
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4866
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 674

 ISSN No. 0976-5697

AN APPROACH TO SAVE ENERGY CONSUMPTION FOR SMARTPHONE

APPLICATIONDEVELOPMENT USING SUITABLE SORTING ALGORITHM

Murlidhar Verma

 Research Scholar

Department of Computer Science & Engineering

MBM Engg. College, JNV University, Jodhpur, India

K.R. Chowdhary

Professor & Head (Retd.)

Department of Computer Science & Engineering

MBM Engg. College, JNV University, Jodhpur, India

Abstract: Smartphone has become the most important part of everyone's life. Smartphone has influenced every part of the life. It has enhanced

and advanced professional and personal life. It has become a vital part of the life. There is no limit what one can do with a Smartphone these

days. There is an App for almost anything. One can do online ticket booking, mobile banking, checking of the nearest coffee shop, reading the

online newspaper, e-books, finding a path on maps etc. Today's Smartphones have the higher configuration in terms of CPU power, memory

capacity, and storage but their functionality is limited by low battery power capacity.

The battery power of a Smartphone may be prolonged by optimizing hardware or software. This paper presents an approach for energy saving

through software by choosing the appropriate sorting algorithm. Energy consumption of four sorting algorithms: Bubble sort, Insertion sort,

Quick sort and Selection sort were measured. The results show that Quick sort is the energy efficient sorting method on average cases. Bubble

sort is the most energy consuming algorithm. This work provides a general guideline to select appropriate sorting algorithm in development of

energy efficient Smartphone application.

Keywords: smartphone; sorting; energy consumption;

I. INTRODUCTION

Smartphone has become the most important part of everyone’s
life. Smartphone has influenced every part of the life. It has
enhanced and advanced professional and personal life. It has
become a vital part of the life. There is no limit what one can
do with a Smartphone these days. There is an App for almost
anything [1]. One can do online ticket booking, mobile
banking, checking of the nearest coffee shop, reading the online
newspaper, e-books, finding a path on maps etc.

Today's Smartphones have a higher configuration in terms of

CPU power, memory capacity, and storage but their
functionality is limited by low battery power capacity. The
battery power of a Smartphone may be prolonged by
optimizing hardware or software. Many efforts have been made
by Researchers to reduce energy consumption by optimizing
hardware [2][3]. However, energy consumption may be
optimized by using software-based approach i.e. by using an
appropriate algorithm.

This paper presents an approach for energy saving through

software by choosing the appropriate sorting algorithm. Here

sorting algorithm is used because sorting algorithm efficiency

is relevant to almost all applications. Sorting algorithms play a

major role regarding performance and energy consumption of

mobile devices.

Energy consumption of four sorting algorithms: Bubble sort,

Insertion sort, Quick sort and Selection sort were measured.

The results show that Quick sort is the energy efficient sorting

method on average cases. Bubble sort is the most energy

consuming algorithm. This work provides a general guideline

to select appropriate sorting algorithm in development of

energy efficient Smartphone application.

The remainder of this paper is structured as follows: Next

section II gives an overview of sorting algorithms, the

experiment and results are presented in section III, Section IV

summarizes and concludes the paper.

II. SORTING ALGORITHMS

This section briefly describes the sorting algorithms and

their time and space complexities. Almost all the applications

use sorting algorithms. For the mobile system application

development, there is a requirement of energy efficient sorting

algorithms because these are battery-powered devices and

battery power is limited. Apart from time and space

complexities the energy requirement of any sorting algorithm

is not properly known yet. This work tries to find out energy

consumptions of popular sorting algorithms like Bubble,

Selection, Insertion and Quick sort [5].

Bubble sort is easy and simple to implement. In this sorting

method, each pair of adjacent elements is compared and

swapped if they are in the wrong order. Each element is

compared with its adjacent element, If the first element is

larger than the second one then the position of the elements are

interchanged, otherwise, it is not changed. The same process is

repeated for all the elements of the List. In the one scan of the

List, one element is placed at its correct position. This sorting

technique is called bubble sort because items in the List move

up into the correct order like bubbles rising to the surface. For

the list of n elements n-1 passes are required and in each pass,

there is n-pass number of comparisons needed to sort the List.

Worst-case and average case complexity is O(n2).

Murlidhar Verma et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,674-676

© 2015-19, IJARCS All Rights Reserved 675

 Algorithm: BubbleSort (A, N)

 Repeat for I=1 to N

 Repeat for J=1 to N-I

 If(A[J]> A[J+1])

 Then: Swap(A[J] and A[J+1])

 return

Insertion sort works like playing bridge game of cards. In this

sorting technique, a list of elements is sorted by inserting an

element into an existing sorted list [5]. For example, There is

one array A with N values A[1], A[2],…A[N]. The Insertion

sort algorithm scans it from A[1] to A[N], inserting each

element A[J] into its proper position in previously sorted

subarray A[1], A[2], A[J-1]. It has the average time

complexity of O(n2). It is also known as In-place sorting

algorithm because it requires a constant amount of extra

memory space O(1).

 Algorithm: InsertionSort (A, N)

 Repeat for I=1 to N

 Temp= A[I+1]

 Set J=I+1

 While J>0 and A[J-1]>Temp

 A[J]=A[J-1]

 J=J-1

 End while

 A[J]=Temp

 return

Selection sort is an in-place comparison-based algorithm. This

algorithm searches the minimum value in the list and

exchanges it with the first element. The same process is

repeated for the remaining values in the list to sort the final list.

The time complexity of the selection sort is O(n2).

Algorithm: SelectionSort(A,N)

 Repeat for I=1 to N

 Repeat for J=I+1 to N

 If (A[I]>A[J])

 Swap(A[I],A[J])

Return

Quick sort is also known as partition-exchange sort. It is

based on divide and conquer technique. In this, a large list of

numbers is partitioned into two sub-lists one of which contains

values smaller than the specified value, say pivot, based on

which the partition is made and another sub-list holds values

greater than the pivot value. Quick sort calls itself recursively

to sort the list.

The average case time complexity of the Quick sort is O(n log

n). In the worst case, its time complexity is O(n2). The worst

case occurs when the list is already sorted.

 Algorithm: QuickSort(A,LB,UB)

 If(LB<UB)

 Set pivot=LB

 I=LB

 J=UB

 Repeat While(I<J)

 Repeat while (A[I]<=A[pivot] AND I<UB)

 Update I=I+1

 Repeat While (A[J]>A[pivot])

 Update J=J-1

 If (I<J)
 Swap(A[I],A[J])

 Swap(A[pivot],A[J])

 Call QuickSort(A,LB,J-1)

 Call QuickSort(A,J+1,UB)

III. EXPERIMENT

Energy consumption of four sorting algorithms: Bubble sort,
Insertion sort, Quick sort and Selection sort were measured. To
measure the energy consumption of each algorithm four
different Apps were developed for each sorting algorithm.

Power Tutor V.1.4 App was used to measure the energy

consumption of each sorting algorithm. Once Sorting App was
started there was no human interaction with the Smartphone.
To find accurate result each algorithm was run 10 times and
average energy consumption was noted. Samsung GT-I8262
and Samsung J5 Prime Smartphones were used to run and
measure the energy consumption of sorting algorithms. Almost
same results were obtained on both the Smartphones. 10
different datasets of random numbers were used to find the
results correctly.

Random numbers of different size as shown in TABLE-I

were generated and the same numbers were input to the
different sorting algorithms and energy consumption was
measured. The graph in Fig.1. shows trends of experiments
performed on Samsung J5 Prime.

From The Graph and The Table, it shows that Quick Sort is

the most energy efficient algorithm whereas Bubble Sort
consumes the higher amount of energy.

Fig.1: Energy Consumption of Sorting Algorithms

Murlidhar Verma et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,674-676

© 2015-19, IJARCS All Rights Reserved 676

 TABLE I. ENERGY CONSUMPTION IN JOULE

IV. DISCUSSION

Even though there are many methods to measure energy
consumption in Smartphones and mobile devices. In this work,
App-based approach was used for simplicity. Power Tutor
V.1.4 App is used to find the energy consumption of each
sorting App. This gives the relatively correct result because the
same App is used to measure the energy consumption of all the
sorting Apps and it was repeated 10 times. The Same randomly
generated data set was input to all the sorting Apps.

Normally it is assumed that recursive calls in quick sort will
consume more energy but, from results, it was observed that
Quick sort is the most energy efficient and Bubble sort is the
most energy consuming sorting algorithm. This might be due to
multiple cores.

V. CONCLUSION AND SUMMARY

 Developing energy efficient applications is really a
challenging task. By using appropriate algorithm energy

consumption may be reduced. This work shows that Quick sort
is the most energy efficient algorithm on average case. Bubble
sort is the most energy consuming. Sorting algorithms were
used because these are used in almost all the applications. This
work can be further extended for other algorithms.

This work provides general guild line for selecting
appropriate sorting algorithm in designing of energy efficient
applications.

VI. ACKNOWLEDGMENT

I would like to express my deep sense of gratitude and
wholehearted thanks to my guide Dr. K.R. Chowdhary Sir, for
giving his valuable guidance, inspiration and encouragement to
complete this paper. Without his support, guidance, and
assistance this paper would not have been completed.

VII. REFERENCES

[1] Murlidhar Verma, and K.R. Chowdhary, “Smartphone as a

Tool for Different Applications”, International Journal of

Innovative Research in Science & Technology(IJIRST),

vol. 2, Issue 7, pp. 89–92, December 2015, ISSN (online):

2349-6010.

[2] J. J. Chen and L. Thiele, “ Expected system energy

 Consumption minimization in leakage-aware DVS

 Systems", In Proc. of the 13th ISLPED, pages 315-320

 ACM, 2008.

[3] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger,

 “A 90nm low-power FPGA for battery-powered

 applications”, In Proc. of the ACM / SIGDA 14th intern.

 symposium on field programmable gate arrays, pages 3-11

 ACM,

[4] Christian Bunse, Hagen Höpfner, Essam Mansour, Suman

 Roychoudhury,” Exploring the Energy Consumption of

 Sorting Algorithms in Embedded and Mobile Environment”,

 Tenth International Conference on Mobile Data Management

 Systems, Services, and Middleware, pp. 600- 607, 2009.

[5] Aaron M Tenenbaum, Yedidyah Langsan and Moshe J.

 Augenstein, ” Data Structures Using C ”, Pearson Education

 India.

Data Size
Insertion

Sort

Bubble

Sort

Selection

Sort

Quick

Sort

10000 0.755 0.99 0.848 0.696

20000 1.78 2.7 2.37 1.37

30000 3.03 5.28 3.86 2.1

40000 4.3 8.43 6.42 2.75

50000 6.03 12.33 9.23 3.38

60000 7.98 16.54 12.2 4.2

70000 10.1 22.45 15.98 4.8

80000 12.35 27.87 19.66 5.67

90000 14.32 35.08 24.18 6.52

100000 17.14 42.57 29.04 9.96

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christian%20Bunse.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hagen%20H%C3%B6pfner.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Essam%20Mansour.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Suman%20Roychoudhury.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Suman%20Roychoudhury.QT.&newsearch=true
http://ieeexplore.ieee.org/document/5089010/
http://ieeexplore.ieee.org/document/5089010/
http://ieeexplore.ieee.org/document/5089010/

	I. INTRODUCTION
	II. SORTING ALGORITHMS
	III. EXPERIMENT
	IV. Discussion
	V. CONCLUSION AND SUMMARY
	VI. Acknowledgment
	VII. References

