parallel, Distributed Computing technologies
and Applications, DOI 10512/ CSIT. 2013.3649, pp(431-441)

[10] http://datawarehouse.ittoolbox.com,
[11] Bernd Bruegge, Kevin O’Toole and David Rothenberger,

“Design Considerations for an Accident Management System”,
in the Proc of the 2nd International Conference on Cooperative
Information Systems, Toronto Press, May 1994.

[12] Gianfranco Lanza, “ Function Point: how to transform them in
effort? This is the problem”, in the Proc. of the 5th Software
Measurement European Forum, Milan, Itlay, 2008, pp 127-136.

http://www.tpc.org/�
http://www.arborsoft.com/OLAP.html�
http://datawarehouse.ittoolbox.com/�

	SIZE ESTIMATION AT DESIGN STAGES OF SYSTEM DEVELOPMENT
	Application of the Class Point Approach
	We identify the values of NSR and NEM for each class and use this data as indicated by Table 3 to determine the complexity of each class of the OLAP System. For example, the Aggregation class as shown in Figure 1 has 5 public methods namely Count()...
	Table 3. The Query Execution Class has 4 public methods namely the Parse (), compile (), Generate-Execution Plan () and Optimize (). It requests the services Update (), Add (), Search() of Metadata and Estimate-space() of MVS [8,9]. ...
	‘Average’ complexity level. A class belonging to dimension
	category has 4 public methods, Add (), Remove (), Modify() and Get (). Thus it is assigned a ‘Low’ complexity level [9]. The complexities of all the classes have been assigned in this manner and are shown in Table 4.

	Application of the Class Method Points Approach

