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Abstract: In this manuscript, we have represented (1+n) dimensional nonlinear Burgers’ initial value problem. Adomian decomposition method 
(ADM) has been applied to find the solution of this problem. Some examples have also been given to claim the complete convergence of the 
method for exact solution. 
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1. INTRODUCTION 
The researchers are showing their interest in new methods 
to solve linear – nonlinear, ordinary - partial differential 
equations with initial and boundary value problems [1-3]. 
Nonlinear Burgers’ equation was firstly reported by J. M. 
Burgers for a fluid motion model. It is widely used in wave 
theory, gas and plasma dynamics [4-6]. Adomian 
decomposition method (ADM) has been introduced by 
George Adomian in 1980’s. It provides an approximation 
solution with less number of iterations [7].  
 

2. (N+1) DIMENSIONAL NONLINEAR BURGER 
INITIAL VALUE PROBLEMS 

2.1 Problem I 
                                                   

(01) 
With initial condition 

                      (02) 
Having exact solution 

                                    
                                                                    (03) 
Where                

              (04) 
Equation (01) can be represents as 

   
                   

                                                                        (05) 
Where   and   represent linear 

operator and nonlinear term respectively. 
Applying  in equation (01) and 

considering initial condition, we get 

                                                                          
                                                                        (06) 
Now, in view of Adomian decomposition method, after 

decomposing the solution w and nonlinear term  
into the series form, equation (06) gives                                                                      

2 2+ 3 3+−−−−+ + =0∞                                    
                                                                         (07) 
Where Adomian polynomials  depending upon 

 can be calculated by following 
Am =   λ=0 m = 0, 1, 2…. 

              (08) 
Some Adomian polynomials are  

                                             (09) 
                         (10) 

                                                                            
                                                                       (11) 
And so on 
In view of equation no (07), Adomian recursion formula 

can be obtained as 
                                                                     

                                                                      (12) 

, ≥0                                (13) 
Using equation (13), the solution components can be 

determined as 
                                                                    

                                                                      (14) 
                                                                  

                                                                       (15) 
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                                                                       (16) 
And so on.... 
According to ADM, the final solution in series form is 

                                                                                                                    
                                                               (17) 
Which is same as the exact solution (03). 
2.2 Problem II 
Reconsider the equation (01) 

                                                     
(18) 

With different initial condition 

              (19) 
Having exact solution 

                           
                                                               (20) 
Where                     (21) 
Equation (18) can be represents as 

   
                 

                                                                   (22) 
Where   and   represent linear 

operator and nonlinear term respectively. 
Applying  in equation (18) and 

considering initial condition, we get 

                                                    
                                                                     (23) 
Now, in view of Adomian decomposition method, after 

decomposing the solution w and nonlinear term  
into the series form, equation (23) gives                                                                      

2 2+ 3 3+−−−−+ + =0∞                                                      
(24) 

Where Adomian polynomials  depending upon 
 can be calculated by following 

Am =   λ=0 m = 0, 1, 2…. 
              (25) 

Some Adomian polynomials are  
                                      (26) 

                      (27) 
                                                                            

                                                                   (28) 
And so on 
In view of equation no (24), Adomian recursion formula 

can be obtained as 

                                                      
(29) 

, ≥0                            (30) 
Using equation (30), the solution components can be 

determined as 
                                                      

(31) 
                                                    

(32) 
                                                    

(33) 
And so on.... 
According to ADM, the final solution in series form is 

                                                                                                           
                                                                   (34) 
Which is same as the exact solution (20). 
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