
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4671
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 163

 ISSN No. 0976-5697

DETERMINING LOWEST COST COMMUNICATION PATH IN DISTRIBUTED
DATABASE SYSTEM

Rakesh Kumar Pandey
Research Scholar

University Department of Statistics and Computer
Applications,

T. M. Bhagalpur University, Bhagalpur-812007, India

Dr. Sachindra Kumar Azad*
Associate Professor and Head

University Department of Statistics and Computer
Applications,

T. M. Bhagalpur University, Bhagalpur-812007, India

Abstract: Relational Database is interpreted as collection of interrelated data or records, where Database Management System is software of
synthesize programs used to manage overall problem arises in the Relational database system. Join Operation is used to combine more than one
relation using single query statement. Sometimes, it is impossible to get result from a single relation of the relational database in their case join
operation is useful to fetch data from more than one relation of the database. Join is a performed as Cartesian product followed by some specific
condition process. In this paper we are going to proposed, an algorithm that reduce the communication cost when the join operation is performed
on the distributed database query system. In distributed database system, join operation is performed on different sites of the communication
network. This proposed algorithm is automatically selecting the lowest cost communication path to perform the join operation on relational
database.

Keywords: Join, Relational Database, Normalization, Key, Cross join, DDMS

I. INTRODUCTION

In Relational database data model [E.F. Codd 1970, 1972]
design, the join operation is one the most important concept to
fetch related tuple from different relation of the database into
single tuple under some specific condition. During database
designing the designer of the database decomposed the relation
into several small relations to achieve the higher normal form.
Decomposition is the operation of breaking down a huge
relation of the database into sub parts [1]. The main aim of
decomposition is to replaces a huge relation with a collection
of various smaller relations. It breaks the relation into multiple
relations in a database. Decomposition always should be
lossless, because it confirms that the records in the master
relation can be accurately redesigned using the concept of join
on the decomposed relations [2]. If decomposition is not done
correctly on the relation, then it may lead to problems like loss
of data. While normalizing a relation in a relational database
system the results come out in related information that being
saved in different relations of the database. Hence, SQL
queries that require data from different relation are very
familiar. To satisfy the queries join operation is to be
introduced [3]. In other hand a join can be expressed as a
cross-product of two or more relations followed by selections
and projections operation in Relational Algebra, joins appear
much easier in practice than simple cross-products. Further,
the result of a cross-product is generally contains more number
of tuple than the result of a join, and it is much more important
to understand joins and implement them without cross-product
[4]. Only For these reasons, joins operations have received a
lot of observations, and there were many variants of the
relational database join operations. This paper collates all the
information present in the literature in order to study the new
and common features of join operations [5]. With this data, it

is possible to classify the join operations into different
categories. The different categorizations scheme and different

approaches to implement join processing are provided in this
paper. Relational database join operations are categorized into
two-way and multi way scheme [6]. Join operations is
considered as two-way, when it is executed on two relations of
database and multi way when more than
two relations of database are joined together. A multiway join
gives the same result as a two way joins series gives [7]. A
join between m numbers of relations is generally executed as
the sequence on 1−n two-way joins in database [Mackert
and Lohman, 1986].

In the distributed database management system
administer the relational database all tables were stored on the
local host (http://127.0.0.1) computer [8]. The distributed
database management system access all the tuples In order on
the local host computer and, in cases where more than one user
submit the command to access the same data, to modify and
remove performed on the tuples of the database table at one
location will be automatically referred in the tuples stored
another tables of the database [9]. The database users and
database administrators of a distributed database management
system, should, with complete execution, interaction with the
database system as if the database system was centralized
stored in the network. This transparency enables us for the
logically desired in such a structured database system without
any good programming requirements, enabling for any number
of local host and remote databases tables to be accessed at a
given time across the network [10]. There are different types
of clarity request and response after in a distributed database
management system is data distribution transparency,
heterogeneity transparency, transaction clearity and
performance transparency [11]. The word replication indicates
to the operation performed on copying and maintaining
relation database objects on multiple sites and in multiple
relational databases is a part of a distributed database
management system. When replication depends on distributed
database management system technology, database replication
allows the applications benefits that are never be a part of a

Rakesh Kumar Pandey et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,163-167

© 2015-19, IJARCS All Rights Reserved 164

pure distributed database management system environment
[12]. The Most commonly replication is used to enhanced the
local host relational database table’s performance and provide
the security, because another way to access tuples are also
exists in the database query [13]. For Example, the application
programs which are stand alone are normally use the local
database system to store tuples in the tuples. While we are
using some applications programs that are use to access the
database which are stored in the remote site database, to access
this type of database may increase the communication cost and
also maximize the network traffic but other database servers
with the replicated tuple in the tables are remains accessible
[14]. In the non homogeneous distributed database system,
where the entire database are not some then there must be one
database is a non- SQL server system. For the application
point of view, the non homogeneous distributed database
system appears as a local and single SQL server database. The
local host SQL server database server not enabled the
distribution and non homogeneous of the tuples of the table in
the relational database [15]. The SQL database server allows
controlling the non-SQL server system using SQL server non
homogeneous database facilities in connected with an bridge.
If the database administrator the non-Oracle tuples is store in
tables using an SQL database standard query, then the bridge
of the database is a system oriented programming application.
For example, If Someone using Oracle database and some of
the tuples are stored in the SQL server database that at any
cost we have formed a bridge which can access the both SQL
server database and Oracle database. Alternatively, we can use
generic connectivity to access non- SQL server data stores so
long as the non- SQL server system supports the ODBC or
connection string protocols. In this paper we are going to find
the minimum cost of query optimization using joins. From
many researchers it has been discussed that, a queries with
specific domain is called tree or hierarchy queries, can be
solved by using a sequence of join program. Hierarchy
queries, however, it require more explanation of attribute for
join and output reduction is very low, and in some other cases
joins operations cannot able to minimize the join relations at
all [16] . A distributed database management system is a
network based centralized back end application software
system that controls the distributed database in way that the
user can seems that the data is stored in a local host computer.
It is generally to Design, fetch, modify, remove and join the
various database tables in distributed databases system. It also
maintains consistency while more than one user can access the
databases. In the distributed database management system data
may be stored in the relational database tables and these tables
may store on any remote host computer or any local host
system in the network. Hence, SQL queries to join tables and
retrieve data.

II. RELATED WORK

The Cross Join produces a result set which includes number of
tuple in the first relation multiplied by the number of tuple in
the second relation, if there is no where clause is used with
Cross Join syntax. This type of query results is called as
Cartesian product [17]. If the where clause statement is used
with Cross Join. An alternative method of getting the same
result is to use attribute names separated by commas after
select and mentioning the relation names involved, after the
from clause. If a relation 1R have n number tuple and

relation 2R have m number tuple so, total number of tuple
after cross join in mn × i.e. cardinality of the relation.
 R1 x R2 = | R x S | = |R| x |S|
 n tuple m tuple = n x m tuple = n x m tuple
And the degree of two relation R1 and R2 after cross join
 R1 x R2 = deg (n) + deg (m) n column m column = n + m
Applying, cross join on relation R1 and R2: select * from R1,
R2; or select * from R1 cross join R2; the resultant
relation 21 RR × contains, Cartesian product of both the
relation . And after cross join degree of the Table is deg (R1)
+ deg (R2). So, In general, it can be say that maximum number
of tuple after a cross join is mn × and minimum number of
tuple after cross is zero [18].

The basic Join operation is generally used to combine
related tuple from two or more relations on some specific join
condition into a single tuple that are stored in the single result
relation. The relationship between attributes for the tuples
specified in term of the join condition. The presence of the
join operation condition differ the join operation from the
cross join. In other hand, a join operation may be said to be
equal to the cross join followed by a select statement query.
The final result after joining relations R1 and R2 with m and
n attributes, respectively, is a relation P with nm +
attributes [19]. There are mainly two type of basic join
operations are surveyed in this paper, Inner join and Outer
join. It most important and often used of the joins is the Inner
Join. The inner join add a new resultant relation by combining
attribute values of two relations R1 and R2 based upon some
specific join-predicate condition. The query compares each
row of R1 with each row of R2 to find all possible pairs of
tuples which satisfy the join-predicate conditions. When the
join-predicate conditions is satisfied, attributes values for each
matched pair of tuples of R1 and R2 are combined into a result
tuple. Equi Join performs a join operation against equality or
matching of the attribute values of the associated relations in
the database. An equal sign (=) is used as equality operator in
the where clause syntax to refer equality. Consider an Example
1, where we have two relations R1 and R2. Applying, Equi join
on both the relation R1 and R2 of matching column: select *
from R1, R2 where R1.code = R2.Id; the resultant relation
contains, Cartesian product of both the relation but where
clause select only those tuples which satisfies equality
condition R1.code = R2.Id. And after Equi join degree of the
Table 4 is deg (R1) + deg (R2). So, In general, it can be say that
maximum number of tuple after an Equi join is less than

mn × any minimum number of tuple after Equi is zero [20].
The comparison operator is used in the join condition in
Example 1 was the equals sign, “=”. Such join queries are
called Equi join. A non Equi join is query that specifies some
relationship other than equality between the columns.
Consider Example 1, where we have two relations R1 and R2
On Applying, Non-Equi join on both the relation R1 and R2 of
matching column: select * from R1, R2 where R1.code = R2.Id
and roll > 11; the resultant relation 21 RR × contains,
Cartesian product of both the relation but where clause with
comparison ≠><≥≤ ,,,, are used with join operation which
selects only those tuples which satisfies equality condition
R1.code = R2.Id and roll > 11 comparisons. And after non-
Equi join degree of the Table is deg (R1) + deg (R2). So, In
general, it can be say that maximum number of tuple after a

Rakesh Kumar Pandey et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,163-167

© 2015-19, IJARCS All Rights Reserved 165

non-Equi join is less than mn × tuples and minimum number
of tuple after non-Equi join is zero. By the definition, the
results of an equijoin and non-Equi join contain the identical
column . One of the two identical columns can be eliminated
by restating the query. This result is called a Natural join i.e.
Equi join minus one of the two identical columns. The join in
which only one the identical columns exists, is called Natural
Join [21]. Consider a Example, where we have relation R1 and
R2, On Applying, Natural join on both the relation R1 and R2 of
matching column: select R1.*, R2.marks, R2.grade from R1, R2

where R1.code = R2.Id; the resultant relation 21 RR × contains,
Cartesian product of both the relation but where clause with
comparison are used with join operation which selects only
those tuples which satisfies equality condition R1.code = R2.Id,
tuples are selected. Natural join specially works on the
selection part of the select query. The outer join is an
supplement of the inner join operation that add both tuple from
the relation that qualify for a inner join as well as a set of
tuples that do not match the join operation conditions
expressed by the query. Because outer joins operations are as
complicated to code properly as they are to interpret, this
section include them in detail, including a carefully thought
out case studies [22]. The output of a left outer for relations R1
and R2 always includes all tuples of the "left" relation R1, even
if a join operation condition does not find any matching tuple
in the "right" relation R2. This reflects that if the ON clause
matches zero tuple in R2 (for a given tuple in R1), the join will
still return a tuple in the output, but with NULL introduced in
each column from R2. The output of a right outer for tables R1
and R2 always includes all tuples of the "right" relation R2,
even if a join operation condition does not find any matching
tuple in the "left" relation R1. This reflects that if the ON
clause matches zero tuple in R1 (for a given tuple in R2), the
join will still return a tuple in the output, but with NULL
introduced in each column from R1.

III. METHODOLOGY

Distributed database management system is a collection of
multiple homogenous or heterogeneous interrelated database
system. In distributed database management system data is
stored in different site over the network on different databases.
All this databases server sites are connected to each other
using wired or wireless network. Distributed database
management system is fully dependent on the database
management system. In the proposed method, we are going to
find out the lost cost communication path during distributed
database management system join query execution. Following
Algorithm we are using to find the lowest communication
path.

Algorithm I

Step 1: Set),(EVG = is Null; Where G is a NULL graph.
Step 2: Execute the Join query over the network.

 If (there is n node) then

 Path=
2

)1(−× nn
 path exists;

End if;
Step 3: Convert the all the homogenous or heterogeneous
database server to weighted directed vertex of a weighted
directed graph form.

()],[][&&][][UVWeightnVetexnVertexmVertexif +>
Step 4: The network model of or heterogeneous database
server is now in the form of weighted graph.
Step 5: Here weight of the graph is considered as the
communication cost of join operation from one server to
another server.

G [Start] = NULL;
Vertex[v] = -1
Iteration (v):
 Vertex[v] = Large Weight;
 While Vertex[n]
 Switch (m)
 Case 1: G[u] == “Lowest Weight Path Selected;”
 ()],[][&&][][UVWeightnVetexnVertexmVertex +>
 break;

 Case 2: if d[u] > h[v] then
 G[u] =“The edge is of Same Weight;”
 break;
 Default: G[u] =Set as Infinity.
 Wend;
 End Case;
 Step 6: Design dependency matrix from the weighted
graph with weight of the edge and if there is no edge the put
∞
Step 7: Once the dependency matrix is designed from the
dependency graph. Apply the Floyd’s algorithms to get the
minimum cost path from one vertex to another vertex.
 Step 7.1: On the execution of thK iteration, the Floyd’s
 Algorithm determines lowest communication paths
 Between each pair of vertices ji, th on thk.....1 as
 Directed

 [] []],[],[],,[min,)1()1()1()(jkSkiSjiSjiS kkkk −−− +=
 Step 7.2: Where S is denoted the number of database
 Server between vertex i and j. It is transparent that Dij= 0
 when i = j. In their case, there is no directed path between
 Vertex i and j.
Step 8: Exit from the above algorithm when their no
profitable join exits between the web servers of the databases.
Let us assumed that we have two Database server named as S1
and S2. The S1 oracle Database Server and S2 is Sybase
Database Server. S1 Server has a database relation Employee
(empid,ename,sal,comm, deptid) have 200 tuple and each
tuple of size is 50 byte. So, total storage of the S1 server is
10,000 byte. Similarly, S2 Server has a database relation
Department (deptid,deptname,location) have 300 tuple and
each tuple of size is 70 byte. So, total storage of the S1 server
is 21,000 byte. On Applying join operation on both the
relation and select empid, sal,depname from both the relation.

∏ ∞)(Employeedepnamesal, empid, Department
After joining both the relation suppose we are getting 300
tuples and the size of each tuple is 20 byte. Now, we are going
through different cases to choose lowest cost communication
path for the Distributed Database Query Processing.
Case I: Store the replicas of both the relation Employee and
Department into Database Server S3

Rakesh Kumar Pandey et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,163-167

© 2015-19, IJARCS All Rights Reserved 166

10,000 byte

21,000 byte
31,000 byte

Employee

Department

Employee

Department

21,000 byte

6,000 byte

27,000 byte

Employee

Department

10,000 byte

16,000 byte
6,000 byte

2

4
6

3

1

S1 S2 S3 S4

6,000 byte

Figure 1: replicas of both the Server S1 and Server S2 into Database Server S3

Moving total tuples from S1 to S3, the total communication
cost is 10,000 bytes. Again, Moving total tuples from S2 to S3,
total communication cost is 21,000 bytes. So, finally, total
communication cost at S3 is 31,000 bytes.
 Case II: Move all the replicas of department table of Server
S2 to Employee table Server S1 for processing and then finally
move only the output of Server S1 replicas to S3 Sever. So,
the communication cost of moving tuple from S2 server to S1
is 21,000. Again we move the final output from S1 sever to S3
server.

Figure 2: Transfer replicas from Server S2 to Server S1 and S1 to S3

Now, moving tuples from Server S1 to S3 the total
communication cost is 6,000 because we finally move output
from Server S1 to S3, joining both the relation and it is
assumed that we are getting 300 tuples and the size of each
tuple is 20 byte. So, finally, total communication cost at S3 is
27,000 bytes.
Case III: Move all the replicas of Employee table of Server
S1 to department table Server S2 for processing and then
finally move only the output of Server S2 replicas to S3 Sever.
So, the communication cost of moving tuple from S1 server to
S2 is 10,000. Again we move the final output from S2 sever to
S3 server.

Figure 3: Transfer replicas from Server S1 to Server S2 and S2 to S3

Now, moving tuples from Server S2 to S3 the total
communication cost is 6,000 because we finally move output
from Server S2 to S3, joining both the relation and it is
assumed that we are getting 300 tuples and the size of each
tuple is 20 byte. So, finally, total communication cost at S3 is
16,000 bytes. In the above cases, it is clear that the CASE III
will give the best case for lowest cost communication path and
other CASES are more expensive for the execution of join
operation over the distributed database system. Here, we have
less number of servers for the communication. If the database

servers are more in number that we should apply the
Algorithm I to get the best case of the output in one go.

IV. COMPLETE ANALYSIS

Let us assumed that we have four database server on different
locations

Figure 4: Networking diagram between n numbers of database server

From the figure 4 it clear that the communication path cost is
given to the edges of the networking model. Now, convert the
above networking model into dependency matrix form

06
107

02
30

)0(

∞∞
∞

∞∞
∞∞

=S

 Figure 5: Dependency Matrix of Figure 4

Figure 5 is the dependency matrix of the Figure 4: Networking
diagram between 4 numbers of database servers, now applying
proposed algorithm to find the lowest cost commutation path.

[] []],[],[],,[min,)1()1()1()(jkSkiSjiSjiS kkkk −−− +=

096
107

502
30

)1(

∞
∞

∞
∞∞

=S

 Figure 6: After applying Floyd’s on Figure 5

096
1079

502
30

)2(

∞

∞
∞∞

=S

 Figure 7: After applying Floyd’s on Figure 6

09166
1079
6502
43100

)3(=S

 Figure 8: After applying Floyd’s on Figure 7

S1

S2

S3

S1

S2 S3

S1

S2

S3

S1

S3

S2

S4

Rakesh Kumar Pandey et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,163-167

© 2015-19, IJARCS All Rights Reserved 167

09166
1077
6502
43100

)4(=S

 Figure 9: After applying Floyd’s on Figure 8

The Proposed algorithm consist the three loops to find the
lowest cost communication path of database servers
connected. Hence the asymptotic complexity of the whole the

proposed algorithm is)(3nΟ , where n number of vertex of
the graph, database servers is connected. The matrix

)4(S gives the minimum cost for the execution of join
operation over the distributed database network.

V. CONCLUSIONS

The proposed algorithm is used to find out the minimal cost
during the execution of join operations over the network. As
we know in the distributed database system tables of the
database are stored in the different locations of the network, in
their case executing a join a operations is most expensive
operations. After applying the proposed algorithm we can
easily find out the lowest cost communication path for the
network to execute join operation. The asymptotic complexity

of the algorithm is)(3nΟ which is same as the asymptotic
complexity of Floyd’s algorithm, where n represent the
number of the database server on network, which is assumed
as database server over the network. The above algorithm is
simulated using Java Language.

VI. REFERENCES

[1] Nilarun Mukherjee, Synthesis of Non Replicated Dynamic
Fragment Allocation Algorithm in Distributed Database
System”, Published in Proceeding of international
conference on advances in Computer Science , 2010

[2] Sakti Pramanik , David Vineyard, “Optimizing Join Queries in
Distributed Databases”, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 14. NO. 9,
SEPTEMBER 1988

[3] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of
Database System”, Fifth Edition, Pearson Education, Second
Impression, pp 894, 2009.

[4] Manik Sharma, Dr. Gurdev Singh, “Analysis of Joins and
Semi-joins in Centralized and Distributed Database
Queries”, 2012 International Conference on Computing
Sciences

[5] M. Tamer Ozsu, Patrick Valduries, “Principles of Distributed
Database System”, Second Edition, Pearson Education, pp
169.

[6] Deepak Shukla, Dr. Deepak Arora, “An Efficient Approach
of Block Nested Loop Algorithm based on Rate of Block
Transfer”, IJCA, Vol.21, No.3, May 2011.

[7] Narasimhaiah Gorla, Suk-Kyu Song, “Subquery allocation in
Distributed Database using GA”, JCS & T, Vol. 10, No.1.

[8] P. Apers, A. Hevner, and S. B. Yao, “Optimization algorithms
for distributed queries,” IEEE Trans. Software Engineering,
vol. SE-9, no. 1, pp. 57-68, Jan. 1983.

[9] E. Babb, “Implementing a relational database by means of
specialized hardware,” ACM Trans. Database Syst., vol. 4,
no. I , pp. 1- 29, Mar. 1979.

[10] P. Bernstein and D. Chiu, “Using semijoins to solve relational
queries,” J. ACM, vol. 28, no. 1, pp. 25-40, Jan. 1981.

[11] P. Bernstein, N. Goodman, E. Wong, C. Reeve, and J.
Rothnie, “Query processing in a system for distributed
databases (SDD-I),” ACM Trans. Database Sysr., vol. 6, no.
4, pp. 602-625, Dec. 1981.151 D.

[12] R. Epstein, M. Stonebraker, and E. Wong, “Distributed query
processing in-a relational database system,” in Proc. ACM
SICMOD, May 1978, pp. 169-180.

[13] S. Pramanik and F. Fotouhi, “An index database machine-An
efficient m-way join processor,” The Comput. J . , vol. 29,
no. 5, pp. 181

[14] S.Lucas, J. Meseguera ,Normal forms and normal theories in
Conditional rewriting , Elsevier Journal of Logical and
Algebraic Methods in Programming, 85, 67–97, 2016.

[15] Zichen X., Yi-Cheng T., and Xiaorui W., Online Energy
Estimation of Relational Operations in Database Systems,
IEEE transactions on computers, vol. 64, no. 11, November
2015

[16] Carlos Busso, Soroosh Mariooryad, Angeliki Metallinou and
Shrikanth Narayanan, Iterative Feature Normalization
Scheme for Automatic Emotion Detection from Speech,
IEEE transactions on affective computing, vol. 4, no. 4,
october-december 2013

[17] Moussa Demba,” Algorithm for relational database
Normalization up to 3NF” International Journal of
Database Management Systems (IJDMS) Vol.5, No.3,
June 2013

[18] G. Lamperti, M. Melchiori, M. Zanella, On multisets in
database systems, in: Proceedings of WOMP, in: Lecture
Notes in Computer Science, vol. 2235, , pp. 147–216,2000

[19] Vimala, S., Khanna Nehemiah, H., Saranya, G. and Kannan,
A.“Applying Game Theory to Restructure PL/SQL Code”,
International Journal of Soft Computing, Vol.7, No.6,
pp.264-270, 2012.

[20] Ashish Kamra and Elisha Bertino,”Design and Implementation
of an Intrusion Response System for Relational
Databases”, IEEE transactions on knowledge and data
engineering, vol. 23, no. 6, june 2011

[21] Dirk Beyer, Andreas Noack, and Claus Lewerentz,” Efficient
Relational Calculation for Software Analysis” IEEE
transactions on software engineering, vol. 31, no. 2, Feb
2005

[22] T.V. Vijay Kumar, Vikram Singh, “Distributed Query
Processing Plans Generation Using GA”, International
Journal of Computer Theory and Engineering, Vol 3. No.1,
Feb 2011.

http://www.programming-algorithms.net/article/44682/Asymptotic-complexity�
http://www.programming-algorithms.net/article/44682/Asymptotic-complexity�
http://www.programming-algorithms.net/article/44682/Asymptotic-complexity�
http://www.programming-algorithms.net/article/44682/Asymptotic-complexity�
http://www.programming-algorithms.net/article/44682/Asymptotic-complexity�

	Introduction
	RELATED WORK
	METHODOLOGY
	Step 7.2: Where S is denoted the number of database
	Server between vertex i and j. It is transparent that Dij= 0
	when i = j. In their case, there is no directed path between
	Vertex i and j.
	COMPLETE ANALYSIS
	CONCLUSIONS
	REFERENCES

