
��������	�
����	��������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 572

ISSN No. 0976-5697

Architecture of shared-nothing cluster to fast accessing and ensure the availability of

data in distributed database environment

Deepak Sukheja*

Priytam institute of tech and managment,

Indore, India

d_sukheja@rediffmail.com

Umesh K. Singh
Institute of Computer Science,

Vikaram University, Ujjain, INDIA

umeshsingh@rediffmail.com

Abstract: Database systems have been essential for all forms of data processing for a long time. In recent years, the amount of processed data

has been growing dramatically, even in small projects. At the other hand, database management systems tend to be static in terms of size and

performance, which makes scaling a difficult and expensive task. Enterprises may have multiple database systems spread across the

organization for redundancy or for serving different applications. In such systems, query workloads can be distributed across different servers

for better performance. In this paper, we focus on complex queries whose evaluation tends to be time-consuming and design the secured share

nothing clustering architecture to improve the performance of application and also assure to the user to availability of the data. The proposed

architecture is very helpful towards a two phase query optimizer. In the first phase, the synchroniz and decomposes a query into subqueries and

tranfer them to appropriate cluster nodes. In the second phase, each cluster node optimizes and evaluates its subquery locally.

Key word: cluster technology, database technology, shared-nothing cluster, query processing, query optimization.

I. INTRODUCTION

 Database technology has become a common requirement

in almost application and due to high performance and cost

effectiveness, cluster of workstations has recognized in recent

years. It is cheap and simply available to all kind of database

based applications. Consequently, database clusters likewise

are becoming a reality. A database cluster is a network of

workstations (PCs) and each node (workstations) runs the

shelf database. Due to high performance, cost effectiveness

and simply availability of clustering technology have gained

popularity. A cluster can be built either from asymmetric or

symmetric processors,

But generally it is built from Symmetric Multi-Processors

(SMP). Standard distributed physical design schemes are

mentioned in [1] to data distribution and determines the query

evaluation. The main design alternatives are full replication,

vertically partitioning and clustering for improving intra-

query parallelism. In the ideal case, a database cluster allows

to scale out, i.e., it allows to add more nodes in order to meet

a given performance goal, rather than tuning the nodes.

The main motivation behind parallel processing application is

that we need to solve bigger problems with minimum

resource requirements beyond current limits. Parallel

computing is the way because it performs work in lesser time,

solve large problem easily, saves cost and provides

concurrency [2]. Data intensive applications that require huge

databases waste a lot of time in scanning and searching. The

optimal way to run these applications is to use the

computational power of more than one system by distributing

the workload among the nodes in a cluster.

Traditional serial computation has many serious

limitations like memory size and speed, limited instruction

level parallelism, power usage, heat problem etc. With the

wide availability of parallel computing platforms like HPC

centers, local Linux clusters, multiple CPU’s and

GPU’s(graphics processing unit) the above mentioned

limitations can be overcome.

Figure1: Traditional System

Deepak Sukheja et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 572-575

© 2010, IJARCS All Rights Reserved 573

According to Thomas Phan, Wen-Syan Li in [6],

traditional DBMS work into 5 steps: (1) A query workload is

submitted to DDBMS scheduler. (2) The scheduler gives the

queries to an MQT(Materialized Query Tables) Advisor

product, which (3) returns a set of candidate MQTs and

associated indexes. (4) The scheduler runs a search heuristic

against possible combinations and produces query-to-server

and MQT-to-server mappings. (5) The mappings are used to

distribute the queries and MQTs onto the servers. The load

distribution is to divide the workload into multiple sub-

workloads and assign each sub-workload to a database server

in some greedy manner, such as a round robin distribution.

This simple solution will not work for several reasons:

• Queries routed to a database server may not be collocated

with their needed MQTs;

• Some MQTs may not fit in the data server that has a

limited disk space;

• Some sub-workloads may be more expensive to execute

than others, so some server may be idle while other

servers are still busy;

• Some servers may be more powerful than others.

II. OBJECTIVES

The major objective of this paper is to optimize query

processing time by providing parallelization with the use of

distributed database systems to store data rather than

overloading a single DB Server machine. In this paper, we

propose a framework for coordinating and optimizing

execution of complex query workloads across a cluster of

database servers with shared-nothing architecture. For a

database cluster, such an optimization is achieved when the

maximum completion time of the workloads across all

database servers is minimized. The completion time at each

database server includes MQT and index building time and

query workload execution time.

III. DESIGN AND METHODOLOGY

This section provides a detailed illustration of proposed

architecture. The architectural goal is to develop share-

nothing distributed system architecture for fast query

processing and highly availability of the data. The basic

terminologies used to develop the architecture are: Cluster is

a group of Server (A, B, & C) configured to work together to

serve clients in a similar fashion[5]. Each server participating

in a cluster is called as node i.e. A, B & C is nodes. Clusters

can be configured in two modes:

Figure 2: Cluster of servers

Active/Passive Mode, In the Active/Passive mode only the

active server serves the client requests. One instance of DB

Server is installed on both the server systems. The second

server in the cluster is configured as passive node. Second

becomes active node only in cases where the first server fails.

The Active/Passive cluster Mode is providing the highly

availability and fast accessing of database.

Active/Active mode, In Active/Active mode both the servers

serve the client requests. The MSCS arbitrarily chooses one

of the servers to serve the client requests. If any of the active

nodes fails, its resources are moved to another active node.

Network Load balanced Cluster: Uses a load balancing

architecture, which means that a resource can be active on

ALL servers in the cluster at any one time. Because of this, it

is well suited to applications that do not maintain state

Figure3: open architecture of Shared-Nothing Cluster

IV. WORKING

Shared-nothing architecture works on the principle of

ownership, that each node in a cluster has individual

ownership of the data on that node. Every node shares no data

with the other nodes of the cluster, hence the term shared-

nothing. When you move from a single server to multiple

Deepak Sukheja et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 572-575

© 2010, IJARCS All Rights Reserved 574

servers in a shared-nothing cluster, you must divide the data

across the servers.

In a heterogeneous cluster many factors have to be taken

into account [3] to decide how much task is to be allotted to

each node/server. These factors include processor speed, disk

storage, input/output and network latency. While in case of

homogeneous cluster we have to only take network latency

into account. Distribution of database has to be done

according to the execution time taken by a particular

node/server. Less the execution time more the data given to

that node. It can present load sharing in a mathematical model

as follows:

Let D be the database size and S be a set of

heterogeneous machines; S = {N1, N2,..,Nn}, where N

denotes a machine and n be the number of nodes. Ni(Ci,Si,Li)

represents a machine having computational power Ci, disk

storage Si and estimated network bandwidth Li; Li={aij,�� i �

j}, where aij is the average latency between nodes Ni and Nj.

Let Ei be the execution time taken by the node Ni.

This can be written as: Ei = Ci + Ii, where Ci is estimated

computational time and Ii is estimated I/O time.

Figur4: Internal working architecture

The active/active clustering mode of the database can be

carried out in three steps:

1. Estimating the number of nodes in which the

database has to be partitioned.

2. Finding the rank of each node.

3. Partitioning database.

V. IMPLEMENTATION

This has been implemented through the following modules:

1) Load Sharing: The module is to perform load sharing

through database distribution. The flow is shown in figure 5.

To avoid direct access to the slave node and individual

entering of records into the data base, the data can be directly

entered via master node. The records are retrieved from the

master node and then are partitioned depending on the

number of nodes present in the cluster.

Figure 5: Load Sharing

2) MPI (Message Passing Interface): This module establishes

the communication interface between the remote nodes. To

establishes the remote communication use TCP/IP

connection. Once the connection is established, the slave

nodes are ready to accept the query from the master node and

also reply to master nodes.

3) Indexing Database Queries: A database index is a data

structure that can be created using one or more columns of a

database table and its main advantage is that it improves the

speed of operations on a database table, providing the basis

for both rapid random look ups and efficient access of

ordered records. Since indexes do not consist of the details

that are present in the table and contains only the key fields

according to which the table is arranged, it occupies much

lesser space than the table and thus provides the chance of

storing the index in memory of those tables which are too

large. Whenever the user enters a complex query, an index

containing the attribute as columns present in the query is

created. Now the next time when the user enters a query

containing similar attributes, the index is first accessed rather

than the table and thus leading to time optimization.

VI. CONCLUSION

In this paper, we have designed and implemented a high

performance and scalable inter node communication within a

Deepak Sukheja et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011, 572-575

© 2010, IJARCS All Rights Reserved 575

cluster for fast query processing in a heterogeneous database

environment with replication scheme. In future works will

perform both vertical and horizontal partitioning of the

database.

VII. REFERENCES

[1]. Philip Hatcher, Mathew Reno, Gabriel Antoniu, Luc
Boug?, "Cluster Computing with Java," Computing in
Science and Engineering, vol. 7, no. 2, pp. 34-39,
Mar./Apr. 2005.

[2]. Sanan Srakaew, Nikitas A. Alexandridis, Punpiti Piamsa-
nga and George Blankenship, “Content-based
Multimedia Data Retrieval on Heterogeneous System
Environment,” in International Conference on Intelligent
Systems (ICIS-99) , Denver, Colorado, June 24-26, 1999.

[3]. Röhm U., Böhm K., Schek H.-J., “Cache-Aware Query
Routing in a Cluster of Databases”, In Proc. 17th Int.
Conf. on Data Engineering, ICDE2001.

[4]. Oracle Corporation, “Clustering Database Applications
to Lower IT Cost”, White Paper, Microsoft Corporation,
octumber 2010.

[5]. Lorinda Visnick , “ Clustering Techniques” , A Technical
Whitepaper, www.objectstore.net.

[6]. Thomas Phan , Wen-Syan Li, A request-routing
framework for SOA-based enterprise computing,
Proceedings of the VLDB Endowment, v.1 n.1, August
2008.

[7]. T. Rabl, M. Pfeffer, H. Kosch,” Dynamic Allocation in a
Self-Scaling Cluster Database”, VLDB DMG, Volume
20, Issue 17 Pages 1977–2088.

