
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*���������

© 2010, IJARCS All Rights Reserved 21

ISSN No. 0976-5697

Shuffle-RAT: An FPGA-based Iterative Block Cipher

Rajdeep Chakraborty*
Department of Computer Science and Engineering,

Netaji Subhas Engineering College,

Kolkata, West Bengal, India.

rajdeep_chak@yahoo.co.in

Sananda Mitra
Department of Computer Science and Engineering,

Netaji Subhas Engineering College,

Kolkata, West Bengal, India.

sananda.mitra8@gmail.com

J. K. Mandal
Department of Computer Science and Engineering,

University of Kalyani,

Kalyani, West Bengal, India.

jkm.cse@gmail.com

Abstract: Proposed FPGA based technique considers a message as a binary string on which Shuffle-RAT is applied. A block of n-bits is taken as

an input stream, where n ranges from 8 to 256 – bit, then Shuffle-RAT is applied in each block to generate intermediate stream, any one

intermediate stream is considered as a cipher text. The same operation is performed repeatedly on various block sizes. It is a kind of block cipher

and symmetric in nature hence decoding is done in similar manner. This paper also presents an efficient hardware realization of the proposed

technique using state-of-the-art Field Programmable Gate Array (FPGA). The technique is also coded in C programming language and Very

High Speed Integrated Circuit Hardware Description Language (VHDL). Various results and comparisons have been performed against

industrially accepted RSA and TDES. A satisfactory results and comparisons are found.

Keywords: cryptography; iterative block cipher; modulo-addition; RAT; FPGA.

I. INTRODUCTION

The explosion of communications systems brought with
it a demand for methods to protect sensitive information and
to provide security services. Cryptography provides us with
means for securing and authenticating digital communication
over insecure network [1,2,3,4,5,8]. In the modern day
scenario, the cryptographic methods can be broadly classified
in two branches; namely Symmetric Key and Public Key
cryptography [3]. While the symmetric key ciphers consider
the case of a shared key between the sender and the receiver,
the public key ciphers consider one key for encryption and
another different key for decryption. For data
communication, symmetric key ciphers are most popular due
to their low computational complexity. The proposed cipher
is of symmetric key systems – Block Ciphers [5]. A block
cipher is an encryption scheme that breaks up the plaintext
message into blocks of a fixed length and encrypts one block
at a time. Iterative block cipher [8] is a technique of Block
Ciphers that encrypts a plaintext block by a process that has
several rounds, and some computational transformation,
called the round function, is applied to the data in each
round, using a sub-key.

In recent times a number of iterated block cipher models
have been proposed in the literature. One of them is a design
using Rotational Addition Technique (RAT)[1]. This is an
efficient iterative block cipher with proven security features,
which is suitable for implementation in microprocessors. In
this paper, a modified version of RAT is proposed as
Shuffle-RAT, which provides much better efficiency and
diffusion compared to the existing cipher. This technique has
been implemented in FPGA platform using VHDL through
Xilinx [2]. Section II of this paper discusses the new scheme
Shuffle-RAT, including the description of the algorithm and
related key generation. Section III describes the
implementation of the new cipher on FPGA [6]. Section IV

contains the experimental results and comparisons.
Conclusion is in Section V with acknowledgments in Section
VI, and details of references are given in Section VII.

II. SHUFFLE-RAT: THE PROPOSED CIPHER

The plaintext file for RAT is considered as a stream of
512 bit blocks. The basic round function is rotational
addition, applied on the 512-bit plaintext over 8 rounds. The
plaintext is subdivided into smaller blocks in each round of
RAT, where the block sizes vary with the powers of 2 in the
rounds, i.e., 2n-bit blocks are considered for round ‘n’, where
‘n = 1, 2, 3 … 8’. In the ‘n-th’ round of RAT, the rotational
addition adds each block to the adjacent block modulo ‘2n’,
and stores the result in the second block, iteratively over the
length of the plaintext. In mathematical terms, the round
function of RAT is as follows.

 Bi+1 = (Bi + Bi+1) mod 2n
 (1)

In equation (1), the index ‘i’ cover all the blocks in each
round. Each round of RAT is iterated for some number of
times defined by ‘keys’, where the round-keys are of size 16
bits each. Thus, the total key-size of RAT is 8 x 16 = 128
bits. Decryption for RAT is just the opposite of encryption,
where one has to use modular subtraction instead of addition
and the round-keys are considered in the reverse order.

A close study of RAT reveals a few areas for improving
the design even further. The degree of randomness may be
increased for better homogeneity and security than the
previous scheme. In terms of improving the algorithm, it was
observe that RAT has a strong property of ‘confusion’, like
all good block ciphers, but lacks good ‘diffusion’. Thus, we
propose the diffusion of RAT with the technique of butterfly
shuffle to produce a new cipher – Shuffle-RAT. Sub-section
A gives the algorithm of Shuffle-Rat, Sub-section B

Rajdeep Chakraborty et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,21-24

© 2010, IJARCS All Rights Reserved 22

illustrates an example and Sub-Section C deals with the key
generation issues.

A. Algorithm of Shuffle-RAT

The algorithm of the scheme Shuffle-RAT is based on
RAT, and can be summarized as follows:

• Step 1: The 512 bit message is divided into a number
of blocks; each containing N = 2n bits, where N is
any one of 2, 4, 8, 16, 32, 64, 128, 256.

• Step 2: Two adjacent blocks are added and result is
stored in the 2nd block where the modulus of addition
is 2n as in the case of RAT.

• Step 3: Each round key of 16 bits, produced similar
to that in RAT, is divided into two parts each of 8
bits. Suppose that they are named as key1 and key2.

• Step 4: Original RAT is performed on the blocks of
size N for (key1) times of iterations.

• Step 5: The blocks are shuffled within the message to
create proper diffusion. This is done by a simple
butterfly shuffle, shuffling pairs of adjacent blocks,
and the shuffling is done just once.

• Step 6: Finally, key2 number of iterations of original
RAT is performed on these shuffled blocks, each of
size N, to complete the encryption.

Thus, Shuffle-RAT tries to incorporate diffusion in the

structure of RAT using the butterfly shuffle, sandwiched
between two regular rounds of RAT, which already provides
sufficient amount of confusion as in the original design.

B. Example

This Sub-section illustrates the mechanism of Shuffle-
RAT using a 16-bit plaintext, and by simplifying the iterative
structure as follows: a single iteration of RAT followed by
butterfly shuffle followed by another single iteration of RAT
for each round. In Table I, each round has the three stages
listed one by one; a complete example has been illustrated.

During decryption one can simply invert the above steps,
and use modular subtraction to perform the decryption for
the cipher text to produced the plain text back.

C. Key Generation

In the scheme of RAT, eight rounds are considered, each

for 2, 4, 8, 16, 32, 64, 128 and 256-bit block size. Each round

is repeated for a finite number of times and the number of

iterations will form a part of the encryption-key. Although

the key may be formed in many ways, for the sake of brevity

it is proposed to represent the number of iterations in each

round by a 16-bit binary string. The binary strings are then

concatenated to form a 128-bit encryption key. An example

of key generation for Shuffle-RAT is illustrated in Table II,

where the 16-bit round keys will be used in halves for the

encryption and decryption of Shuffle-RAT. ‘SRATn’ denotes

the stages of Shuffle RAT, where ‘n’ is the block size, for

example SRAT2 means Shuffle-RAT stage with 2-bit block

size.

Table I. The Shuffle-RAT Encryption

Plaintext 1011110111000111

Round 1 (Block size = 2 bits)
10 01 00 01 00 00 01 00
01 10 01 00 00 00 00 01
01 11 00 00 00 00 00 01

Next Input 0111 0000 0000 0001

Round 2 (Block size = 4 bits)
0111 0111 0111 1000
0111 0111 1000 0111
0111 1110 0110 1101

Next Input 01111110 01101101

Round 3 (Block size = 8 bits)
01111110 11101011
11101011 01111110
11101011 01101001

Cipher text 1110101101101001

Table II. The Shuffle-RAT Key Generation

Round
Block

Size

Number of Iterations

Decimal Binary

1 2 52034 1100101101000010

2 4 11025 0010101100010001

3 8 32541 0111111100011101

4 16 31100 0111100101111100

5 32 1020 0000001111111100

6 64 42167 1010010010110111

7 128 995 0000001111100011

8 256 10056 0010011101001000

The binary strings are concatenated together to form a

128-bit binary string for the final Shuffle-RAT key:

1100101101000010 0010101100010001
0111111100011101 0111100101111100
0000001111111100 1010010010110111
0000001111100011 0010011101001000

This 128-bit binary string will be the encryption-key for

this particular session. During decryption, the same key is
taken but in reverse order to iterate each round of modulo-
subtraction for the specified number of times define by the
round keys.

III. IMPLEMENTATION OF SHUFFLE-RAT

In this section, the hardware architecture and VHDL
description for the FPGA implementation [4] of Shuffle-
RAT is described. Before laying out the architectural plan for
our proposed cipher, let us take note of all components that
we will be required to use in this context:

• Storage: The plaintext is stored in a 512 bit, which is
a 64-byte register array denoted by ‘regbox’. The
key is stored in a 128 bit, which is a 16-byte register
array denoted by ‘keymod’. The masks for two
rounds are stored in a 10-byte register array denoted
by ‘mskbox’.

• Logic blocks: This consists of the main controller
module denoted by ‘srat_main’, the individual
circuits for 8 rounds of Shuffle-RAT (SRAT2 to
SRAT256), and the access logic and multiplexing
circuit to read and write from the storage.

Figure 1 shows the design of Shuffle-RAT for FPGA
simulation. The plaintext, keys are taken from storage
registers named ‘regbox’ and ‘keymod’. The complete
Shuffle-RAT operations are done in SRAT2 to SRAT256, as
described in the algorithm. Clock and reset inputs are fed to
the main controller module, which instructs the SRAT
modules to operate in a particular sequence, and indicates
when all operations are completed successfully.

The registers are byte array (8 bit) for the storage
‘regbox’, whereas SRAT2 and SRAT4 require the access of
2-bit and 4-bit blocks respectively. This is why the masks are
stored in ‘mskbox’ to access the required 2-bit or 4-bit blocks
from the bytes. Another main point in terms of an efficient

Rajdeep Chakraborty et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,21-24

© 2010, IJARCS All Rights Reserved 23

design is that the blocks SRAT2 to SRAT256 operate
sequentially, and do not overlap in time. Thus, the access
ports to the storage modules, that are ‘regbox’, ‘keymod’ and
‘mskbox’, can be shared among the SRAT operations. So,
the port sharing logic between rounds of Shuffle-RAT is
incorporated.

Figure 1. Top-level Hardware Architecture for Shuffle-RAT.

The main storage for the Shuffle-RAT hardware is the
‘regbox’ array and the ‘keymod’ array. The ‘regbox’
comprises of 8 bit registers made of edge-triggered master-
slave flip-flops, with a total of 64 such registers to hold the
512-bit plaintext. To accommodate the read and write
accesses to the ‘regbox’, we use write-access decoders and
read-access decoders, which in turn control 64-to-1
multiplexer units associated to each location of the array. The
‘keymod’ that holds the 128-bit Shuffle-RAT key is also
designed in a similar fashion, but with the exception that no
intermediate write accesses are required for the registers.

IV. RESULTS AND COMPARISON

This section gives the various results and their
comparisons with widely and industrially accepted RSA and
TDES. The Sub-section A deals with the software
implementation issues and the Sub-Section B deals with the
hardware implementation issues.

A. Software Implementation

First implementation of Shuffle-RAT was using C
programming language, compiled and executed in GCC on
Ubuntu Linux 10.04 platform, for comparing with existing
designs. Then analyzed the proposed design of Shuffle-RAT
according to the testing parameters of time-efficiency, chi-
square, frequency distribution and avalanche effect. The
comparative studies of Shuffle-RAT against RAT, RSA and
T-DES are performed and also provide some theoretical
justification for the improvements of Shuffle-RAT over the
original RAT scheme.

Table III shows the comparison of Shuffle-RAT with
three existing ciphers in terms of avalanche test. Note that the
chi-square value of Shuffle-RAT in all the above cases is
always better than that of RAT, RSA and T-DES. Table IV
gives the Chi-Square value. This shows that randomness and
non-homogeneity of Shuffle-RAT is better than RAT. Figure
2 provides a graphical view.

Figure 2. Comparison of Chi-Square Values.

The result of chi-square for non-homogeneity of the
cipher text is supported by the flatness of the frequency
distribution in case of Shuffle-RAT, shown in Figure 3.

Shuffle-RAT is much better compared to RAT in terms
of diffusion. This is verified in the avalanche test. The
comparative results for Shuffle-RAT and RAT are shown in
table III, which clearly shows the improvement.

Block ciphers are symmetric key systems that are most
often used for their better efficiency for low computational
complexity over public key ciphers. Thus, one main
parameter for comparison is time-efficiency of encryption
and decryption. The two graphs in Figure 4 show the
comparison of efficiency of Shuffle-RAT with that of RAT,
T-DES and RSA, for clarity, the graphs are plotted with a
logarithmic y-axis scale.

Figure 3. Frequency Distribution for Plaintext (512 KB), and

corresponding Ciphertexts of Shuffle-RAT, RAT, T-DES and RSA.

Table III. Comparison of Avalanche Test

Bit changed in Shuffle-RAT RAT
First Byte 49.02 % 50.00 %
Middle Byte 46.68 % 26.95 %
Last Byte 46.88 % 0.58 %
Average 47.53 % 25.84 %

Figure 4. Efficiency Comparison of Shuffle-RAT, RAT, T-DES, RSA.

Rajdeep Chakraborty et al, International Journal of Advanced Research in Computer Science, 2 (3), May-June, 2011,21-24

© 2010, IJARCS All Rights Reserved 24

Table IV. Comparison of Chi-Square Values

Sr.

No.
Source File Encrypted File File Size (bytes)

Chi-Square value

RAT Shuffle RAT RSA T-DES

1. OEWABLog.txt Cipher1 833 17.762 20.994 0.998 16.715

2. emote.dat Cipher2 1,818 17.886 20.050 0.999 20.007

3. lang.dat Cipher4 4,557 17.021 21.087 0.999 20.691

4. NOKIA6969.jpg Cipher8 7,719 17.349 21.268 0.999 20.657

5. EasthamBio.pdf Cipher16 16,337 17.231 21.268 0.999 20.335

6. BASM.doc Cipher32 32,376 17.078 21.169 0.999 20.027

7. peanuts.jpg Cipher64 65,495 16.978 21.341 0.999 19.920

8. lec13.pdf Cipher128 131,461 16.909 21.304 0.999 19.881

9. Espanol.txt Cipher256 262,144 16.853 21.121 0.999 19.923

10 CP950.txt Cipher512 522,816 16.910 21.156 0.999 19.925

Main aspects to notice while computing the runtime of
Shuffle-RAT is that the key-size for the RAT iterations is 8
bits each, and there is only a single round of shuffle each
round. Thus, if we consider the shuffle comparable to 1
RAT, then the runtime for Shuffle-RAT becomes equivalent
to the order of

8 * (28 + 1 + 28) = 212 RAT rounds

In the discussion of RAT it was shown that the runtime
for RAT (with 16 bit keys at each level) is of the order of

8 * 216 = 219 RAT rounds

Hence, we get a speed-up of approximately 219/212 = 27,
i.e., of the order of 100. This is also evident from the
experiments.

B. Hardware Simulation

We described the hardware architecture of Shuffle-RAT
using VHDL [7], and performed the simulation on FPGA
using the Xilinx ISE toolkit [9]. The RTL schematic for the
main controller module is shown in Figure 5, and Figure 6
shows the top-level module of the architecture.

The net-list data generated for the complete architecture
of Shuffle-RAT is given in Table V. This summarizes the
main list of hardware components required to synthesize the
design.

Figure 5. RTL Schematic of the Main Controller Module.

Figure 6. RTL Schematic of the Top Level Shuffle-RAT Block.

Table V. Net-List of Shuffle-RAT

Component Count

ROMs 2

Adder/Subtrators 8

Registers 641

Latches 80

Multiplexes 136

V. CONCLUSION

In this paper, an efficient iterated block cipher Shuffle-
RAT based on an existing design of rotational addition
technique (RAT) with a novel inclusion of butterfly-shuffle
in the process has been proposed. Detailed analysis of the
new cipher based on relevant cryptographic properties, and
comparison with existing well-known designs, including the
original RAT has also been done. Also efficient hardware
architecture for Shuffle-RAT implementation on FPGA has
been designed, and has tested for the feasibility of the design
using VHDL description, simulated using Xilinx ISE. The
natural step for future work would be to exploit the
advantages of Shuffle-RAT through its practical
implementation and synthesis on FPGA or ASIC platforms.

VI. ACKNOWLEDGMENT

The authors express a deep sense of gratitude to the
Department of Computer Science and Engineering, Netaji
Subhas Engineering College, Kolkata, India and Department
of Computer Science and Engineering, University of
Kalyani, Kalyani, India.

VII. REFERENCES

[1] R. Chakraborty and J. K. Mandal. “A Microprocessor-
based Block Cipher through Rotational Addition
Technique (RAT)”. In Proceedings of ICIT, 2006.

[2] J. Fry and M. Langhammer, “RSA and Public Key
Cryptography in FPGAs”. Technical Report. Altera
Corporation, USA.

[3] C. Chitu, D. Chien, C. Chien, I. Verbauwhede, and F.
Chang. “A Hardware Implementation in FPGA of the
Rijndael Algorithm”. Technical Report, University of
California, Los Angeles, 2002.

[4] T. Wollinger, J. Guajardo, and C. Paar. “Security on
FPGAs: State-of-the-art Implementations and Attacks”.
ACM Sp. Issue Security and Embedded Systems, 2003.

[5] W. Stallings. “Cryptography and Network Security”.
Prentice Hall, 2005.

[6] W. H. Wolf. “FPGA Based System Design”. Prentice
Hall, 2009.

[7] J. Bhasker. “A VHDL Primer”. Prentice Hall, 1994.

[8] Wikipedia: The Free Encyclopedia. Wikimedia
Foundation Inc. [http://en.wikipedia.org/]

[9] Xilinx ISE Toolkit and Tutorial. The Xilinx Foundation.

