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1. INTRODUCTION  

 
Dwivedi and Trivedi [2] Considered quadruple series equations 
involving Jacobi polynomials of the same indices which are 
orthogonal to the weight function  in the 
interval (0,1) Szego [9] later on standardized the notation 

 for the Jacobi polynomials.  
Askey [1] remarked that the dual series equations involving 

Jacobi polynomial of different indices cannot be solved. Later 
on Dwivedi and Gupta [4] obtained the solution of such 
quadruple series equations which include dual and triple series 
as particular cases. If we review the literature then we observe 
that the existing solutions on series equations are derived only 
from dual to six Fourier series equations, no further 
generalizations are available till date. This tempted us to find 
the solution of n-Fourier series equations involving Jacobi 
polynomials of different indices and in this paper we have 
obtained certain results. By considering the special values of n 
= 2,3,4,5,6 we shall be able to derive solutions of dual, 
triple,quadruple,5-tuple and 6-tuple Fourier series equations 
involvingjacobi polynomials of different indices[5], [6]. 

 
I. N- SERIES EQUATIONS OF THE FIRST KIND 

1) N-series equations of the first kind involving jacobi 
polynomials of  different indices are as follows : 

 
                                                                     (1) 
where, and  =0. 

 
                                                                    (2) 
where, and  = ∞ 

Here n is taken as an even number. If n is odd then the 
equations will be  

 
                                                       (3) 
where,  =0. 

 
                                                     (4) 

where,  

 
2) N-series equations of the second kind 
N-series equations of the second kind involving jacobi 
polynomials of different indices are as follows : 

 
                                                                      (5) 
where,  

 
                                                        (6) 
where,  

Here also n is taken as an even number. If n is odd then the 
equations will be 

 
                                                                    (7) 

where, and  =0. 

 
                                                      (8) 

where,  
Also  is an arbitrary non- negative 

integer. , where i = 1,3,5,....,n-1 and  
where  are prescribed 
functions. and  are unknown coefficients, are 
determined and the parameters  satisfy  the 
conditions , 

.Here we solve 
only equations (1),(2)of first kind and equations (5),(6) of the 
first kind and equations (7),(8) of the second kind will follow 
easily. 
 
2. PRELIMINARY RESULTS 

 
In the course of analysis, we shall use the following results: 
(i) The orthogonality relation for the Jacobi polynomials 
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                                                                                   (9)

where  is the Kronecker delta,      
 (ii)  The series , 

 
 

             = .  
             = .                                      (10) 
where,  and   

                                                                 (11) 
 It is assumed that parameters are so constrained that  is independent of n, this is of course possible when, for instance  = ν 

= λ - μ` and  = . 
 

 
3. THE SOLUTION 

 
(i) The solution of N-series equations of the first kind involving Jacobi polynomials of different indices : 
     Let us assume 

                                                  (12) 
      where,  
and where  are  unspecified functions. Using orthogonality relation it follows from equations (1) and (12) 
 

 

.                                     (13) 
Substituting this value of  in equation (2) and interchanging the order of integration and summation, we get 

 

 

                 (14) 
    ,   

                   
where 

 .                                                         (15) 
  for all   

 
Taking  in equation (14), where k is an even integer and  and is the total number of considered equations,  

we get 

+  
 

       +  + 
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Or 

        
        +  

           

          -  

         . 
 
Inverting the order of integration, 
 

          =  

          
          -  .  

          .  

                                                                  (16) 
 
Assuming 
    
                ,                                                        (17) 

For all  
with the help of the equation (17), the equation (16) takes the form 
 

      -  

      

      
                                                                                        (18) 
 
 
This equation is an Abel type integralequation and its solution is given by 
 

 

 

 

                                 (19) 
where 
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                                                                                                                     (20)                   

Changing the order of integration of the last integral of equation (26), we get 
 

    

 

   .  

 
                                                              (21) 

 
Using these equations,  
 
                                                                                (22)  

   And                                                                               (23)  
 
Equation (21) will be , 

        

         

         

         
                                                                   (24) 
Equation (24) is also Abel type integral equation. Therefore its solution is given by 
 
                                                                         (25) 

for all  
Therefore, 
 
                                                                      (26) 

  for all  
 
Applying the above result in equation (24) and also applying the Leibnitz theorem we get 
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                                                   (27) 

 
This equation can be written as, 
 
    (t, y) dt  

                      
                                                                                       (28) 
where, 

                 (t,y)= .                (29) 
 

 
                                                                                        (30) 

 
                                                                             (31) 
 
Substituting  in equation (28) we will get n/2simultaneous Fredholm Integral equations of the second kind with 
the help of these n/2 simultaneous equations we can calculate   and Then the values of 

 can be determined. After all these calculations we can compute the coefficient  with the help of 
equation (13).            
 
(ii) The solution of N-series equations of the second kind involving Jacobi polynomials of different indices : 
 
Let us assume 

                                                   (32) 
where,  and where  are  unspecified functions. Using orthogonality relation it follows from equations 
(1) and (32) 

          

                 . .   (33) 
 
Substituting this value of  in equation (5) and interchanging the order of integration and summation, we get 
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        (34) 
   ,   

 

         (35) 
    
where 

(36) 
for all   

 
Taking  in equation (34), where k is an odd integer and  and is the total number of considered equations, 

 we get 
 

 .   +  

  +  + 

       
Or 

         
        +  

             

          

          
          . 
 
Inverting the order of integration, 
 

     =  

     -  . 

                                                                                                                (37) 
 
Assuming 

 
,                                                                      (38) 

 
For all  
With the help of the equation (38), the equation (37) takes the form, 
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                                                                                           (39) 
 
This equation is an Abel type integral equation and its solution is given by 
 

                 

 

                                             

                                             

 
                                                                             (40) 

 
where 
                                                                                                                          (41)                                                                                          

Changing the order of integration of the last integral of equation (40), we get 
 

                           
          

 

       
 
     . 
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                                                                                                                           (42)  
 
Using these equations,  
 
                                                                                 (43)  
 
And                                                                                  (44)  
 
 
Equation (42) will be , 
 

                 

                                         

                                           

                                           
                                                                           (45) 
 
Equation (45) is also Abel type integral equation. Therefore its solution is given by 
 
                                                                              (46) 
 
for all  
 
Therefore, 
 

                                                                                    (47) 
 
for all  
 
Applying the above result in equation (45) and also applying the Leibnitz theorem, we get 
 

                 

 

                                      

                                       
 

                                                            (48) 
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This equation can be written as, 
 
                    (t, y) dt 

                                          
                                                                     (49) 

 
Where,  
 

                                  (t, y) = .                                               (50) 
   

             
                                    (51) 

 
                                                                         (52) 

 
      Substituting in equation (49) we will get n/2 simultaneous Fredholm Integral equations of the second 
kind. With the help of these n/2 simultaneous equations we can calculate   and then the values of 

  can be determined .After all these calculations we can compute the coefficient  with the help of 
equation (33).            
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