
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4738
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 438

 ISSN No. 0976-5697

A NOVEL AUTOMATIC C TO NVIDIACUDA CODE OPTIMIZATION
FRAMEWORK

Chennupalli Srinivasulu

Research Scholar, JNTU, Kakinada
JNTU Kakinada, AP, India.

Dr. Niraj Upadhyay
Dean and Professor of CSE,
JBIT, Hyderabad, TS, India.

Dr A.Govardhan

Principal, JNTU Hyderabad,
TS, India

Abstract: With the continuous demand for high performance computing, the need for reducing time for executing the application is the current
challenge of research. Nevertheless, the execution time for the application not only depends on the hardware or architecture, rather also depends
on the algorithm design. Improvement of the hardware may lead to higher investments and the optimization of cost is also to be taken care.
Henceforth, the major optimization task is to focus on the algorithm design. A number of algorithm design techniques are available and
techniques have reached the maximum of optimization levels. Thus, not limiting to the improvement in the algorithm design, the use of parallel
execution of the programs is also to be considered. GPUs are commonly used processing units to speed up the application execution in the
domain of game development. The GPUs can be utilized to parallelize the application execution to reach the clock usage to the maximum. The
major challenge is to design or re-design the application code from traditional serial programming languages to the parallel codes, which can
take the advantages of GPU cores. Nonetheless, the code conversion is not easy and demands a higher understanding of parallel programming
and the GPUs are transparent to understand for a beginner. Thus the final demand for the application development industry is to build a code
conversion framework to automatically convert the source code into parallel programs. This work presents a novel C to NVIDIA Cuda code
converter and gives the legacy programs a chance to run on parallel architecture. This work, to be presented, can be considered as a base line for
further reach and be used for bench marking the applications. The results demonstrate a high reduction in execution time.

Keywords: Code Conversion, Parallel Execution, GPU, CPU, CUDA, NVIDIA, CUDA Stack

1. INTRODUCTION

The evaluations of the GPUs are primarily caused by the
enhancement of high graphics in the game development
industry and scientific applications demanding more
processing capabilities. The 3D rendering of the graphics
modules of the games need the highly parallel and
programmable pipelined processors. These can deliver
parallel execution in significantly low cost. The measures of
the performance of graphics processing units are completely
taken over the performance of the central processing units.
The notable works by Shane Ryoo et. al. [1] have
demonstrated the improvements of execution time for multi-
threaded applications on GPUs compared to the CPUs. The
surprising improvements of reducing execution time have
forced multiple research organizations and processor
architecting industries to build more sophisticated GPUs for
general purpose floating point conversions and calculations.
R. Kresch et al [2] have demonstrated the evaluation and
scaling up of the general purpose GPUs from 1970 till the
date. The preliminary focus for the development was to make
the GPUs ready for general purpose calculations in order to
cater the parallel processing benefits to the general purpose
applications like scientific application or customer centric
applications or the business applications or the financial
applications. The recent advancements as demonstrated by
D. L. N. Research [3] can delivery 500 Giga Flops, which is
nearly four times improved, compared to the CPU cores
available in the market.

Significant improvements demonstrated by the GPUs for the
application development industry made a substantial impact
among the researchers and the demands for programming in
parallel languages have increased. Nevertheless, the
programming in parallel languages that demands higher
efficiencies, which is difficult to obtain due to invisibility of
the GPU components, made the task challenging for
application developers. In the other hand programming
languages, which can take the benefits of parallel cores for
any GPU, like CUDA has evolved. Yet, many legacy
applications are built using C, a primary serial programming
language, also demands to be upgraded to take the
advantages of available GPU. Thus the conversion of the
code is a primary task for the developers. This includes
evaluation of kernels, an independent set of instruction
finding, loop controlling and unrolling and finally the
parallelization of the code using threads. Consequently, the
bottleneck remains the same as demand for parallelization
and building an expert development team.
Nonetheless, this leads to a demand for finding the rule sets
to convert the source code to CUDA codes automatically and
take the recompenses of general purpose GPUs.
This work presents a novel code conversion technique to
convert legacy C source codes to the CUDA code. The rest
of the work is organized such as in the Section – II literature
is reviewed in order to understand the recent advancements
of this domain of work, in Section – III CUDA architecture is
reviewed to the possible extend in order to establish the
framework theory for code conversion, in the Section – IV
the algorithm is presented with the light of the mathematical

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 439

models, in the Section – V the results are obtained and
compared and in the Section – VI this work presents the
conclusion.

2. LITERATURE SURVEY

The landmark for the parallel architecture was introduced by
NVIDIA in the year of 2006 called Computer Unified
Device Architecture or CUDA [3]. This invention was to
open the gate for high performance computing on GPU to
leverage the execution time for scientific or high graphical
applications. The architecture was widely accepted by
researchers and developers as the architecture was made
available to personal computing and as well as to the servers
running low to medium to high computational loads.
Another reason for this wide acceptance was the use of
multicore processors and shared memory architecture. The
notable proof of this concept was presented by Shane Ryoo
et. al [4] on performing highly complex scientific
applications such as Fast Fourier Transform optimization.
NVIDIA also developed a software development kit or SDK
consisting of hardware simulation, drivers, libraries and
device drivers for the benefit of the developers. CUDA
software stack is composed of several layers: a hardware
driver (CUDA Driver), an API and the runtime (CUDA
Runtime), two higher-level mathematical libraries (CUDA
Libraries) of general purposes [Fig 1].

Fig. 1 CUDA Software Stack

The improvement of GPU performance over the

traditional CPU architecture was evolved over the hardware
organization. NVIDIA strongly recommended that in order
to achieve the higher GPU utilization and optimal use of
memory hierarchy are two major reasons for performance
improvements of GPUs. The notable work by Christian
Tenllado et. al [5] have founded the guidelines for a parallel
code generation from a serial algorithm majorly focuses on
this two principles.

Researchers represent several experiments aimed at
analysing their relative importance. Results indicate that

code transformations that target efficient memory usage are
the major determinant of actual performance. Overall, they
ensure the best performance even if some resources remain
underutilized. Therefore, maximizing occupancy should be
examined at a later stage in the compilation process, once
data related issues have been properly addressed.

NVIDIA compiler NVCC can optimize code but the best
optimized code is one should write at assembly level. But it
looks very difficult in big algorithms and projects. So to find
out occupancy is an important issue.

With the availability of the NVIDIA GPU, research
focuses on the automatic code conversion techniques for
serial codes into parallel. However, the automatic
conversion is always debated due to lack of control during
the code conversion. Henceforth, in order to overcome this
designated problem, this work formulates all necessary
guidelines formulated by various researchers by their
notable works.

TABLE I: GUIDELINES FOR AUTOMATIC CODE CONVERSION

Researchers /
Contributors

Years Recommendations

B. R. Neha Patil [6] 2007 Focus on the task of
parallelization of the
algorithms rather than
spending time on their
implementation.

V. Rajaraman, C. Siva
Ram Murthy [7]

2000 Support
heterogeneous
computation where
applications use both
the CPU and GPU

V. Rajaraman, C. Siva
Ram Murthy [7]

2000 Serial portions of
applications are run
on the CPU, and
parallel portions are
run on to the GPU

Setoain, Christian
Tenllado, Manuel

Arenaz, and Manuel
Prieto [1]

2013 Enable heterogeneous
systems (CPU +
GPU) CPU and GPU
are separate devices
with separate DRAMs

Setoain, Christian
Tenllado, Manuel

Arenaz, and Manuel
Prieto [1]

2013 Generate a template
based on calculated
occupancy.

Setoain, Christian
Tenllado, Manuel

Arenaz, and Manuel
Prieto [1]

2013 Conversion of C code
in a way it ts in the
CUDA C template.

B. R. Neha Patil [6] 2007 Optimize the source
code and measure the
performance GPU &
CPU of the program

Henceforth, considering the notable recommendations from
the renounced research outcomes, this work analyses the
CUDA architecture and attempt to propose the code
conversion algorithm.

4. ARCHITECTURE OF CUDA

The CUDA architecture is designed and developed by the
NVIDIA and for the benefit of the application developers
and researchers NVIDIA also provides the sufficient
understanding of the programming model and the shared

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 440

memory architecture to utilize the benefits of available GPU.
In this section the work furnishes the understanding linking
to the serial to parallel code conversion techniques.
Understanding Programming Model for CUDA

The GPU is viewed as a compute device, that is a
coprocessor to the CPU, has its own device Memory, and
runs many threads in parallel [6] Data parallel portion of
application are executed on the device as kernels which run
in parallel on many threads. Difference between GPU and
CPU thread [8] are:

• GPU threads are extremely lightweight and require
very little creation overhead.

• GPU needs 1000s of threads for full efficiency
whereas multicore CPU needs only a few.

There is a limit to the number of threads per block, since

all threads of a block are expected to reside on the same
processor core and must share the limited memory resources
of that core. Blocks are organized into a one-dimensional or
two-dimensional grid of thread blocks as illustrated by
Figure 1.

Fig. 2 Programming Model for CUDA

A. Understanding Memory Model for CUDA

CUDA threads may access data from multiple memory

spaces during their execution as illustrated by Figure 3. Each
thread has private local memory. Each thread block has
shared memory visible to all threads of the block and with
the same lifetime as the block. All threads have access to the
same global memory.

Fig. 3 Memory Model for CUDA

Henceforth with the detailed understanding, this work is

now ready to propose the novel algorithm for the code
conversion.

5. NOVEL CODE CONVERSION ALGORITHM

With the collected recommendations from various research
attempts, this work proposes a novel algorithm to convert
serial C programs, which is designed to run on the CPU, into
a parallel CUDA C program, which can take the complete
advantages of the benefits provided by GPUs.
The proposed algorithm is described into 2 individual
components as Algorithm 1 and Algorithm 2. Here the
Algorithm 1 takes care of the conversion of functions and
independence check for the functions, finally converts the
functions into CUDA syntax.
In the other hand, the second algorithm converts the basic
syntaxes into CUDA C syntaxes and also converts the
independent modules into CUDA threads to run on GPUs.
The steps of the algorithm are described here:

Algorithm – 1
Step-1. Read the C Source File
Step-2. Find the initial variables and kernel variables

[Assumption: The variables are expected to be declared
in the entry section of the source code]

a. Find the global variable instances and library
files

b. Build the symbol table for all the notation
Step-3. Find the declared functions

a. If the function is main method
i. Maintain the syntax

b. Else, In case of non-main method
i. Convert the functions as global

function
ii. Include __global__ clause for each

Step-4. Find the functional dependencies
a. If the function has a dependency

i. Write the function as a device
definition function

ii. Repeat Step 3.b
b. Else, In case of independent functions

i. Continue
Step-5. Finalize the conversion as main.cu file

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 441

Algorithm – 2
Step-1. Read the main.cu file
Step-2. Analyse the code and evaluate the BlockGrid with

BlockDim values
a. Replace the variable declarations using

CUDAMalloc and CUDAMemcpy
Step-3. Analyse the code for pragma kernel regons

a. Convert each region into kernel calls
Step-4. Analyse the code using dependency checker

a. If independent routines
i. Convert each independent routines

into threads
b. Else, in case of dependent routine

i. Continue
Step-5. Compile the main.cu
Step-6. Execute main.cu

The results of this algorithm is also been discussed in this

work in the next section.

6. RESULTS AND DISCUSSION

The intension of this work is to demonstrate the
improvement of the performance for parallel application
over serial application. The automatic conversion of the
source code is always debated and hence this work provides
much larger and concrete proofs for the demonstration of the
improvements.
In this section, the results demonstrate the converted source
code and analyses the serial and parallel execution time.

A. Analysis of the Performance on Binary Search

The first analysis is demonstrated on the popular binary

search code. Firstly the source C program is converted into
CUDA C automatically using the Novel Code Converter
proposed in this work [Table – 2].

TABLE II: CUDA – C EQUIVALENT & CONVERTED CODE FOR BINARY

SEARCH
Recommendations

#include<stdio.h>
__global__ void kernel(int *gpu_bb,int *gpu_nn,int *gpu_aa,int
*gpu_cc)
{
 int gpu_i=threadIdx.x+blockIdx.x*blockDim.x;
 if(*gpu_bb==gpu_aa[gpu_i])
 {
 *gpu_cc=1;
 }
}
int main()
{
 int a[90000],b,mid,n,i;

 int c=0;
 //Kernel Variables
 int *g_p,*g_n,*g_b,*g_a,*g_c;
 //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS
 int block_size = 32;
 const int N = 90000; // Number of elements in arrays
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 size_t size = 90000 * sizeof(int);
// Memory Allocation
 cudaMalloc((void**)&g_p,sizeof(int)); // Allocate array on
devic
 cudaMalloc((void**)&g_b,sizeof(int)); // Allocate array on
devic
 cudaMalloc((void**)&g_c,sizeof(int)); // Allocate array on
devic
 cudaMalloc((void**)&g_a,size); // Allocate array on devic
 n=90000;
 for(i=0;i<n;i++)
 {
 a[i]=i;
 }
 b=100000;
// Copy Data to device from host
 cudaMemcpy(g_b,&b,sizeof(int),cudaMemcpyHostToDevice);
 cudaMemcpy(g_n,&n,sizeof(int),cudaMemcpyHostToDevice);
 cudaMemcpy(g_c,&c,sizeof(int),cudaMemcpyHostToDevice);
 cudaMemcpy(g_a,&a,size,cudaMemcpyHostToDevice);
// call kernel
 kernel<<<n_blocks, block_size>>>(g_b,g_n,g_a,g_c);
// Retrieve result from device and store it in host array
 cudaMemcpy(&bg_b,,sizeof(int),cudaMemcpyDeviceToHost);
 cudaMemcpy(&n,g_n,sizeof(int),cudaMemcpyDeviceToHost);
 cudaMemcpy(&c,g_c,sizeof(int),cudaMemcpyDeviceToHost);
 cudaMemcpy(&a,g_a,size,cudaMemcpyDeviceToHost);
 // Free GPU Variables
 cudaFree(g_b);
 cudaFree(g_n);
 cudaFree(g_c);
 cudaFree(g_a);
 if(c==0)
 {
 printf("The number is not found\n\n");
 }
 else
 {
 printf("The number is found\n\n");
 }
 system("pause");
 return 0;
}

Furthermore, the comparison for CPU time is also been

analysed [Table – 3].

TABLE III: CPU VS GPU EXECUTION TIME FOR BINARY SEARCH

Diagnosis Session
Duration

10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds

C on CPU 39 39 78 78 117 117 156 156 195 195
CUDA-C on GPU 29 29 58 58 87 87 116 116 145 145

Improvement
(%)

74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 442

The result is also been analysed visually for CPU [Fig – 4] & for GPU [Fig – 5].

 Fig. 4 CPU Analysis for Binary Search

Also this work analyses the Hot Path for Code Execution

analysis [Table – 4].

Fig. 5 GPU Analysis for Binary Search

TABLE IV: HOT CODE EXECUTION PATH UTILIZATION – BINARY SEARCH

Code Name Serial Execution –
Hot Path

Utilization
(%)

Parallel Execution
– Hot Path
Utilization

(%)
Binary Search 81.55 79.46

The result is also been visually analysed for CPU [Fig – 6]

and GPU [Fig – 7]

Fig. 6 Serial Hot Code Path for Binary Search

Fig. 7 Parallel Hot Code Path for Binary Search

B. Analysis of the Performance on KnapSack

Next, the analysis is demonstrated on the popular

KnapSack code. Firstly the source C program is converted
into CUDA C automatically using the Novel Code
Converter proposed in this work [Table –5].

TABLE V: CUDA – C EQUIVALENT & CONVERTED CODE FOR KNAPSACK
Recommendations

__global__ void kernel(int *gpu_c,int *gpu_v,int *gpu_a,int
*gpu_last_added) {
 int gpu_i = threadIdx.x+1;
 int gpu_j;

 gpu_j = 0;

 if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] <
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){

 int s=gpu_i;
 gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] +
gpu_v[gpu_j];
 gpu_last_added[s] = gpu_j;

 }
 gpu_j = 1;

 if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] <
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){

 int s=gpu_i;
 gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] +
gpu_v[gpu_j];
 gpu_last_added[s] = gpu_j;

 }
 gpu_j = 2;

 if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] <
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){

 int s=gpu_i;
 gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] +
gpu_v[gpu_j];

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 443

 gpu_last_added[s] = gpu_j;

 }

}
int main(int argc, char *argv[]) {
 int n=3;
 int W=10;
 int i,j;
 int aux;

 //Kernel Variables
 int c[10];int *g_c;
 int v[10];int *g_v;
 int a[MAXWEIGHT];int *g_a;
 int last_added[MAXWEIGHT];int *g_last_added;

 //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS
 int block_size = 10;
 const int N = 10; // Number of elements in arrays
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1)+1;

 c[0] = 8;
 c[1] = 6;
 c[2] = 4;
 v[0] = 16;
 v[1] = 10;
 v[2] = 7;
 for (i = 0; i <= W; ++i) {
 a[i] = 0;
 last_added[i] = -1;
 }
 a[0] = 0;

 // Memory Allocation
 g_c= (int *)malloc(10 *sizeof(int)); // Allocate array on host
 cudaMalloc((void **) &g_c,10 * sizeof(int)); // Allocate
array on devic

 g_v= (int *)malloc(10 *sizeof(int)); // Allocate array on host
 cudaMalloc((void **) &g_v,10 * sizeof(int)); // Allocate
array on devic

 g_a= (int *)malloc(MAXWEIGHT *sizeof(int)); // Allocate
array on host
 cudaMalloc((void **) &g_a,MAXWEIGHT * sizeof(int)); //
Allocate array o

 g_last_added= (int *)malloc(MAXWEIGHT *sizeof(int)); //
Allocate array o

 cudaMalloc((void **) &g_last_added,MAXWEIGHT *
sizeof(int)); // Allocat

 // Copy Data to device from host
 cudaMemcpy(g_c, c,10 * sizeof(int),
cudaMemcpyHostToDevice);
 cudaMemcpy(g_v, v,10 * sizeof(int),
cudaMemcpyHostToDevice);
 cudaMemcpy(g_a, a,MAXWEIGHT * sizeof(int),
cudaMemcpyHostToDevice);
 cudaMemcpy(g_last_added, last_added,MAXWEIGHT *
sizeof(int), cudaMemcpyHostToDevice);

 // call kernel
 kernel <<< 1 ,block_size >>>(g_c, g_v, g_a, g_last_added);

 // Retrieve result from device and store it in host array
 cudaMemcpy(c, g_c,10 * sizeof(int),

cudaMemcpyDeviceToHost);
 cudaMemcpy(v, g_v,10 * sizeof(int),
cudaMemcpyDeviceToHost);
 cudaMemcpy(a, g_a,MAXWEIGHT * sizeof(int),
cudaMemcpyDeviceToHost);
 cudaMemcpy(last_added, g_last_added,MAXWEIGHT *
sizeof(int), cudaMemcpyDeviceToHost);

 // Free GPU Variables
 cudaFree(g_c);
 cudaFree(g_v);
 cudaFree(g_a);
 cudaFree(g_last_added);

 for (i = 0; i <= W; ++i) {
 if (last_added[i] != -1){
 printf("Weight %d; Benefit: %d; To reach this weight I
added object %d (%d$ %dKg) to weight %d.\n",i,a[i],last_added[i]
+ 1,v[last_added[i]],c[last_
added[i]],i - c[last_added[i]]);
 }

 else {
 printf("Weight %d; Benefit: 0; Can't reach this exact
weight.\n",i);
 }

 }
 printf("---\n");
 aux = W;
 while ((aux > 0) && (last_added[aux] != -1)) {
 printf("Added object %d (%d$ %dKg). Space
left: %d\n",last_added[aux] +
1,v[last_added[aux]],c[last_added[aux]],aux - c[last_added[aux]]);
 aux -= c[last_added[aux]];
 }
 printf("Total value added: %d$\n",a[W]);
 system("pause");
 return 0;

}

Furthermore, the comparison for CPU time is also been

analysed [Table – 6].

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 444

TABLE VI: CPU VS GPU EXECUTION TIME FOR KNAPSACK

Diagnosis Session Duration 10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds
C on CPU 45 45 90 90 135 135 180 180 225 225

CUDA-C on GPU 31 31 62 62 93 93 124 124 155 155
Improvement

(%)
68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89

The result is also been analysed visually for CPU [Fig – 8]

& for GPU [Fig – 9].

 Fig. 8 CPU Analysis for KNAPSACK

Fig. 9 GPU Analysis for KNAPSACK

Also this work analyses the Hot Path for Code Execution

analysis [Table – 7].
TABLE VII: HOT CODE EXECUTION PATH UTILIZATION – KNAPSACK

Code Name Serial Execution –
Hot Path

Utilization
(%)

Parallel Execution
– Hot Path
Utilization

(%)
KnapSack 87.25 87.25

The result is also been visually analysed for CPU [Fig –

10] and GPU [Fig – 11]

Fig. 10 Serial Hot Code Path for KNAPSACK

Fig. 11 Parallel Hot Code Path for KNAPSACK

C. Analysis of the Performance on Vector Sum

Next, the analysis is demonstrated on the popular Vector

Sum code. Firstly the source C program is converted into
CUDA C automatically using the Novel Code Converter
proposed in this work [Table –8].

TABLE VIII: CUDA – C EQUIVALENT & CONVERTED CODE FOR VECTOR

SUM
Recommendations

__global__ void kernel(float *gpu_a,float *gpu_b,float *gpu_c) {

 int idx=threadIdx.x + blockDim.x*blockDim.x;

int gpu_i=idx;

 gpu_c[gpu_i] = gpu_a[gpu_i] + gpu_b[gpu_i];

}
int main(int argc, char *argv[]) {
 int n=3;
 int i;
 int j;

 //Kernel Variables
 float a[1024];float *g_a;
 float b[1024];float *g_b;
 float c[1024];float *g_c;

 //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS
 int block_size = 1;
// const int N = 10; // Number of elements in arrays
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 445

 for (i = 0; i <= N; ++i) {
 a[i] = i;
 b[i] = i;
 }

 // Memory Allocation
 g_a= (float *)malloc(1024 *sizeof(float)); // Allocate array on
host
 cudaMalloc((void **) &g_a,1024 * sizeof(float)); // Allocate
array on device
 g_b= (float *)malloc(1024 *sizeof(float)); // Allocate array on
host
 cudaMalloc((void **) &g_b,1024 * sizeof(float)); // Allocate
array on device
 g_c= (float *)malloc(1024 *sizeof(float)); // Allocate array on
host
 cudaMalloc((void **) &g_c,1024 * sizeof(float)); // Allocate
array on device

 // Copy Data to device from host
 cudaMemcpy(g_a, a,1024 * sizeof(float),
cudaMemcpyHostToDevice);
 cudaMemcpy(g_b, b,1024 * sizeof(float),
cudaMemcpyHostToDevice);
 cudaMemcpy(g_c, c,1024 * sizeof(float),
cudaMemcpyHostToDevice);

 // call kernel
 kernel <<< n_blocks, block_size >>>(g_a, g_b, g_c);

 // Retrieve result from device and store it in host array
 cudaMemcpy(a, g_a,1024 * sizeof(float),
cudaMemcpyDeviceToHost);
 cudaMemcpy(b, g_b,1024 * sizeof(float),
cudaMemcpyDeviceToHost);
 cudaMemcpy(c, g_c,1024 * sizeof(float),
cudaMemcpyDeviceToHost);

 // Free GPU Variables
 cudaFree(g_a);
 cudaFree(g_b);
 cudaFree(g_c);

 for (i = 0; i < N; i++) {
 printf("A=%6.2f B=%6.2f A+B = %6.2f\n",a[i],b[i],c[i]);
 }
 system("pause");
 return 0;

}

Furthermore, the comparison for CPU time is also been

analysed [Table – 9].

TABLE IX: CPU VS GPU EXECUTION TIME FOR VECTOR SUM

Diagnosis Session Duration 10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds
C on CPU 281 281 562 562 843 843 1124 1124 1405 1405

CUDA-C on GPU 274 274 548 548 822 822 1096 1096 1370 1370
Improvement

(%)
97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51

The result is also been analysed visually for CPU [Fig –

12] & for GPU [Fig – 13].

 Fig. 12 CPU Analysis for VECTOR SUM

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 446

Fig. 13 GPU Analysis for VECTOR SUM

Also this work analyses the Hot Path for Code Execution

analysis [Table – 10].

TABLE X: HOT CODE EXECUTION PATH UTILIZATION – VECTOR SUM

Code Name Serial Execution –

Hot Path
Utilization

(%)

Parallel Execution
– Hot Path
Utilization

(%)
Vector Sum 59.54 60.59

The result is also been visually analysed for CPU [Fig –

14] and GPU [Fig – 15]

Fig. 14 Serial Hot Code Path for VECTOR SUM

Fig. 15 Parallel Hot Code Path for VECTOR SUM

Also, this work presents the average execution time

improvement for parallel code over serial code [Table – 11].

TABLE XI: AVERAGE EXECUTION TIME IMPROVEMENT

Code Name Improvement
(%)

Binary Search
Problem

74.36

KnapSack Problem 68.89
VectorSum Problem 97.51

Average
Improvement

80.25

 Thus with the light of the obtained results, this work

presents the conclusions in the next section.

7. CONCLUSIONS

The demand for automatic conversion of the serial code to
parallel codes in order to reduce the execution time and
defeat the fact of higher efficiencies in the workforce is
always under a focus for the research. This work deploys a
novel algorithm to convert serial C codes into parallel
NVIDIA CUDA codes to take the maximum benefits from
the GPUs available. The automatic conversion framework,
proposed and demonstrated in this work, not only reduces the
time for the conversion, also reduces 80% of the execution
time for legacy serial programs from various algorithmic
approaches. The conversion framework demonstrated a
100% similar result upon execution and works for all
programs written following the fundamental guidelines of the
code developments. This work is to be seen as one of the
baseline for further research and a contribution towards
automatic code translation for legacy systems in order to
make the computational support for modern developments.

Chennupalli Srinivasulu et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,438-447

© 2015-19, IJARCS All Rights Reserved 447

REFERENCES

[1] Shane Ryoo, Sam S. Stone, "Optimization principles and
application performance evaluation of multithreaded GPU
using CUDA", Center for Reliable and high-performance
Computing University of Illinois at Urbana-Champaign
NVIDIA Corporation, 2009.

[2] R. Kresch and N. Merhav, "Fast DCT domain altering using
the DCT and the DST," HPL Technical Report HPL-95-140,
December 1995.

[3] D. L. N. Research, "NVIDIA gpu architecture &
implications,", NVIDIA Corporation 2007.

[4] Shane Ryoo, Christopher I. Rodrigue, Sara S. Baghsorkhi,
"Optimizing the Fast Fourier Transform on a Multi-core
Architecture," 2006-2008.

[5] Setoain, Christian Tenllado, Manuel Arenaz, and Manuel
Prieto, "Towards Automatic Code Generation for GPU
architectures", Computer Architecture Group, Department of
Electronics and Systems, University of A Coruna,Spain.

[6] B. R. Neha Patil, "SFast and parallel implementation of
image processing algorithm using cuda technology on gpu
hardware", ", tech. rep., Department of Electrical &
Computer and Systems Engineering, Rensselaer Polytechnic
Institute,Troy, NY 12180-3590.

[7] V. Rajaraman, C. Siva Ram Murthy, "Parallel Computers
Architecture and Programming", Prentice Hall,2000,ISBN-
81-203-1621-5.

	1. INTRODUCTION
	2. LITERATURE SURVEY
	4. ARCHITECTURE OF CUDA
	Understanding Memory Model for CUDA

	5. NOVEL CODE CONVERSION ALGORITHM
	6. RESULTS AND DISCUSSION
	7. CONCLUSIONS
	REFERENCES

