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Abstract: With the continuous demand for high performance computing, the need for reducing time for executing the application is the current 
challenge of research.  Nevertheless, the execution time for the application not only depends on the hardware or architecture, rather also depends 
on the algorithm design. Improvement of the hardware may lead to higher investments and the optimization of cost is also to be taken care. 
Henceforth, the major optimization task is to focus on the algorithm design. A number of algorithm design techniques are available and 
techniques have reached the maximum of optimization levels. Thus, not limiting to the improvement in the algorithm design, the use of parallel 
execution of the programs is also to be considered. GPUs are commonly used processing units to speed up the application execution in the 
domain of game development. The GPUs can be utilized to parallelize the application execution to reach the clock usage to the maximum. The 
major challenge is to design or re-design the application code from traditional serial programming languages to the parallel codes, which can 
take the advantages of GPU cores. Nonetheless, the code conversion is not easy and demands a higher understanding of parallel programming 
and the GPUs are transparent to understand for a beginner. Thus the final demand for the application development industry is to build a code 
conversion framework to automatically convert the source code into parallel programs. This work presents a novel C to NVIDIA Cuda code 
converter and gives the legacy programs a chance to run on parallel architecture. This work, to be presented, can be considered as a base line for 
further reach and be used for bench marking the applications.  The results demonstrate a high reduction in execution time. 
 
Keywords: Code Conversion, Parallel Execution, GPU, CPU, CUDA, NVIDIA, CUDA Stack  
 
1. INTRODUCTION  

 
The evaluations of the GPUs are primarily caused by the 
enhancement of high graphics in the game development 
industry and scientific applications demanding more 
processing capabilities. The 3D rendering of the graphics 
modules of the games need the highly parallel and 
programmable pipelined processors. These can deliver 
parallel execution in significantly low cost. The measures of 
the performance of graphics processing units are completely 
taken over the performance of the central processing units. 
The notable works by Shane Ryoo et. al. [1] have 
demonstrated the improvements of execution time for multi-
threaded applications on GPUs compared to the CPUs. The 
surprising improvements of reducing execution time have 
forced multiple research organizations and processor 
architecting industries to build more sophisticated GPUs for 
general purpose floating point conversions and calculations. 
R. Kresch  et al [2] have demonstrated the evaluation and 
scaling up of the general purpose GPUs from 1970 till the 
date. The preliminary focus for the development was to make 
the GPUs ready for general purpose calculations in order to 
cater the parallel processing benefits to the general purpose 
applications like scientific application or customer centric 
applications or the business applications or the financial 
applications. The recent advancements as demonstrated by 
D. L. N. Research [3] can delivery 500 Giga Flops, which is 
nearly four times improved, compared to the CPU cores 
available in the market.  

Significant improvements demonstrated by the GPUs for the 
application development industry made a substantial impact 
among the researchers and the demands for programming in 
parallel languages have increased. Nevertheless, the 
programming in parallel languages that demands higher 
efficiencies, which is difficult to obtain due to invisibility of 
the GPU components, made the task challenging for 
application developers. In the other hand programming 
languages, which can take the benefits of parallel cores for 
any GPU, like CUDA has evolved. Yet, many legacy 
applications are built using C, a primary serial programming 
language, also demands to be upgraded to take the 
advantages of available GPU. Thus the conversion of the 
code is a primary task for the developers. This includes 
evaluation of kernels, an independent set of instruction 
finding, loop controlling and unrolling and finally the 
parallelization of the code using threads. Consequently, the 
bottleneck remains the same as demand for parallelization 
and building an expert development team.  
Nonetheless, this leads to a demand for finding the rule sets 
to convert the source code to CUDA codes automatically and 
take the recompenses of general purpose GPUs.  
This work presents a novel code conversion technique to 
convert legacy C source codes to the CUDA code.  The rest 
of the work is organized such as in the Section – II literature 
is reviewed in order to understand the recent advancements 
of this domain of work, in Section – III CUDA architecture is 
reviewed to the possible extend in order to establish the 
framework theory for code conversion, in the Section – IV 
the algorithm is presented with the light of the mathematical 
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models, in the Section – V the results are obtained and 
compared and in the Section – VI this work presents the 
conclusion. 
 
2. LITERATURE SURVEY  
 
The landmark for the parallel architecture was introduced by 
NVIDIA in the year of 2006 called Computer Unified 
Device Architecture or CUDA [3]. This invention was to 
open the gate for high performance computing on GPU to 
leverage the execution time for scientific or high graphical 
applications. The architecture was widely accepted by 
researchers and developers as the architecture was made 
available to personal computing and as well as to the servers 
running low to medium to high computational loads. 
Another reason for this wide acceptance was the use of 
multicore processors and shared memory architecture. The 
notable proof of this concept was presented by Shane Ryoo 
et. al [4] on performing highly complex scientific 
applications such as Fast Fourier Transform optimization.  
NVIDIA also developed a software development kit or SDK 
consisting of hardware simulation, drivers, libraries and 
device drivers for the benefit of the developers.  CUDA 
software stack is composed of several layers: a hardware 
driver (CUDA Driver), an API and the runtime (CUDA 
Runtime), two higher-level mathematical libraries (CUDA 
Libraries) of general purposes [Fig 1].  

 

 
 

Fig. 1  CUDA Software Stack 
 
The improvement of GPU performance over the 

traditional CPU architecture was evolved over the hardware 
organization. NVIDIA strongly recommended that in order 
to achieve the higher GPU utilization and optimal use of 
memory hierarchy are two major reasons for performance 
improvements of GPUs. The notable work by Christian 
Tenllado et. al [5] have founded the guidelines for a parallel 
code generation from a serial algorithm majorly focuses on 
this two principles.  

Researchers represent several experiments aimed at 
analysing their relative importance. Results indicate that 

code transformations that target efficient memory usage are 
the major determinant of actual performance. Overall, they 
ensure the best performance even if some resources remain 
underutilized. Therefore, maximizing occupancy should be 
examined at a later stage in the compilation process, once 
data related issues have been properly addressed.  

NVIDIA compiler NVCC can optimize code but the best 
optimized code is one should write at assembly level. But it 
looks very difficult in big algorithms and projects. So to find 
out occupancy is an important issue. 

With the availability of the NVIDIA GPU, research 
focuses on the automatic code conversion techniques for 
serial codes into parallel. However, the automatic 
conversion is always debated due to lack of control during 
the code conversion. Henceforth, in order to overcome this 
designated problem, this work formulates all necessary 
guidelines formulated by various researchers by their 
notable works. 

 
TABLE I: GUIDELINES FOR AUTOMATIC CODE CONVERSION  

 
Researchers / 
Contributors 

Years Recommendations  

B. R. Neha Patil [6]  2007 Focus on the task of 
parallelization of the 
algorithms rather than 
spending time on their 
implementation. 

V. Rajaraman, C. Siva 
Ram Murthy [7] 

2000 Support 
heterogeneous 
computation where 
applications use both 
the CPU and GPU 

V. Rajaraman, C. Siva 
Ram Murthy [7] 

2000 Serial portions of 
applications are run 
on the CPU, and 
parallel portions are 
run on to the GPU 

Setoain, Christian 
Tenllado, Manuel 

Arenaz, and Manuel 
Prieto [1]  

2013 Enable heterogeneous 
systems (CPU + 
GPU) CPU and GPU 
are separate devices 
with separate DRAMs 

Setoain, Christian 
Tenllado, Manuel 

Arenaz, and Manuel 
Prieto [1]  

2013 Generate a template 
based on calculated 
occupancy. 

Setoain, Christian 
Tenllado, Manuel 

Arenaz, and Manuel 
Prieto [1]  

2013 Conversion of C code 
in a way it ts in the 
CUDA C template. 

B. R. Neha Patil [6]  2007 Optimize the source 
code and measure the 
performance GPU & 
CPU of the program 

 
Henceforth, considering the notable recommendations from 
the renounced research outcomes, this work analyses the 
CUDA architecture and attempt to propose the code 
conversion algorithm. 

 
4. ARCHITECTURE OF CUDA  
 
The CUDA architecture is designed and developed by the 
NVIDIA and for the benefit of the application developers 
and researchers NVIDIA also provides the sufficient 
understanding of the programming model and the shared 
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memory architecture to utilize the benefits of available GPU. 
In this section the work furnishes the understanding linking 
to the serial to parallel code conversion techniques. 
Understanding Programming Model for CUDA  
 
The GPU is viewed as a compute device, that is a 
coprocessor to the CPU, has its own device Memory, and 
runs many threads in parallel [6] Data parallel portion of 
application are executed on the device as kernels which run 
in parallel on many threads. Difference between GPU and 
CPU thread [8] are:  
 

• GPU threads are extremely lightweight and require 
very little creation overhead. 

• GPU needs 1000s of threads for full efficiency 
whereas multicore CPU needs only a few. 

 
 
There is a limit to the number of threads per block, since 

all threads of a block are expected to reside on the same 
processor core and must share the limited memory resources 
of that core. Blocks are organized into a one-dimensional or 
two-dimensional grid of thread blocks as illustrated by 
Figure 1.  

 
 

 
Fig. 2 Programming Model for CUDA 

 
A. Understanding Memory Model for CUDA  

 
CUDA threads may access data from multiple memory 

spaces during their execution as illustrated by Figure 3. Each 
thread has private local memory. Each thread block has 
shared memory visible to all threads of the block and with 
the same lifetime as the block. All threads have access to the 
same global memory.  

 

 
Fig. 3 Memory Model for CUDA 

 
Henceforth with the detailed understanding, this work is 

now ready to propose the novel algorithm for the code 
conversion.  
 
5. NOVEL CODE CONVERSION ALGORITHM  

 
With the collected recommendations from various research 
attempts, this work proposes a novel algorithm to convert 
serial C programs, which is designed to run on the CPU, into 
a parallel CUDA C program, which can take the complete 
advantages of the benefits provided by GPUs.  
The proposed algorithm is described into 2 individual 
components as Algorithm 1 and Algorithm 2. Here the 
Algorithm 1 takes care of the conversion of functions and 
independence check for the functions, finally converts the 
functions into CUDA syntax.   
In the other hand, the second algorithm converts the basic 
syntaxes into CUDA C syntaxes and also converts the 
independent modules into CUDA threads to run on GPUs.  
The steps of the algorithm are described here:  

 
Algorithm – 1  
Step-1. Read the C Source File  
Step-2. Find the initial variables and kernel variables 

[Assumption: The variables are expected to be declared 
in the entry section of the source code]  

a. Find the global variable instances and library 
files  

b. Build the symbol table for all the notation 
Step-3. Find the declared functions  

a. If the function is main method 
i. Maintain the syntax  

b. Else, In case of non-main method  
i. Convert the functions as global 

function  
ii. Include __global__ clause for each  

Step-4. Find the functional dependencies  
a. If the function has a dependency 

i. Write the function as a device 
definition function  

ii. Repeat Step 3.b  
b. Else, In case of independent functions 

i. Continue  
Step-5. Finalize the conversion as main.cu file  
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Algorithm – 2 
Step-1. Read the main.cu file  
Step-2. Analyse the code and evaluate the BlockGrid with 

BlockDim values  
a. Replace the variable declarations using 

CUDAMalloc and CUDAMemcpy  
Step-3. Analyse the code for pragma kernel regons  

a. Convert each region into kernel calls  
Step-4. Analyse the code using dependency checker 

a. If  independent routines  
i. Convert each independent routines 

into threads  
b. Else, in case of dependent routine  

i. Continue  
Step-5. Compile the main.cu  
Step-6. Execute main.cu  

 
The results of this algorithm is also been discussed in this 

work in the next section.  
 

6. RESULTS AND DISCUSSION  
 
The intension of this work is to demonstrate the 
improvement of the performance for parallel application 
over serial application. The automatic conversion of the 
source code is always debated and hence this work provides 
much larger and concrete proofs for the demonstration of the 
improvements. 
In this section, the results demonstrate the converted source 
code and analyses the serial and parallel execution time.  

 
A. Analysis of the Performance on Binary Search   

 
The first analysis is demonstrated on the popular binary 

search code. Firstly the source C program is converted into 
CUDA C automatically using the Novel Code Converter 
proposed in this work [Table – 2].   

  
TABLE II: CUDA – C EQUIVALENT & CONVERTED CODE FOR BINARY 

SEARCH   
Recommendations  

#include<stdio.h> 
__global__ void kernel(int *gpu_bb,int *gpu_nn,int *gpu_aa,int 
*gpu_cc) 
{ 
      int gpu_i=threadIdx.x+blockIdx.x*blockDim.x; 
    if(*gpu_bb==gpu_aa[gpu_i]) 
        { 
            *gpu_cc=1; 
        } 
} 
int main() 
{ 
    int a[90000],b,mid,n,i; 

    int c=0; 
  //Kernel Variables 
    int *g_p,*g_n,*g_b,*g_a,*g_c; 
   //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS 
    int block_size = 32; 
    const int N = 90000;  // Number of elements in arrays 
    int n_blocks = N/block_size + (N%block_size == 0 ? 0:1); 
    size_t size = 90000 * sizeof(int); 
// Memory Allocation 
    cudaMalloc((void**)&g_p,sizeof(int)); // Allocate array on 
devic 
    cudaMalloc((void**)&g_b,sizeof(int)); // Allocate array on 
devic 
    cudaMalloc((void**)&g_c,sizeof(int)); // Allocate array on 
devic 
    cudaMalloc((void**)&g_a,size); // Allocate array on devic 
    n=90000; 
    for(i=0;i<n;i++) 
    { 
    a[i]=i; 
    } 
    b=100000; 
// Copy Data to device from host 
    cudaMemcpy(g_b,&b,sizeof(int),cudaMemcpyHostToDevice); 
    cudaMemcpy(g_n,&n,sizeof(int),cudaMemcpyHostToDevice); 
    cudaMemcpy(g_c,&c,sizeof(int),cudaMemcpyHostToDevice); 
    cudaMemcpy(g_a,&a,size,cudaMemcpyHostToDevice); 
// call kernel 
    kernel<<<n_blocks, block_size>>>(g_b,g_n,g_a,g_c); 
// Retrieve result from device and store it in host array 
    cudaMemcpy(&bg_b,,sizeof(int),cudaMemcpyDeviceToHost); 
    cudaMemcpy(&n,g_n,sizeof(int),cudaMemcpyDeviceToHost); 
    cudaMemcpy(&c,g_c,sizeof(int),cudaMemcpyDeviceToHost); 
    cudaMemcpy(&a,g_a,size,cudaMemcpyDeviceToHost); 
 // Free GPU Variables 
    cudaFree(g_b); 
    cudaFree(g_n); 
    cudaFree(g_c); 
    cudaFree(g_a); 
    if(c==0) 
    { 
        printf("The number is not found\n\n"); 
    } 
    else 
    { 
        printf("The number is found\n\n"); 
    } 
    system("pause"); 
   return 0; 
} 

 
Furthermore, the comparison for CPU time is also been 

analysed [Table – 3].  

 
 

TABLE III: CPU VS GPU EXECUTION TIME FOR BINARY SEARCH   
 

Diagnosis Session 
Duration 

10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds 

C on CPU 39 39 78 78 117 117 156 156 195 195 
CUDA-C on GPU 29 29 58 58 87 87 116 116 145 145 

Improvement  
(%) 

74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 74.36 
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The result is also been analysed visually  for CPU [Fig – 4] & for GPU [Fig – 5].  

 Fig. 4  CPU Analysis for Binary Search  
 
Also this work analyses the Hot Path for Code Execution 

analysis [Table – 4].    
 

 
Fig. 5  GPU Analysis for Binary Search  

 
TABLE IV: HOT CODE EXECUTION PATH UTILIZATION – BINARY SEARCH   

Code Name  Serial Execution – 
Hot Path 

Utilization  
(%) 

Parallel Execution 
– Hot Path 
Utilization  

(%) 
Binary Search  81.55 79.46 
 
The result is also been visually analysed for CPU [Fig – 6] 

and GPU [Fig – 7]  
 

 
Fig. 6  Serial Hot Code Path for Binary Search 

 
 
 

 
Fig. 7  Parallel Hot Code Path for Binary Search 

 
B. Analysis of the Performance on KnapSack    

 
Next, the analysis is demonstrated on the popular 

KnapSack code. Firstly the source C program is converted 
into CUDA C automatically using the Novel Code 
Converter proposed in this work [Table –5].   

 
 
 
  

TABLE V: CUDA – C EQUIVALENT & CONVERTED CODE FOR KNAPSACK   
Recommendations  

__global__ void kernel(int *gpu_c,int *gpu_v,int *gpu_a,int 
*gpu_last_added) { 
        int gpu_i = threadIdx.x+1; 
        int gpu_j; 
                 
            gpu_j = 0; 
         
              if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] < 
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){ 
                   
                  int s=gpu_i; 
                  gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] + 
gpu_v[gpu_j]; 
                  gpu_last_added[s] = gpu_j; 
                   
              } 
               gpu_j = 1; 
         
              if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] < 
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){ 
                   
                  int s=gpu_i; 
                  gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] + 
gpu_v[gpu_j]; 
                  gpu_last_added[s] = gpu_j; 
                   
              } 
               gpu_j = 2; 
         
              if ((gpu_c[gpu_j] <= gpu_i) && (gpu_a[gpu_i] < 
gpu_a[gpu_i-gpu_c[gpu_j]] + gpu_v[gpu_j])){ 
                   
                  int s=gpu_i; 
                  gpu_a[gpu_i] = gpu_a[gpu_i-gpu_c[gpu_j]] + 
gpu_v[gpu_j]; 
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                  gpu_last_added[s] = gpu_j; 
                   
              } 
         
} 
int main(int argc, char *argv[]) { 
        int n=3; 
        int W=10; 
        int i,j; 
        int aux; 
 
        //Kernel Variables 
        int c[10];int *g_c; 
        int v[10];int *g_v; 
        int a[MAXWEIGHT];int *g_a; 
        int last_added[MAXWEIGHT];int *g_last_added; 
 
        //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS 
        int block_size = 10; 
        const int N = 10;  // Number of elements in arrays 
        int n_blocks = N/block_size + (N%block_size == 0 ? 0:1)+1; 
 
        c[0] = 8; 
        c[1] = 6; 
        c[2] = 4; 
        v[0] = 16; 
        v[1] = 10; 
        v[2] = 7; 
        for (i = 0; i <= W; ++i) { 
             a[i] = 0; 
             last_added[i] = -1; 
        } 
        a[0] = 0; 
 
        // Memory Allocation 
        g_c= (int *)malloc(10 *sizeof(int)); // Allocate array on host 
         cudaMalloc((void **) &g_c,10 * sizeof(int)); // Allocate 
array on devic 
 
        g_v= (int *)malloc(10 *sizeof(int)); // Allocate array on host 
         cudaMalloc((void **) &g_v,10 * sizeof(int)); // Allocate 
array on devic 
 
        g_a= (int *)malloc(MAXWEIGHT *sizeof(int)); // Allocate 
array on host 
         cudaMalloc((void **) &g_a,MAXWEIGHT * sizeof(int)); // 
Allocate array o 
 
        g_last_added= (int *)malloc(MAXWEIGHT *sizeof(int)); // 
Allocate array o 
 
        cudaMalloc((void **) &g_last_added,MAXWEIGHT * 
sizeof(int)); // Allocat 
 
 
        // Copy Data to device from host 
        cudaMemcpy(g_c, c,10 * sizeof(int), 
cudaMemcpyHostToDevice); 
        cudaMemcpy(g_v, v,10 * sizeof(int), 
cudaMemcpyHostToDevice); 
        cudaMemcpy(g_a, a,MAXWEIGHT * sizeof(int), 
cudaMemcpyHostToDevice); 
        cudaMemcpy(g_last_added, last_added,MAXWEIGHT * 
sizeof(int), cudaMemcpyHostToDevice); 
 
        // call kernel 
        kernel <<< 1 ,block_size >>>( g_c, g_v, g_a, g_last_added); 
 
        // Retrieve result from device and store it in host array 
        cudaMemcpy(c, g_c,10 * sizeof(int), 

cudaMemcpyDeviceToHost); 
        cudaMemcpy(v, g_v,10 * sizeof(int), 
cudaMemcpyDeviceToHost); 
        cudaMemcpy(a, g_a,MAXWEIGHT * sizeof(int), 
cudaMemcpyDeviceToHost); 
        cudaMemcpy(last_added, g_last_added,MAXWEIGHT * 
sizeof(int), cudaMemcpyDeviceToHost); 
 
        // Free GPU Variables 
        cudaFree(g_c); 
        cudaFree(g_v); 
        cudaFree(g_a); 
        cudaFree(g_last_added); 
 
 
        for (i = 0; i <= W; ++i) { 
             if (last_added[i] != -1){ 
                 printf("Weight %d; Benefit: %d; To reach this weight I 
added object %d (%d$ %dKg) to weight %d.\n",i,a[i],last_added[i] 
+ 1,v[last_added[i]],c[last_ 
added[i]],i - c[last_added[i]]); 
             } 
 
             else { 
                 printf("Weight %d; Benefit: 0; Can't reach this exact 
weight.\n",i); 
             } 
 
        } 
        printf("---\n"); 
        aux = W; 
        while ((aux > 0) && (last_added[aux] != -1)) { 
             printf("Added object %d (%d$ %dKg). Space 
left: %d\n",last_added[aux] + 
1,v[last_added[aux]],c[last_added[aux]],aux - c[last_added[aux]]); 
             aux -= c[last_added[aux]]; 
        } 
        printf("Total value added: %d$\n",a[W]); 
        system("pause"); 
        return 0; 
 
} 

 
Furthermore, the comparison for CPU time is also been 

analysed [Table – 6]. 
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TABLE VI: CPU VS GPU EXECUTION TIME FOR KNAPSACK 

Diagnosis Session Duration 10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds 
C on CPU 45 45 90 90 135 135 180 180 225 225 

CUDA-C on GPU 31 31 62 62 93 93 124 124 155 155 
Improvement  

(%) 
68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89 68.89 

 
The result is also been analysed visually for CPU [Fig – 8] 

& for GPU [Fig – 9].  
 
 

 Fig. 8  CPU Analysis for KNAPSACK  
 

 
Fig. 9  GPU Analysis for KNAPSACK 

 
Also this work analyses the Hot Path for Code Execution 

analysis [Table – 7].    
TABLE VII: HOT CODE EXECUTION PATH UTILIZATION – KNAPSACK 

Code Name  Serial Execution – 
Hot Path 

Utilization  
(%) 

Parallel Execution 
– Hot Path 
Utilization  

(%) 
KnapSack  87.25 87.25 

 
The result is also been visually analysed for CPU [Fig – 

10] and GPU [Fig – 11]  
 

 
 

Fig. 10  Serial Hot Code Path for KNAPSACK 
 

 
 

 
Fig. 11  Parallel Hot Code Path for KNAPSACK 

 
 

C. Analysis of the Performance on Vector Sum   
 
Next, the analysis is demonstrated on the popular Vector 

Sum code. Firstly the source C program is converted into 
CUDA C automatically using the Novel Code Converter 
proposed in this work [Table –8].   

  
TABLE VIII: CUDA – C EQUIVALENT & CONVERTED CODE FOR VECTOR 

SUM   
Recommendations  

__global__ void kernel(float *gpu_a,float *gpu_b,float *gpu_c) { 
    
   int idx=threadIdx.x + blockDim.x*blockDim.x; 
 
 
 
int gpu_i=idx; 
     
         gpu_c[gpu_i] = gpu_a[gpu_i] + gpu_b[gpu_i]; 
     
 
} 
int main(int argc, char *argv[]) { 
        int n=3; 
        int i; 
        int j; 
 
        //Kernel Variables 
        float a[1024];float *g_a; 
        float b[1024];float *g_b; 
        float c[1024];float *g_c; 
 
        //CUDA GRID BLOCK SIZE AND NUMBER OF BLOCKS 
        int block_size = 1; 
//        const int N = 10;  // Number of elements in arrays 
        int n_blocks = N/block_size + (N%block_size == 0 ? 0:1); 
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        for (i = 0; i <= N; ++i) { 
             a[i] = i; 
             b[i] = i; 
        } 
 
        // Memory Allocation 
        g_a= (float *)malloc(1024 *sizeof(float)); // Allocate array on 
host 
         cudaMalloc((void **) &g_a,1024 * sizeof(float)); // Allocate 
array on device 
        g_b= (float *)malloc(1024 *sizeof(float)); // Allocate array on 
host 
         cudaMalloc((void **) &g_b,1024 * sizeof(float)); // Allocate 
array on device 
        g_c= (float *)malloc(1024 *sizeof(float)); // Allocate array on 
host 
         cudaMalloc((void **) &g_c,1024 * sizeof(float)); // Allocate 
array on device 
 
        // Copy Data to device from host 
        cudaMemcpy(g_a, a,1024 * sizeof(float), 
cudaMemcpyHostToDevice); 
        cudaMemcpy(g_b, b,1024 * sizeof(float), 
cudaMemcpyHostToDevice); 
        cudaMemcpy(g_c, c,1024 * sizeof(float), 
cudaMemcpyHostToDevice); 
 
        // call kernel 
         kernel <<< n_blocks, block_size >>>( g_a, g_b, g_c); 
 
        // Retrieve result from device and store it in host array 
        cudaMemcpy(a, g_a,1024 * sizeof(float), 
cudaMemcpyDeviceToHost); 
        cudaMemcpy(b, g_b,1024 * sizeof(float), 
cudaMemcpyDeviceToHost); 
        cudaMemcpy(c, g_c,1024 * sizeof(float), 
cudaMemcpyDeviceToHost); 
 
        // Free GPU Variables 
        cudaFree(g_a); 
        cudaFree(g_b); 
        cudaFree(g_c); 
 
 

        for (i = 0; i < N; i++) { 
             printf("A=%6.2f B=%6.2f A+B = %6.2f\n",a[i],b[i],c[i]); 
        } 
        system("pause"); 
        return 0; 
 
} 

 
Furthermore, the comparison for CPU time is also been 

analysed [Table – 9].  

 
 

TABLE IX: CPU VS GPU EXECUTION TIME FOR VECTOR SUM 
 

Diagnosis Session Duration 10 Seconds 20 Seconds 30 Seconds 40 Seconds 50 Seconds 
C on CPU 281 281 562 562 843 843 1124 1124 1405 1405 

CUDA-C on GPU 274 274 548 548 822 822 1096 1096 1370 1370 
Improvement  

(%) 
97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51 97.51 

 
The result is also been analysed visually for CPU [Fig – 

12] & for GPU [Fig – 13].  
 
 

 Fig. 12  CPU Analysis for VECTOR SUM  
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Fig. 13  GPU Analysis for VECTOR SUM 

 
Also this work analyses the Hot Path for Code Execution 

analysis [Table – 10].   
 

TABLE X: HOT CODE EXECUTION PATH UTILIZATION – VECTOR SUM 
 
Code Name  Serial Execution – 

Hot Path 
Utilization  

(%) 

Parallel Execution 
– Hot Path 
Utilization  

(%) 
Vector Sum  59.54 60.59 

 
The result is also been visually analysed for CPU [Fig – 

14] and GPU [Fig – 15]  
 

 
Fig. 14  Serial Hot Code Path for VECTOR SUM 

 
 
 

 
 

Fig. 15  Parallel Hot Code Path for VECTOR SUM 
 
Also, this work presents the average execution time 

improvement for parallel code over serial code [Table – 11]. 
 

TABLE XI: AVERAGE EXECUTION TIME IMPROVEMENT 
 

Code Name  Improvement 
(%) 

Binary Search 
Problem 

74.36 

KnapSack Problem 68.89 
VectorSum Problem  97.51 

Average 
Improvement  

80.25 

 
 
 Thus with the light of the obtained results, this work 

presents the conclusions in the next section.  
 

7. CONCLUSIONS  
 
The demand for automatic conversion of the serial code to 
parallel codes in order to reduce the execution time and 
defeat the fact of higher efficiencies in the workforce is 
always under a focus for the research. This work deploys a 
novel algorithm to convert serial C codes into parallel 
NVIDIA CUDA codes to take the maximum benefits from 
the GPUs available. The automatic conversion framework, 
proposed and demonstrated in this work, not only reduces the 
time for the conversion, also reduces 80% of the execution 
time for legacy serial programs from various algorithmic 
approaches. The conversion framework demonstrated a 
100% similar result upon execution and works for all 
programs written following the fundamental guidelines of the 
code developments. This work is to be seen as one of the 
baseline for further research and a contribution towards 
automatic code translation for legacy systems in order to 
make the computational support for modern developments.  
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