
DOI: http://dx.doi.org/10.26483/ijarcs.v8i9.4797
Volume 8, No. 9, November-December 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 20

ISSN No. 0976-5697

ENHANCEMENT ON TRAFFIC AWARE PARTITION IN MAPREDUCE USING
CLUSTERING TECHNIQUES

T.Sindhupriya

Research Scholar
PG & Research Department of Computer Science
Dr.N.G.P Arts and Science College (Autonomous)

Coimbatore, India

Dr .R.Kousalya
Professor and Head

Department of Computer Applications
Dr.N.G.P Arts and Science College (Autonomous)

Coimbatore, India

Abstract: The Map reduce is a programming model for handling and processing the huge datasets using map and reduce tasks in parallel
distributing. To increase the execution of map reduce many number of activities have been made, but they ignore to deal with network traffic
produced in shuffle stage. The existing map reduce traffic-aware partitions suffer from partition skew issue, where the output of map tasks is
unevenly distributed among reduces tasks. Existing arrangements take after a comparative rule that repartitions workload among diminish
undertakings. In any case, those methodologies frequently cause elite overhead because of the segment estimate expectation and repartitioning.
The proposed work chooses dynamic data aware parallel with k-Means algorithm (DDAP-kM), a framework that provides dynamic partitioning
skew reduction and clustering map reduce jobs. These works cope with partitioning skew by adjusting runtime resource allocation to reduce
tasks. By the experimental results network traffic cost is compared in terms of traffic aware partition algorithm and DDAP-kM algorithm.

Keywords: Big data; Map reduce; Dynamic parallel K- means algorithm; Network Traffic Reduction

1. INTRODUCTION

Huge information is a term for informational indexes that
are so substantial and deficient to manage conventional
information handling. Big data refers to the exponential
growth and availability of the data. The data volume, data
variety and data velocity are the three dimensions limit [1].
Big data is a huge amount of structured, semi-structured and
unstructured data that has been extracted for information.
The huge data features are prevalent and unobtrusive
dealing with control, data joining and quality capacities,
unstructured substance organization. Social database
organization structure is assorted to work with gigantic data.
Hadoop is used to beat this issue. Hadoop is a programming
structure used to help the handling of extensive
informational collections in a disseminated figuring
condition. Hadoop accomplishes finish parallelism for
capacity and conveyed figuring utilizing Map Reduce [2].
Hadoop composed and based on two free system HDFS and
Map Reduce. HDFS (Hadoop Distributed File System) is a
dependable circulated document framework that gives high
throughput access to information [3]. Mapreduce
(processing) is a framework for performing high
performance distributed data processing using the divide and
aggregate programming paradigm. A Map divides the
information into individual chunks which are processed by
map jobs in parallel. The output of map framework are then
input of the reduce tasks. The each input and output of the
role is stored in a file system. If users specify a map function
that process a key/value pair to get a collection of
intermediate key/value pairs and a reduce function that
manages all intermediate values related to equivalent
intermediate key. The Massive Parallel handling system for
preparing information is circulated on a product group.
Essentially it is a parallel preparing procedure for handling

information as opposed to doing it serially which
unquestionably spares time.

2. RELATED WORK

Many researchers have been done regarding the map reduce
job and performance improvement of map reduce job. Huan
ke have proposed “On Traffic-Aware Partition and
Aggregation in Map reduce for big data Applications” [4].
In this paper, to affect massive scale optimization issue for
large information applications distributed algorithm is
proposed and on-line algorithm additionally designed to
regulate the data aggregation and data partition in a dynamic
way. Lee, Youngseok propose "An internet traffic analysis
method with map reduces” [5]. In this paper an online flow
analysis methodology supported the Map Reduce software
framework of the cloud computing platform for a large-scale
network. Fan, Liya, et al "Improving the load balance of
map reduces operations based on the key distribution of
pairs” [6] have composed the calculation of key conveyance
among the transitional key esteem match to enhance the
heap adjusting in the guide decrease. Hsueh, Sue-Chen,
Ming-Yen Lin, and Yi-Chun Chiu have proposed "A load-
balanced map reduce algorithm for blocking-based entity-
resolution with multiple keys” [7] is produced viable load
adjusting for outline, however in this characterized the sum
total of what above have been done an exploration, and by
considering the heap adjusting in the guide decrease, the
expansive measure of information is straightforwardly
exchange to the reducer to give the last yield to the client.
Condie et al “Map reduce Online” [8] acquaints the
combiner work with consolidate the middle of the road date
with key an incentive from the guide and measure of
information to be joined and sent to the reducer.

T. Sindhupriya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,20-24

© 2015-19, IJARCS All Rights Reserved 21

3. FRAMEWORK

Maps input key/value pairs to a set of intermediate
key/value pairs. Maps are individual tasks that transform
input records into intermediate records [9]. Mapper
fundamentally work in parallel so we call that output as
intermediate records, now hadoop manages the information
in form of key value so these records are key and value.
After mapper finishes there is one more phase in map reduce
that is called shuffling and sorting. So shuffling is basically
movement of intermediate records from mappers to reducers

[10]. So, the process of exchanging the intermediate output
from the map tasks to where they are required by the
reducers is known as shuffling. All of the values with the
same key are presented to a single reducer together, so
reducer works on one set of records at time and it gets key
and list of values. The local input data have been pre-loaded
then mapper generates the intermediate data which we have
seen in our index cards then values are exchanged by shuffle
process reducing process then generates the output. The
output is stored locally. Map reduce is the execution engine
of Hadoop. Its duty is to get the jobs executed [11].

Figure 1: Map reduce Flow

There are two main components of Mapreduce: job tracker
and the task tracker. The job tracker is hosted inside the
master and it receives the job execution request from the
client. Its main duties are to big computations in small parts.
Allocate the partial computations that are tasks to slave
nodes monitoring the progress and report of task execution
from the slave. The main storage component of the Hadoop
Framework is HDFS [12]. HDFS is framed for processing
and maintaining the huge datasets efficiently among cluster
nodes. The computation infrastructure of hadoop has to
cooperate with map reduce; the data has to be uploaded to
HDFS from local file systems. However, when the data size
is large, this upload procedure takes more time, causing
delay for key tasks [13].

4. PROPOSED WORK

Mapreduce is programming model for building parallel data
processing applications in the cloud demonstrate. The
existing MapReduce traffic-aware partition suffers from
partition skew issue; where the output of map tasks is
unevenly disseminated among reduce tasks [14]. Existing
solutions follow a similar principle that repartitions
workload among reduce tasks. These approaches often incur
high performance overhead due to the partition size
prediction and repartitioning. The proposed technique
dynamic data aware parallel with k-Means algorithm
(DDAP-kM), a framework that gives a dynamic partitioning
skew mitigation and clustering map reduce jobs. Rather than
repartitioning workload among reduce tasks, the proposed

partitioning skew problem by controlling the amount of
resources allocated to each reduce task. This approach
completely eliminates the repartitioning overhead, yet is
simple to implement. There are six fundamental segments:
Partition Size Monitor, running in the Node Manager;
Partition Size Predictor, Task Duration Estimator, and
Resource Allocator, running in the Application Master,
Fine-grained Container Scheduler, running in the Resource
Manager. Each Partition Size Monitor records the
measurements of middle of the road, at last grouping input
dataset in light of parallel k implies bunch calculation [15].
A guide undertaking creates the information at run-time and
sends them to the Application Master through pulse
messages. The Partition Size Predictor gathers the parcel
measure reports from Node Managers and predicts the
segment sizes of each diminish errand for this activity. The
Task Duration Estimator develops measurable estimation
model of decrease errand execution as an element of its
segment size and asset designation. That is, the length of a
lessen undertaking can be evaluated if the parcel size and
asset designation of this assignment are given. The Resource
Allocator decides the measure of assets to be designated to
each diminish errand in light of the execution estimation. In
conclusion, the Fine-grained Container Scheduler is in
charge of booking assets among all the Application Masters
in the bunch, in view of planning strategies, for example,
reasonable booking and Dominant Resource Fairness
(DRF). Note that the schedulers in unique Hadoop accept
that all diminish assignments have homogeneous asset
prerequisites as far as CPU and memory [16]. Be that as it

T. Sindhupriya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,20-24

© 2015-19, IJARCS All Rights Reserved 22

may, this isn't suitable for Map Reduce occupations with
apportioning skew. We have altered the first schedulers to
help fine-grained holder booking that enables each
undertaking to ask for assets of adjustable size.

5. ALGORITHM

A. Dynamic Data Aware Parallel with K-Means

Algorithm (DDAP-kM)

i. The first step partition size prediction models
which will forecast the partition sizes of reduce
tasks at run-time. Specifically, it will accurately
predict the scale of every partition once solely
100 percent of map tasks have completed.

ii. The second step establish a performance task
model which correlate the finishing time of
individual reduce tasks with their partition sizes
and resource allocation.

iii. The third step scheduling algorithm that
dynamically adjusts resource allocation to each
reduce task using our task performance model
and the estimation of the partition size. This can
reduce the operation time variation among
reduce tasks that have dissimilar sizes of
partitions to practice, thereby accelerate the job
finishing point.

iv. Final step cluster the data based on parallel k-
means clustering algorithm.

B. Parallel k-Means Cluster
The algorithm randomly select k object from the whole
objects that represents the initial cluster centers. In k-
means algorithm, the distance calculation has been
calculated [17]. In each iteration, it would need a
whole of (nk) distance computation where n is the
number of objects and k is the number of clusters
being created.

Algorithm: 1
 Map (key, value)
Input:
Center variable, offset key, sample value
Output:
<Key, value>pair where key- the index of the closest center
point and value-a string include of model information
Step 1: create the value of model illustration;
Step 2: minDis = Double.MAX VALUE;
Step 3: index = -1;
Step 4: For i=0 to centers. Length do
Dis= ComputeDist (instance, centers[i]);
If dis < minDis {minDis = dis; index = i;}
Step 5: End For

Step 6: Take index as key;
Step7: create value as a string comprise of different
dimensions;
Step 8: output < key, value>pair;
Step 9: End
Algorithm: 2
Reduce (key, V)
Input:
Key is the index of the cluster; Vis the list of the partial
sums from different host
Output:
<Key, value>pair: where key -index of the cluster, value -
string representing the new center
Step 1: Initialize one array record the sum of value of each
dimensions of the samples contained in the same cluster,
Step 2: Initialize the offset NUM as 0 to the sum of sample
number in the similar cluster;
Step 3: while (V.hasNext ())
{Create the model instance from V.next ();
Add the values of different dimensions of instance to the
array NUM += num;
Step 4 :}
Step 5: Divide the entries of the array by NUM to get the
new center’s coordinates;
Step 6: Take key as key’;
Step 7: Construct value’ as a string comprise of the center’s
coordinates;
Step 8: Output< key, value>pair;
Step 9: End

6. EXPERIMENTAL RESULTS

The dynamic data aware parallel with K-Means algorithm
(DDAP-kM) on Hadoop 1.2.1 is an additional feature.
Parallel k-Means (PkM): This application classifies movies
based on their ratings using the Netflix movie rating data.
The starting values of the cluster centroids provided by
PUMA and run on iteration.
Validate the accuracy of the partition size prediction model.
Execute the Map Reduce jobs on dissimilar datasets, and
work out the mean total percentage error (MAPE) of all
partitions in every state. The MAPE is defined as follows

Where N is the amount of reduce tasks in a job, and

 are the predicted and calculated value of partition
size of reduce task i, respectively [18].

Table 1: Comparisonon Number of job ID and Time taken in seconds

Algorithm Sequential ID

200 400 600 800 1000
Traffic-Aware Partition
(in seconds)

141 185 244 289 312

DDAP-kM (in seconds) 89 147 181 265 297

T. Sindhupriya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,20-24

© 2015-19, IJARCS All Rights Reserved 23

Figure 2: Comparison on Number of job ID and Time taken in seconds

Table 2: Comparison on job completion time between Hadoop platforms

Algorithm Sequential ID

YARN LATE Skew Tune Traffic-Aware Partition DDAP-kM

K Means 685 967 843 532 437

Word count 865 1036 745 671 430

Figure 3: Comparison on job completion time between Hadoop platforms

Table 3: Comparison on Traffic rate and Number of Map tasks

Algorithm No of Map Task

2 4 8 10 12
Traffic-Aware
Partition

1.45 2.36 3.97 4.69 6.43

DDAP-kM 0.56 1.45 2.66 3.79 4.32

Figure 4:Comparison on Traffic rate and Number of Map tasks

Table 4:Comparison on Traffic rate and Number of Reduce tasks

Algorithm No of Map Task
2 4 8 10 12

Traffic-
Aware

2.67 2.12 1.89 1.46 1.34

T. Sindhupriya et al, International Journal of Advanced Research in Computer Science, 8(9), Nov–Dec, 2017,20-24

© 2015-19, IJARCS All Rights Reserved 24

Partition
DDAP-kM 2.33 1.78 1.56 1.12 0.97

Figure 5: Comparison on Traffic rate and Number of Map tasks

7. CONCLUSION AND FUTURE WORK

Mapreduce is a programming model for processing parallel
information in the cloud display. The current Mapreduce
movement aware of dividing skew issue; where the yield of
guide undertakings is unevenly circulated among
diminishing tasks. Existing arrangements take after a
comparable rule that repartitions workload among decrease
tasks. These methodologies regularly bring about best
overhead because of the measure expectation and
repartitioning. The proposed technique dynamic information
mindful parallel with k-Means calculation (DDAP-kM), a
structure that gives dynamic dividing skew relief and
grouping map decrease occupations. Rather than
repartitioning workload among distributed tasks, the
proposed dividing skew issue by controlling the measure of
assets dispense to each decrease assignment. This approach
totally dispenses with the repartitioning overhead, yet is
easy to actualize. The future work limits client endeavors in
skew reduction through better programming interfaces and
execution models utilizing static and dynamic examination
or improvements in multi-inhabitant conditions.

8. REFERENCES

[1] Katal, Avita, Mohammad Wazid, and R. H. Goudar. "Big data:

issues, challenges, tools and good practices." Contemporary
Computing (IC3), 2013 Sixth International Conference on.
IEEE, 2013.

[2] Dittrich, Jens, and Jorge-Arnulfo Quiané-Ruiz. "Efficient big
data processing in Hadoop MapReduce." Proceedings of the
VLDB Endowment 5.12 (2012): 2014-2015.

[3] Patel, Aditya B., Manashvi Birla, and Ushma Nair. "Addressing
big data problem using Hadoop and Map Reduce." Engineering
(NUiCONE), 2012 Nirma University International Conference
on. IEEE, 2012.

[4] Ke, Huan, et al. "On traffic-aware partition and aggregation in
mapreduce for big data applications." IEEE Transactions on
Parallel and Distributed Systems 27.3 (2016): 818-828.

[5] Lee, Youngseok, Wonchul Kang, and Hyeongu Son. "An
internet traffic analysis method with mapreduce." Network

Operations and Management Symposium Workshops (NOMS
Wksps), 2010 IEEE/IFIP. IEEE, 2010.

[6] Fan, Liya, et al. "Improving the load balance of mapreduce
operations based on the key distribution of pairs." arXiv preprint
arXiv:1401.0355 (2014).

[7] Hsueh, Sue-Chen, Ming-Yen Lin, and Yi-Chun Chiu. "A load-
balanced mapreduce algorithm for blocking-based entity-
resolution with multiple keys." Proceedings of the Twelfth
Australasian Symposium on Parallel and Distributed
Computing-Volume 152. Australian Computer Society, Inc.,
2014.

[8] Condie, Tyson, et al. "MapReduce online." Nsdi. Vol. 10. No. 4.
2010.

[9] Khalil, Salma, et al. "Mapreduce performance in heterogeneous
environments: a review." International Journal of Scientific &
Engineering Research 4.4 (2013): 410-416.

[10] Steele, Brian, John Chandler, and Swarna Reddy. "Hadoop and
MapReduce." Algorithms for Data Science. Springer
International Publishing, 2016. 105-129.

[11] Kiran, M., et al. "Verification and Validation of MapReduce
Program Model for Parallel Support Vector Machine Algorithm
on Hadoop Cluster." International Journal of Computer Science
Issues 10.1 (2013): 317-325.

[12] L. Fan, B. Gao, X. Sun, F. Zhang, and Z. Liu, “Improving the
load balance of mapreduce operations based on the key
distribution of pairs,” arXiv preprint arXiv:1401.0355, 2014.

[13] Le, Yanfang. Datacenter-Network-Aware Online Load
Balancing in MapReduce. Diss. Applied Sciences: 2015.

[14] Wang, Weina, et al. "Maptask scheduling in mapreduce with
data locality: Throughput and heavy-traffic
optimality." IEEE/ACM Transactions on Networking 24.1
(2016): 190-203.

[15] Yang, Yang, Xiang Long, and Bo Jiang. "K-means method for
grouping in hybrid mapreduce cluster." Journal of
Computers 8.10 (2013): 2648-2655.

[16] Yuanquan, Fan, et al. "Improving MapReduce performance by
balancing skewed loads." China Communications 11.8 (2014):
85-108.

[17] Gu, Rong, et al. "SHadoop: Improving MapReduce
performance by optimizing job execution mechanism in Hadoop
clusters." Journal of parallel and distributed computing 74.3
(2014): 2166-2179.

[18] Gao, Yufei, et al. "Handling Data Skew in MapReduce Cluster
by Using Partition Tuning." Journal of Healthcare
Engineering 2017 (2017).

	1. INTRODUCTION
	Dynamic Data Aware Parallel with K-Means Algorithm (DDAP-kM)

