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Abstract: Nowadays, with the increasing demand for wireless communication systems, basically Wireless Local Area Networks (WLANs) and 

Mobile communication systems, higher data rates with better Quality of Service (QoS) are required. 

While Heterogeneous Networks (Het-Nets) are under study toward 5G technology in mobile communication, WiFi Access Points (APs) are 

considered a potential layer within those multiple Radio Access Technologies (RATs). Significant network capacity gain can be achieved not only 

through aggressive reuse of spectrum across the multiple tiers in the network, but also through harnessing an additional spectrum in un-licensed 

bands by integrating WiFi in the network [1]. 

Different criteria should be investigated in order to allow both the WiFi APs and the end user to operate on the best suitable channel, where the 

basic one of those criteria is the “load” of the operating channels. 

We propose in this paper a novel and accurate algorithm for the estimation of WiFi 802.11n physical channels load through the observation of the 

non-overlapped channels and estimating as a result the load of the entire physical channels. 

Once the channels load is estimated using the proposed algorithm, the channel assignment based on the minimal load value is facilitated, thus 

providing faster response of an AP channel selection and faster end user connection for better Quality of Experience (QoE). 
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I. INTRODUCTION  

With the increasing demand for wireless data communication, 
the main key role focuses on effective bandwidth availability 
given that the spectrum is limited. This issue stimulates 
researchers and engineers to use the spectrum more efficiently.  

One of the challenges faced in WiFi systems, is the channel 
assignment for the end user within a minimum response time and 
optimal spectrum usage from the suitable access point. As per 
WiFi systems technical specifications, to perform the channel 
assignment when a device is first powered up, the software 
above the Media Access Control (MAC) layer stimulates the 
device to establish a contact message to select the most suitable 
access point [2]. The device will use either active or passive 
scanning mode based on the response type from the Access 
Point. For IEEE specifications, different implementations are 
allowed, therefore different characteristics may exist between 
devices. The time of the scanning mode could increase 
significantly depending on the channels load, and the status of 
the access points, where basic timers exist to assure minimum 
and maximum times for interrogation requests.  

Many research studies were proposed to define the channel 
selection criteria in wireless networks based on different criteria 
such as resource allocation by taking into consideration the 
cooperative transmission strategy [3]; the power control of 
overlapping and non-overlapping channels [4]; multivariable 
algorithm using the probability of channel availability, the 
estimated channel time availability, the signal to noise plus 
interference ratio, and the bandwidth for dynamic channel 
selection treated in a computational technique [5]; the 

interference of clients individually [6]; the relationship of 
interference among clients [7]; the measurements on the 
Medium Access Control (MAC) layer [8]; or based on the 
parameters of scanning performance leading to a minimum 
latency [9].  

The load criterion was mentioned in [10], [11], and [12] with 
different approaches. In [10] there is a significant variation in 
channel loads reported by the same station at different times, 
which may have significant effect on the selection of the channel 
with the minimum load.  

In [11], a distributed least congested channel selection 
algorithm is proposed. It is based on the minimum interfering 
stations, as well as associated stations, by exchanging with 
neighbor APs, the beacon frame of the IEEE 802.11 standard 
with some additional field of channel load information. 

In [12], the load criteria was measured by monitoring only a 
limited number of channels at each measurement time instead of 
monitoring all channels. It is based on the standard mechanism 
Clear Channel Assessment (CCA) which can measure the 
fraction of time in which the channel is busy or idle. The 
proposed algorithm utilizes the Gaussian Process Regression 
(GPR) technique, used to estimate the instantaneous load of each 
channel by utilizing the previous load measurements. In this 
method, they monitor only a limited number of channels at each 
measurement time instead of monitoring all channels, and then 
determine the channel with the minimum traffic load without 
measuring all channels in the frequency band of interest. 

 In our paper, we propose a new algorithm that estimates the 
load of the WiFi 802.11n physical layer channels by taking the 
overlapping characteristic of the physical channels. 
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Our algorithm is applied on the physical layer of WLAN 
networks, before establishing any connection between the WiFi 
AP and the user station. 

By applying our algorithm on a minimum of 3 non-
overlapped channels, we can deduce the load of the remaining 
physical channels, and thus we can select the channel with the 
minimum load, and reduce the measurement time of channel 
load estimation.  

Note that by the channel “load”, we mean the percentage of 
the channel usage in time (or busy time) with respect to the total 
channel measurement time (total busy and idle time). Having the 
load of each channel, facilitates the decision of the user for the 
channel selection based on the minimal load measurement. In 
this paper, we are simulating WiFi 802.11n in 2.4 GHz radio 
band with 20 MHz channel width, constituted basically of 14 
overlapped channels spaced with 5MHz.  

The channels overlapping is a characteristic used and 
analyzed in this paper as it will be explained in later sections. 
Under the same concept, the study presented in this paper could 
be extended to 5 GHz band with 20 MHz channel width (or with 
wider channel width e.g. 40 MHz in channel bonding), 
constituted basically of 42 overlapped channels spaced with 
5MHz, with only 24 non-overlapping channels used in practical 
scenarios. Similarly, using the overlapped channels in 5GHz 
could be considered due to the expected dense arrangement of 
APs, therefore overlapping or non-overlapping channels option 
could be a solution for the future increasing demand of the 
WLAN spectrum. 

This paper is organized as follows. Section II describes 
802.11n physical layer and channel assignment techniques. Our 
proposed algorithm along with the needed formulation is 
presented in Section III. In Section IV, the simulation results are 
shown. Potential use cases of the described method are given in 
Section V. Finally, Section VI concludes the paper. 
 

II. SYSTEM AND CHANNEL ASSIGNMENT MODELS 

WLAN WiFi is based on IEEE 802.11 standards designed for 

indoor Wireless Local Area Networks for bandwidths of up to 

100 MHz, at frequencies of 2 and 5 GHz [9]. 

The challenge lies when we have more nodes than the available 

orthogonal channels; therefore, additional numbers of available 

channels and optimization of the scanning duration for channels 

assignment are needed due to the existing network load. 

In 2.4 GHz band, with 20 MHz channel bandwidth, 802.11n is 

basically constituted of 14 channels spaced with 5 MHz, where 

the adjacent channels overlap. In Europe, the first 11 channels 

remain available, and only three channels are non-overlapping 

in frequency at the same time [4] (e.g. channels 

1, 5 and 9) as presented in figure 1. 

 
Fig. 1. 802.11n physical overlapped channels 

 

 

In 5 GHz band, with 20 MHz channel bandwidth, there are 42 

channels spaced with 5 MHz with 24 non-overlapping channels 

used. Similarly, with 40 MHz channel bandwidth (channel 

bonding) there are only 12 non-overlapping channels used. 

Basically, the remaining overlapped channels are not considered 

usable, and typically are not selectable on most hardware in 

order not to end up with co-channel interference. So practically, 

to avoid this interference and maximize the throughput, only 

non-overlapped channels are used. However, in densely 

populated networks, and with the constraints of increasing 

spectrum demand for future WiFi and mobile communication 

technologies such as 5G, the number of available non-

overlapped channels may not be enough, thus devices might 

have to share different channels (overlapped and non-

overlapped) or to check for a new spectrum if it becomes 

available. 

For these considerations, we are proposing an algorithm that 

calculates the load of the entire overlapped channels. 

By observing only the distinct 3 non-overlapped channels (e.g. 

channels 1, 5 and 9), we can calculate the load of those distinct 

3 channels and determine simultaneously the load of the 

remaining overlapped channels of the WiFi physical layer. 

 

Currently, in the channel selection principle of WiFi systems, 

two scanning modes could be used to assure a systematic 

channel assignment as mentioned before: passive and active 

scanning. 

In the case of passive scanning, the client has to wait to receive 

a Beacon Frame from the Access Point (AP) [2]. A Beacon is 

transmitted from an AP and contains information about the AP 

along with a timing reference. The device then searches for a 

network just by listening for beacons until it finds a suitable 

network to join. This procedure is similar for the 11 channels. 

With Active Scanning the device tries to locate an AP by 

transmitting Probe Request Frames, and waits for Probe 

Response from the AP [2]. The probe request frame can be either 

a directed or a broadcast probe request. The probe response 

frame from the AP is similar to the beacon frame. Based on the 

response from the AP, the client makes a decision about 

connecting to the AP. 

While active scanning is a faster way to establish the contact, it 

consumes more battery power. In addition, the delay of the probe 

response from the AP is variable and depends on the load of the 

AP. If the WiFi terminal waits for the Probe Response for a 

significant period of time, it will affect the average of the total 

scan duration. However, if it waits for a short duration, the 

probability of finding the suitable AP is somehow decreased. 

802.11n standard has defined two timers to assure the optimal 

control: MinChannelTime and MaxChannelTime. 

If the Probe Response is not received between those two timers, 

the terminal assumes the channel is empty, thus no available AP 

exists. 

In addition to the channel selection, the basic principle of 

channel access in 802.11 networks for carrier transmission is 

based on Carrier Sense Multiple Access/Collision Avoidance 

(CSMA/CA) MAC protocol, which acts as a measure to prevent 

collisions before they happen. 

In CSMA/CA, as soon as a node receives a packet that is to be 

sent, it checks to make sure that the channel is clear (no other 

node is transmitting at the time) [13].  

 

By applying our algorithm to estimate the minimum load of all 

the overlapped channels, allows to reduce the time of Access 

Point and channel discovery, and thus to optimize the values of 

different timers in WiFi networks (MinChannelTime, 

MaxChannelTime, backoff factor, etc.) 
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III. ALGORITHM FORMULATION 

As previously explained, in order to estimate the load of WiFi 

physical channels, we analyze in this paper the physical layer of 

802.11n which is constituted of 12 overlapped channels, where 

only 3 distinct channels are non-overlapping at the same time. 

The adopted modulation technique in 802.11n is the Orthogonal 

Frequency Division Multiplexing (OFDM) which is not only a 

frequency multiplexing technique that mandates orthogonality 

among sub-channel signals, but also a special case of multi-

carrier modulation. Consequently, OFDM can be regarded as 

either a multiplexing technique or a modulation scheme. 

In an OFDM scheme, a large number of orthogonal, overlapping, 

narrow band sub channels or subcarriers, transmitted in parallel, 

divide the available transmission bandwidth into several 

orthogonal subcarriers, and each subcarrier is modulated with 

the modulation technique in the same bandwidth. 

The separation of subcarriers is theoretically minimal so that 

there is a very compact spectral utilization [14]. 

As we mentioned earlier in this paper, our proposed algorithm is 

able to estimate the load of the 12 WiFi channels by performing 

3 observations only, and this on the non-overlapped channels, 

i.e. channels 1, 5, and 9.  

Noting that by observing channel 1, our algorithm is able to 

estimate the load of channel 1 as well as the load of the adjacent 

overlapped channels in this case channels 2, 3 and 4; similarly 

the observation of channel 5 will lead to estimate the load of 

channels 5, 6, 7 and 8 and the observation of channel 9 will lead 

to estimate the load of channels 9, 10, 11 and 12. 

 

For the simplification of calculations, and in order to avoid 

duplications, we are representing here the observation of channel 

1 only. The observation of the other channels can be easily 

generalized by adopting the same concept. 

 

Let us define Γ1(f) as the baseband spectrum of the signal 

observed in channel 1 and S(f) the theoretical baseband Power 

Spectrum (PS) of the WiFi signal, which emits in a continuous 

way. According to CSMA/CA principle, Access Points (APs) 

are not transmitting their data continuously. Let αi denote the 

channel load. It is defined as the percentage of the channel i 

usage in time (or busy time) in respect to the total channel 

measurement time as described previously. 

The observed baseband spectrum of channel 1 with respect to all 

signals transmitted in the overlapped channels i is expressed as:  

 

(𝜆𝑖
2(𝑓). 𝛼𝑖). 𝑆(𝑓), 

 

Where λi(f) is the signal attenuation due to the propagation 

model of Channel i. 

To simplify the presentation of the algorithm, we assume in the 

following section that the attenuation λi(f) = 1; ∀  i; ∀  f, however 

the robustness of the proposed algorithm in the presence of a 

multipath fading channel is shown at the end of the simulation 

results section. 

The observed baseband spectrum Γ1(f) can be easily expressed 

in terms of the theoretical spectrum S(f), which is given by [15]: 

 

 

𝑆(𝑓) =
𝜎𝑐

2

𝑀𝑇𝑆

∑(𝑠𝑖𝑛𝑐[(𝑓 − 𝑘Δ𝑓)𝑀𝑇𝑆])
2

𝑁−1

𝑘=0

         (1) 

 

Where sinc(α) = sin(πα) / (πα) , M is the symbol length, σc 

Variance of the data symbols C(k;l) (complex value) modulated 

on the kth subcarrier of the lth symbol, k discrete frequency index, 

N number of subcarriers, and Δf the frequency spacing between 

subcarriers. 

The theoretical Power Spectrum Density (PSD) is shown in 

figure 2. To assure the OFDM orthogonal relationship between 

subcarriers, Δf is set as W/N = 1/M, where W is the total 

bandwidth of the signal, and Ts is the sampling interval 

employed in the OFDM transmitter. 

 

 
Fig. 2. Normalized theoratical Power Spectral Density of the 

802.11n physical channel 

 

 

To estimate Γi(f) the baseband spectrum of the signal observed 

in channel i, we use Welch periodogram method 

[16]. Mathematically, it is defined as the Fourier transform of the 

autocorrelation sequence of the time series. This method outlines 

the application of the Fast Fourier Transform algorithm to the 

estimation of the power spectra, which involves sectioning the 

record, taking modified periodograms of these sections, and 

averaging these modified periodograms [16] [17]. 

 

 

Let us now derive the expression of the power spectrum (PS) 

Γ1(f). Channels 1, 2, 3 and 4 contribute to this PS. We are 

therefore able to estimate the channels load α1, α2, α3, and α4 

from this observation. The contribution of channels 2, 3, and 4 

in the PS of channel 1 is illustrated in figure 3. The observation 

of channel 1 can reflect the total load of channel 1 in addition to 

a part of the load of its related overlapped channels 2, 3 and 4, 

according to the overlapped partitions. 
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Fig. 3. Channel 1 Observation Model 

 

 

For a bandwidth B of the channel, the total overlapping 

bandwidth between two consecutive channels is 3B/4. Based on 

this sectioning, we divide the theoretical PSD S(f) into 4 

partitions S1, S2, S3, and S4 as per the below and presented in 

figure 4: 

 

S1(f) = S(f) for f ϵ [-B/2;- B/4] and 0 elsewhere 

S2(f) = S(f) for f ϵ [-B/4; 0] and 0 elsewhere 

S3(f) = S(f) for f ϵ [0;B/4] and 0 elsewhere 

S4(f) = S(f) for f ϵ [B/4;B/2] and 0 elsewhere 

 

 

 
Fig. 4. Signal Sectioning – Theoretical PSD 

 

The complete theoretical PSD is the vector: 

 

𝕊 = [𝑆1(𝑓), 𝑆2(𝑓), 𝑆3(𝑓), 𝑆4(𝑓)] 
of size (1x4). 

 

Now let Γ1(f), which is the PS of the observed signal in channel 

1, be divided similarly into 4 sections ɣ1, ɣ2, ɣ3, ɣ4 as shown in 

figure 3 and calculated below: 

 

ɣ1 (f) = Γ1(f) for f ϵ [-B/2;-B/4] and 0 elsewhere 

 

ɣ2 (f) = Γ1(f) for f ϵ [-B/4;0] and 0 elsewhere 

 

ɣ3 (f) = Γ1(f) for f ϵ [0;B/4] and 0 elsewhere 

 

ɣ4 (f) = Γ1(f) for f ϵ [B/4;B/2] and 0 elsewhere. 

 

The complete PS is the vector Γ1 = [ɣ1 (f); ɣ2 (f); ɣ3 (f); ɣ4 (f)] of 

size (4x1). Based on figure 3, we need to calculate ɣ1, ɣ2, ɣ3, and 

ɣ4 in terms of S(f) and αi (the load of channel i). 

 

We can observe that, since channels 1, 2, 3 and 4 shifted to the 

baseband are duplicated from both sides while saving the same 

overlapping proportions, ɣ1 is constituted of 2 times the load of 

channel 1 corresponding to section 1 (S1), 1 time the load of 

channel 2 corresponding to section 2 (S2), 1 time the load of 

channel 3 corresponding to section 3 (S3), and 1 time the load of 

channel 4 corresponding to section 4 (S4). Therefore, we can 

have the below equation: 

 

𝛾1(𝑓) = 2. 𝛼1. 𝑆1(𝑓) + 𝛼2. 𝑆2(𝑓)+𝛼3. 𝑆3(𝑓)+𝛼4. 𝑆4(𝑓)     (2) 
 

By applying the same concept for ɣ1, ɣ2, ɣ3, and ɣ4, we can write 

the below equations: 

 

𝛾2(𝑓) = 2. 𝛼1. 𝑆2(𝑓) + 𝛼2. (𝑆1(𝑓) + 𝑆3(𝑓))+𝛼3. 𝑆4(𝑓) 

𝛾3(𝑓) = 2. 𝛼1. 𝑆3(𝑓) + 𝛼2. (𝑆2(𝑓) + 𝑆4(𝑓))+𝛼3. 𝑆1(𝑓) 

𝛾4(𝑓) = 2. 𝛼1. 𝑆4(𝑓) + 𝛼2. 𝑆3(𝑓)+𝛼3. 𝑆2(𝑓) + 𝛼4. 𝑆1(𝑓) 

 

From the above equations, we can write the Power Spectrum of 

the observed signal in channel 1 as: 

 

Γ1(𝑓) = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. [

𝛼1

𝛼2

𝛼3

𝛼4

]       (3) 

 

Now let  be equal to: 

𝔹1 = [

𝕊 0 0 0
0 𝕊 0 0
0 0 𝕊 0
0 0 0 𝕊

] .

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
2 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 1 0 0
2 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
0 1 0 0
2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,          (4) 
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then 

Γ1(𝑓) − 𝔹1. 𝛼 = 0               (5) 

 

Where α = [α1, α2, α3, α4] denotes the load of channels 1, 2, 3 and 

4. 

Our aim is now to estimate α. Since the channel load has a non-

negative value, non-negativity constraint should be applied on 

the load estimations instead of simple non-square matrix 

inversion. In this paper, the non-negative Least Mean Square 

(LMS) calculation has been applied. It is derived based on a 

stochastic gradient descent approach [18] combined with a 

fixed-point iteration strategy that ensures convergence toward a 

solution to estimate vector α from channel 1. 

We denote by  
[𝛼̂1

1, 𝛼̂2
1, 𝛼̂3

1, 𝛼̂4
1] 

 

the estimate of the load of channels 1, 2, 3 and 4 obtained from 

the observation of channel 1. 

It is given by: 

 

[
 
 
 
 
𝛼̂1

1

𝛼̂2
1

𝛼̂3
1

𝛼̂4
1]
 
 
 
 

= Argmin
𝛼

(‖Γ1(𝑓) − 𝔹1. 𝛼‖)                (6) 

 

 

We proceed similarly for the remaining 2 non overlapped 

channels 5 and 9 in order to recover the load of the 12 channels 

as per the below equations, noting by   as the estimated 

baseband spectrum of the signal of channel j: 

 

Γ̂5(𝑓) = 𝔹5.

[
 
 
 
 
 
 
 
𝛼̂2

5

𝛼̂3
5

𝛼̂4
5

𝛼̂5
5

𝛼̂6
5

𝛼̂7
5

𝛼̂8
5]
 
 
 
 
 
 
 

           (7) 

 

 

 

 

 

And 

 

 

 

Γ̂9(𝑓) = 𝔹9.

[
 
 
 
 
 
 
 
𝛼̂6

9

𝛼̂7
9

𝛼̂8
9

𝛼̂9
9

𝛼̂10
9

𝛼̂11
9

𝛼̂12
9 ]

 
 
 
 
 
 
 

          (8) 

 

 

 

 

 

 

The real constant valued matrices of channels 5 and 9 

observation are represented below: 

 

 

𝔹5 = 𝕊.

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           (9) 

 

 

𝔹9 = 𝕊.

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 2 0 0 0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        (10) 

 

 

IV. SIMULATION RESULTS 

A. Load Estimation in Error Free Channel 

 

A simulation using Matlab has been developed to generate the 

physical signal of 802.11n based on the Orthogonal Frequency 

Division Multiplexing (OFDM) technique, according to WiFi 

802.11n specific parameters shown in Table 1. 

 

The length of the input signal used in our simulation is 

equivalent to the duration of 200 OFDM symbols in time (or 200 

times the symbol duration (ts) = 3.2 µs), where the channel load 

is expressed by non-zero symbols value equivalent to the time 

occupation of the signal (or busy time), and with null symbols 

value when the channel is empty (or idle time). 

The channels load predefined on the twelve channels is 

expressed as the percentage of the channel occupation time 

between 0% and 100% (or 0 and 1) assumed as following: 20%, 

50%, 0%, 40%, 90%, 0%, 60%, 70%, 80%, 40%, 0%, 90%. 
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As explained previously, since the physical channels overlap 

with only 3 distinct channels, an observation of those 3 distinct 

channels entails to measure the load of the 12 channels. 

Therefore, we start first by observing channels 1, 5, and 9. 

By applying the method presented in the previous section, the 

load of channels 1, 2, 3, and 4 is estimated from the observation 

of channel 1, the load of channels 5, 6, 7 and 8 is estimated from 

the observation of channel 5, and the load of channels 9, 10, 11 

and 12 is estimated from the observation of channel 9. 

 

 
Fig. 5. Estimated Load versus the real load with 3 channels 

observation 

 

As shown in figure 5, the estimated load is nearly the same 

comparing to the predefined load. 

 

To check the effect of several additional channels observations, 

we have applied our algorithm on channels 1, 5, 6, 9, and 12 

(optionally 5 channels observation in this case). The load of 

channels 1, 2, 3, and 4 is estimated from the observation of 

channel 1, the load of channel 5 is estimated from the 

observation of channel 5, the load of channels 6, 7 and 8 is 

estimated from the observation of channel 6, the load of channel 

9 is estimated from the observation of channel 9 and the load of 

channels 10, 11 and 12 is estimated from the observation of 

channel 12.  

A comparison between the 3 channels observation and the 5 

channels observation is done, and the results in terms of the value 

of the Mean Squared Error (MSE), averaged through several 

repetitive random simulations, are shown in figure 6.  

As we can see, the MSE decreases with 5 channels observations; 

thus we can conclude that with additional number of channels 

observation, the algorithm accuracy level is increasing. 

 

 

 
Fig. 6. Averaged Mean Squared Error of the estimated load 

versus the real load values in error free channel 

 

B. Load Estimation in presence of a White Gaussian Noise 

We assume now that the channel is affected by a White Gaussian 

Noise. In order to analyze the noise effect on the accuracy of our 

algorithm, same observations are used to reflect the estimated 

load versus the real one. The averaged MSE value is represented 

in respect to Signal to Noise Ratio (SNR) in figure 7. 

We can notice that the precision of the algorithm is affected by 

a high noise level; however an acceptable error margin can still 

exist with a SNR around 3 dB. 

 

 
Fig. 7. Averaged Mean Squared Error of the estimated load 

versus Signal to Noise ratio values. 

 

C. Load Estimation with higher Symbol Length 

 

We have analyzed the effect of signal length (i.e. the number of 

OFDM symbols) at the input in an error free channel. 

Different realizations have been performed in order to reflect the 

averaged MSE with increased number of symbols duration 100 

ts, 200 ts, 300 ts, 400 ts and 1000 ts as can be shown in figure 8. 

As we can notice, the averaged MSE value decreases with the 

highest number of OFDM symbols, since the precision of the 

estimated load increases for a higher message length where the 

observations results are more accurate. 

Table 1. Used 802.11n parameters 

Parameter Value 

Bandwidth 20 MHz 

The frequency spacing 

between subcarriers 

312.5Khz 

Sampling interval 

employed in the OFDM 

transmitter Ts 

0.05 µs 

Symbol length 3.2  µs 

Number of subcarriers 64 

FFT Window 64 

Modulation 16 QAM 

Total number of samples 

per OFDM symbol 

1024 

Number of samples zero-

padded after 16 QAM 

2048 

Number of symbols 200 
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Fig. 8. Averaged Mean Squared Error of the estimated load 
versus Signal Length in Error free channel 

D. Improvement of Load Estimation by Averaged Method 

 

Since the estimated load is based on a single channel 

observation, we have analyzed the effect of estimating the load 

of a channel throughout two channels observation at the same 

time, by averaging the calculation of the load according to the 

related partitions in each observation, as already shown in figure 

3 for the observation of channel 1. 

In this case, the load of channel 1 is estimated from the 

observation of channel 1, the load of channels 2, 3 and 4 is 

estimated from the observations of channel 1 and 5 as per the 

following equations: 

𝛼1
1 = 𝛼1

1 

𝛼2
1,5 = (

3

4
. 𝛼2

1) + (
1

4
. 𝛼2

5) 

𝛼3
1,5 = (

1

2
. 𝛼3

1) + (
1

2
. 𝛼3

5) 

𝛼4
1,5 = (

1

4
. 𝛼4

1) + (
3

4
. 𝛼4

5) 

 

Similarly, the load of channel 5 is estimated from the observation 

of channel 5, the load of channels 6, 7, and 8 is estimated from 

the observations of channel 5 and 9, and finally the load of 

channels 9, 10, 11, and 12 is estimated from the observation of 

channel 9. 

By comparing the precision of this averaged calculations method 

in respect to the direct calculations method, we can note that the 

averaged MSE of the 12 channels through multiple realizations 

is decreased as can be shown in figures 9 and 10 compared to the 

SNR and number of symbols respectively. 

 

 
Fig. 9. Averaged Mean Squared Error of the estimated load in 

two calculation methods with 3 channels observation in respect 

to the SNR (dB) 

 
Fig. 10. Averaged Mean Squared Error of the estimated load in 

two calculation methods with 3 channels observation in respect 

to the number of symbols 

 

E. Load Estimation in presence of a Multipath Fading 

 

Following the assumption that the attenuation is not affecting 

our calculations (λi(f) = 1; ∀ i; ∀ f), non-perfect conditions are 

assumed in this subsection in the presence of a multipath fading 

channels. 

Our simulated OFDM signal has been filtered through a 

normalized multipath fading channel to reflect the effective 

Power Spectral Density and thus calculate the channels load as 

previously explained in this paper. 

We can observe in figure 11 that our algorithm is still constantly 

accurate despite certain attenuation factors. 

 

 

 
Fig. 11. Averaged Mean Squared Error of the estimated load 

versus the real load values in presence of a multipath fading 

channel 

 

Finally, from the analysis performed in the above sub-sections, 

we can conclude that in a high level of noise, the number of 

channels observation and message length could be increased 

(more than 3 channels observation and 500 ts respectively) in 

order to maintain the same accuracy level of the algorithm, and 

the averaged calculation method through two simultaneous 

channels observation is also recommended in order to minimize 

the Mean Squared Error value and increase the precision level 

of the estimated load. 
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V. POTENTIAL USE CASES OF THE PROPOSED 

ALGORITHM 

 

As previously described in section II, when the user is trying to 

connect to a suitable Access Point (AP), interrogation requests 

are performed in order to detect the available AP. Different 

values of the timers could be set to assure an optimal waiting 

time for the response of the access point before the connection. 

Following the application of our algorithm, and where the user 

terminal is waiting between two timers values to connect to the 

suitable AP, the measurement of the load by the user terminal 

could facilitate the selection and thus optimize both the values 

of the timers, and the battery consumption when compared to 

long timers duration with no response in congested networks. 

In addition, the main characteristic of our algorithm, is by a 

minimum channels observations of 3 non-overlapped channels 

only, either by the user station or by the WiFi AP, the load of 

all the remaining overlapped channels could be estimated 

automatically, minimizing by that the channel load 

measurement and channel selection time. 

 

Finally, in practical use, overlapped channels are not considered 

usable and typically are not selectable in order to avoid co-

channel interference; however, in densely populated networks, 

and with the future increasing spectrum demand, overlapped 

channels might be needed to resolve network congestions where 

further algorithms and procedures should be analysed to 

minimize the anticipated interference. 
 

VI. CONCLUSION AND FUTURE WORK  

In this paper we have proposed an algorithm that estimates the 

load of the physical channels of WiFi 802.11n in 2.5 GHz 

spectrum. Based on only 3 observations of non-overlapping 

channels, the proposed algorithm is able to estimate the load of 

the 12 channels of the WiFi 802.11n.  

 

The accuracy of the algorithm has been measured by the Mean 

Squared Error of multiple realizations, in error free channel and 

in white Gaussian noisy channel.  

We evaluated our work and can conclude a high accuracy level 

and flexibility in estimating the load of the physical channels, 

thus facilitating the channel assignment based on the minimal 

load, providing better Quality of Experience (QoE) for the end 

user and minimized load measurement and channel selection 

time. 

Following the same principle, the analysis of 5 GHz spectrum 

and 802.11ac could be applied, including the channel bonding 

feature. 

However, more work should be carried out to estimate the 

attenuation level which was normalized during our study in this 

paper. Future work in the short term will focus on how to 

integrate WiFi systems and access techniques based on channel 

load with the LTE advanced systems toward the 5G 

heterogeneous networks. 
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