
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4618
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 83

 ISSN No. 0976-5697

THE ROAD TO DOCKER: A SURVEY

Gaurav Bhatia
Department of Computer Science & Engineering

Sardar Patel University of Police, Security & Criminal
Justice

Jodhpur, India

Arjun Choudhary
Department of Computer Science & Engineering

Sardar Patel University of Police, Security & Criminal
Justice

Jodhpur, India

Vipin Gupta
U-Net Solutions

Moga, India

Abstract: The interest on conventional technologies is declining with the increasing demand on new technologies. In the virtualization industry,
container based technology has become the most powerful technologies in the last couple of years. With the arrival of Docker, implementation
of containerization technology has become more simplified and efficient. Unlike other virtualization platform, Docker is an open source software
container platform that provides some facilities, which are useful for developers and administrators. Docker has the traits of providing fast and
lightweight virtualization on operating system-level, because of which Docker has become popular technology to serve variety of cloud
platforms. Development cost and time can be brought down tremendously by simply replacing traditional on-going virtual machine with Docker
container. Also with the use of Docker, the cost of re-developing the cloud platform can be reduced to great extent.

Keywords: Docker; Docker Container; Virtual Machine; Virtualization; Hypervisors; Operating System

I. INTRODUCTION

 Docker is an open standard platform for building, exporting,
and running applications. It can also be viewed as command-
line program with a background daemon running and a set of
remote utilities that take a systematic approach to solve
common software problems and simplifying user experience
of installing, running, publishing, and removing
applications. Docker provides facility to separate your
applications from your infrastructure to deliver software
quickly. A Docker container is a software bucket comprising
of all the supporting dependencies necessary to run the
software independently. Also the isolation and security feature
in Docker allow you to run multiple containers simultaneously
on a single host machine. [1]
 This paper provides insight view on technology of Docker,
and we will try to examine how Docker has changed the
dynamics of whole virtualization industry. The insight of the
paper is systemized as follows. In section 2, we will see what
Docker actually is. In section 3, we will focus upon Docker
architecture and its components. In section 4, we will compare
light weight virtualization using Docker and heavy weight
virtualization. Section 5 and 6 will give you a small idea of
why to use or not to use Docker container. Finally, in section 7
we will try to compare virtualization with containers following
with conclusion and future scope of Docker technology in
section 8.

II. DOCKER CONCEPT

 Docker is a platform designed to make it easier to create,
deploy, and run virtualized application containers on a
common operating system (OS), with an ecosystem of allied
tools. Initially, Docker was created to work on

the Linux platform, but has extended to offer greater support
for non-Linux operating platforms, including Mac OSX and
Microsoft Windows. Versions of Docker for Amazon Web
Services (AWS) and Microsoft Azure are also released. [2]
 Before Docker, deploying software to different
environments required huge efforts. Even though these efforts
were encapsulated in virtual machines, a lot of time was spent
in managing and deployment of these machines, waiting for
them to install and boot, and managing the overhead of
resource use they created.
 With Docker, image can be pulled down from public or
private repositories and is ready to run, consuming fewer
resources and contained so that it doesn’t interfere with other
environments.
 User don’t need to worry about whether his container will
going to be shipped to an Ubuntu machine, a CentOS machine,
or any other machine; as long as it has Docker installed on it.
[3]

Figure 1. Software delivery before and after Docker [3]

http://whatis.techtarget.com/definition/operating-system-OS�
http://searchenterpriselinux.techtarget.com/definition/Linux�
http://whatis.techtarget.com/definition/Amazon-Web-Services-AWS�
http://whatis.techtarget.com/definition/Amazon-Web-Services-AWS�
http://whatis.techtarget.com/definition/Amazon-Web-Services-AWS�
http://searchcloudcomputing.techtarget.com/definition/Windows-Azure�

Gaurav Bhatia et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,83-87

© 2015-19, IJARCS All Rights Reserved 84

III. DOCKER ARCHITETURE

 Docker can be thought of as application based on client
server architecture, as shown in Figure 2. Docker on your host
machine is divided into two parts—a Server Docker Daemon
with a REST API and a Client Docker CLI that talks to the
daemon. A REST API is one that uses standard HTTP request
types such as GET, POST, and DELETE through which
programs can communicate with daemon.

Figure 2. Docker Architecture [1]

 The Docker daemon is the core component of Docker
architecture which receives instructions from Docker client
regarding building, running and shipping the Docker
containers. Docker provides facility to run the Docker client
and the Docker daemon on same device, or client can
connected to the Docker daemon running remotely.
Communication between Docker client and Docker daemon is
done using a REST API, over a network interface.

A. The Docker Daemon
 The Docker daemon (see figure 3) is the hub of your
interactions with Docker, which waits for Docker API requests
and manages the state of your Docker objects accordingly.

Figure 3. The Docker Daemon [3]

B. The Docker Client
 The Docker client (see figure 4) is the simplest component
in the Docker architecture, which helps Docker users to
communicate with Docker. The Docker client is called when
user type commands like docker run or docker pull on his
machine. Its job is to communicate with the Docker daemon
by sending HTTP requests.

Figure 4. The Docker Client [3]

C. Docker Registries
 Suppose user has created his own images, and he wants to
share them with other users. This is where the concept of the
Docker registry comes in. Docker registries provide a platform
to store the Docker images. Docker Hub and Docker Cloud are
two public registries that can be used by anyone to pull or
push images, and by default Docker is designed to search for
images on Docker Hub. Many companies set up private
registries to store and share their proprietary images internally.
You can pull any image using docker pull or docker run
command. To push image to your configured registry, use
docker push command.

D. Docker Images
 In Docker, everything is based on ‘Images’. Images act as a
read-only template for creating new containers. The platform
for creating a new image is a base image. For example, your
base image can be Ubuntu 16.04 LTS with an Apache web
server and you web application installed on it. This approach
of creating a new image is called “committing a change”. User
can create and run his own Docker image by defining steps in
a Dockerfile. Each instruction written in a Dockerfile creates
an additional layer in the image, as depicted in Figure 5. When
user makes a change in Dockerfile and tries to recreate the
Docker image, only those layers are recreated in which
changes have been made by that particular user. This is what
makes images so lightweight, small, fast and reliable, when
compared to other pre-existing virtualization technologies.

Figure 5. Image created using Dockerfile

E. Docker Containers
 At first glance, we can say that Docker container appears to
be a lightweight form of virtual machines. Docker container is
created using Docker images or we can say container is a
runnable instance of a Docker image. Containers hold the

Gaurav Bhatia et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,83-87

© 2015-19, IJARCS All Rights Reserved 85

complete set of dependencies required by an application to run
in more confined way. Using the Docker API or CLI, you can
easily create, run, move, stop or remove a container.
 Docker containers will always be in one of the four states
according to the diagram in Figure 6. [4]

Figure 6. The state translation diagram for Docker container [4]

IV. DOCKER V/S VIRTUAL MACHINE

 Before we compare Docker with Virtual Machine, let us
first see what does the term heavy weight virtualization and
light weight virtualization means.
 Heavy weight virtualization means each and every virtual
machine having its own independent operating system. With
the help of virtualization software, you can install any guest
operating system such as Windows, Linux and Mac on your
host operating system. Virtualization software such as
VMware Workstation, KVM, Oracle Virtual Box, and Hyper-
V comes under Type-2 Virtualization, which means we cannot
directly ran these software’s on the system hardware. So the
new type of virtualization technology called hypervisor came
into the existence which can be installed directly on system
hardware. It comes under Type-1 Virtualization. [5]
 But the problem with these software’s are that we need to
install whole Guest OS also for doing small experiments like
checking network connectivity between two virtual machines
using simple ping command, which is sheer wastage of
resources.
 Nowadays, the focus is moving towards lightweight
container based virtualization technology known as Docker as
shown in Figure 7. With Docker, application can be placed
inside the Docker container, providing Container as a Service
(CAAS) platform. These containers containing application are
easy to handle and can be placed on any type of platform
including cloud. Also these types of light weight technology
are fast and consume almost negligible resources.

Figure 7. Docker v/s Virtualization [5]

 In early stages, if we try to compare Docker containers to
virtual machines we will see that Docker containers have
ability to share single kernel and application library. Also

Docker container possess lower system overhead(i.e.
computation time, memory etc.), due to which the
performance of the application running inside a container is
generally better as compared to application running within a
virtual machine.
 Capability of virtual machines can be enhanced using
technologies like Intel’s VT-x/EPT and VT-d which is already
provided by VMware. An Intel VT-x/EPT and VT-d
technology provides same processing power to your guest
operating system as your host operating system gets and also
increases network performance. Also by using these
technologies, virtual machine can achieve ring-1 hardware
isolation [6]. Ring works as a protected shield to protect
sensitive data and functionality from errors and abnormal
behavior by improving fault tolerance and computer security
[7].
 According to Gupta V (2017), creation and launching time
of Docker container is much lesser than that of virtual
machine. [5] Also containers consume resources according to
the need of particular service or an application. Because of
which it is possible to execute more containers on system
having not that powerful configuration.

V. ADVANTAGES OF DOCKER CONTAINERS

 As we know, Docker has been dominating the DevOps
conversation since its arrival in 2013. The main reason for its
dominance is the benefits provided by Docker container. In
this paper, we seek to highlight some of its best features.

A. Free and Open Source
 Generally we all use virtualization software’s like VMware
etc. to create the virtual machines, but most of these software’s
require commercial licenses for enterprise use. In contrast,
Docker is completely free and open source which can be easily
downloaded and installed. Also no one will ask you buy
license in order to use you application. [8]

B. Ultra Consistent
 While creating virtual machine, sufficient amount of
computer resources are required and if resources provided are
insufficient virtual machine will not work properly. Whereas
in case of Docker, resource consumption is very less because
of which higher level of consistency can be achieved. [8]

C. Rapid Deployment
 In the past, deployment of new hardware used to take few
days. But with the arrival of virtual machines, timeframe was
reduced down to minutes. Now the appearance of Docker has
reduced deployment to mere seconds. Also the cost of creating
and destroying the containers is negligible. [9]

D. Portability
 Applications created inside the Docker containers are
portable and light weighted. These portable applications can
be treated as a single unit hence can be moved easily, without
affecting the performance of the containers. [10]

E. Isolation
 With Docker, every container created has its own set of
resources and each container runs independently without any
interfere to other running containers. Docker also ensures easy
creation and deletion of your application since each
application runs within its own container. Deleting containers
won’t leave any configuration files on your system. Docker

Gaurav Bhatia et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,83-87

© 2015-19, IJARCS All Rights Reserved 86

not only also ensures easy creation and deletion of an
application but also ensures that each application only uses
resources that have been assigned to them. [11]

F. Security
 Using Docker is secure because applications and services
that are running inside the containers are completely
independent from each other. Which means one container
cannot poke into another container. Also as discussed earlier,
there is no sharing of resources between containers, and each
container has its own set of required resources. That means if
something goes wrong with one container, the data available
in that container will be affected without affecting the rest of
the containers. [11]

VI. DISADVANTAGES OF DOCKER CONTAINERS

 Before migrating to Docker, there are some facts or
drawbacks which should be kept in mind.

A. Persistent Data Storage is Complicated
 In docker, when we shut down a container then all of the
data residing inside that container gets disappear forever,
unless you save it somewhere else first. Although, Docker
provide ways to save your data persistently, such as Docker
Data Volumes, but using it seamlessly is still very challenging
task.

B. Compatibility with Older Machines
 Currently, Docker is compatible only with 64-bit local
machines. It does not run on 32-bit machines.

C. Containers don’t run at Bare Metal Speed
 There is no doubt that Docker containers are capable of
consuming resources more efficiently than virtual machines.
But performance of containers is not up to that level due to
overlay networking.

D. Platform Dependant
 Docker was initially designed to run on Linux machine.
However, nowadays Docker has started supporting Windows,
Mac OS X and many other platforms. To make Docker
platform independent we will need additional layer between
host operating system and Docker. [12]

VII. VIRTUALIZATION V/S CONTAINERS

 It totally depends on user needs whether he want to go with
virtualization technology or with containerization technology.
A container environment often provides rapid deployment,
greater efficiency and better resource consumption. If you are
looking for better isolation then system virtualization may be
more relevant option. But with Docker things are changing
rapidly.
 Gupta V (2017) in Table 1 has compared heavy weight
virtualization i.e. Virtual Box against light weight
virtualization i.e. Docker on factors like size, memory, storage,
installation time and boot time. [5]

Table I. Heavy Weight Virtualization v/s Light Weight
Virtualization

 According to JC Wang (2015) in Table 2, Container starts
within a few seconds with faster speed and capable of loading
more services by using less space. [13]

Table II. Virtualization v/s Containers

 Dua et al. (2014) in Table 3 compares Virtual Machines
and Containers on multiple factors like performance, isolation
security, networking, storage. [14]

Table III. Virtual Machine v/s Containers

Parameter Virtual Machines Containers
Guest OS Each VM runs on virtual

hardware and Kernel is
loaded into in its own
memory region.

All the guests share
same OS and
Kernel. Kernel
image is loaded into
the physical
memory.

Communication Will be through Ethernet
Devices.

Standard IPC
mechanisms like
Signals, pipes,
sockets etc.

Security Depends on the
implementation
of Hypervisor.

Mandatory access
control can be
leveraged.

Performance Virtual Machines suffer
from a small overhead as
the machine instructions
are translated from Guest
to Host OS.

Containers provide
near native
performance as
compared to the
underlying Host OS.

Isolation Sharing libraries, files
etc. between guests and
between guests hosts not
possible.

Subdirectories can
be transparently
mounted and can be
shared.

Start Up Time VMs take a few minutes
to boot up.

Containers take
lower amount of
storage as the base
OS is shared.

Storage VMs take much more
storage as the whole OS
kernel and its associated
programs have to be
installed and run.

Containers take
lower amount of
storage as the base
OS is shared.

Heavy Weight Virtualization
(Virtual Box)

Light Weight Virtualization
(Docker)

Iso Size (Ubuntu
16.04)

667 MB Image Size
(Ubuntu 16.04)

130 MB

RAM 1 GB RAM 568 KB
Storage 10 GB Storage 104 KB
VM Installation
Time

21 Minutes Container
Creation Time

0.9 Seconds

Virtual Box
Software Size

108 MB Docker Engine
Size

19.4 MB

Boot Time 35 Seconds Boot Time < 1 Seconds

 Virtualization
(i.e. KVM, Xen)

Containers
(i.e. LXC, Docker)

Typical Server
Deployment

10 – 100 VMs 100 - 1000
Containers

Boot Time Less than a Minute Seconds
Physical Resources Each VM has resource

reserved for its own use
Shared by all
containers

Gaurav Bhatia et al, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,83-87

© 2015-19, IJARCS All Rights Reserved 87

VIII. CONCLUSION AND FUTURE SCOPE

 Microservices architecture is a core concept around which
Docker is built. This concept has reduced the building and
deployment time of Docker containers. Also the demand for
resources by a Docker container is very low, and it can achieve
higher performance. Docker provides some fine features,
which guarantee simplified usability and scalability. However,
the Docker container still has some issues regarding security,
but tools can be applied to strengthen the base of the container.
The main purpose of writing this paper was to give users a
brief overview about all the important components of Docker
and how Docker technology is different from pre-existing
technologies. In future, we will try to look into the other
features of Docker like Docker Swarm; a technology for
managing a cluster of Docker Engines [15] and NFS Storage;
a technology to store and update files on remote computers
[16]. We believe, with time Docker technology will get
matured and will be deployed more widely.

IX. REFERENCES

[1] “Docker Overview.” Internet:
https://docs.docker.com/engine/docker-overview/.

[2] Riyaz Faiullabhoy. “Docker Versions.” Internet:
https://blog.docker.com/2017/06/docker-for-aws- azure-
security/, June 2, 2017.

[3] Miell, Ian, and Aidan Hobson Sayers. Docker in Practice.
Manning Publications Co., 2016.

[4] Nickoloff, J. Docker in Action, Manning Publication co,
1st edition, Shelter Island, New York, 2016, page 28.

[5] Gupta V, Kaur K, Kaur S. Performance comparison
between light weight virtualization using docker and
heavy weight virtualization. International Journal of

Advanced Technology in Engineering and Science,
Volume No.05, Issue No. 03, March 2017, 509-514.

[6] Sudhi Seshachala. “VT-x and VT-d technologies.” Internet:
https://devops.com/docker-vs-vms/, November 24, 2014.

[7] Mohamed Fawzi. “Concept of Rings.” Internet:
https://fawzi.wordpress.com/2009/05/24/virtualization and-
protection-rings-welcome-to-ring-1-part-i/, May 25, 2009.

[8] Chris Tozzi. “Open Source and Consistency.” Internet:
http://www.theserverside.com/feature/The-benefits-of-container-
development-with-Docker.

[9] Andrei Manea. “Rapid Deployment.” Internet:
https://www.cloudhero.io/single-post/top-three-benefits using-
docker, March 10, 2017.

[10] Vase, T. (2015). Advantages of Docker.
[11] Ofir Nachmani. “Isolation and Security.” Internet:

https://dzone.com/articles/5-key-benefits-docker-ci, April 29,
2015.

[12] Chris Tozzi. “Platform Dependent.” Internet:
https://sweetcode.io/3-pros-3-cons-working-docker-containers/

[13] J. C. Wang, W. F. Cheng, H. C. Chen and H. L. Chien,
"Benefit of construct information security environment
based on lightweight virtualization technology," 2015
International Carnahan Conference on Security
Technology (ICCST), Taipei, 2015, pp. 1-4.

[14] R. Dua, A. R. Raja and D. Kakadia, "Virtualization vs
Containerization to Support PaaS," 2014 IEEE
International Conference on Cloud Engineering, Boston,
MA, 2014, pp. 610-614.

[15] “Docker Swarm.” Internet:
https://docs.docker.com/engine/swarm/

[16] “NFS Storage.” Internet:
http://searchenterprisedesktop.techtarget.com/definition/Networ
k-File-System

https://docs.docker.com/engine/docker-overview/�
https://blog.docker.com/2017/06/docker-for-aws-%20azure-security/�
https://blog.docker.com/2017/06/docker-for-aws-%20azure-security/�
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjV2fe7gojVAhWJPo8KHc2mAdEQFggpMAA&url=http%3A%2F%2Fwww.ijates.com%2Fcurrentissue.php%3Fid%3D104&usg=AFQjCNEfpwZvxQIwKZnzx_td7dXZaXPT1w�
https://devops.com/docker-vs-vms/�
https://fawzi.wordpress.com/2009/05/24/virtualization%20and-protection-rings-welcome-to-ring-1-part-i/�
https://fawzi.wordpress.com/2009/05/24/virtualization%20and-protection-rings-welcome-to-ring-1-part-i/�
http://www.theserverside.com/feature/The-benefits-of-container-development-with-Docker�
http://www.theserverside.com/feature/The-benefits-of-container-development-with-Docker�
https://www.cloudhero.io/single-post/top-three-benefits%20using-docker�
https://www.cloudhero.io/single-post/top-three-benefits%20using-docker�
https://dzone.com/articles/5-key-benefits-docker-ci�
https://sweetcode.io/3-pros-3-cons-working-docker-�
https://docs.docker.com/engine/swarm/�
http://searchenterprisedesktop.techtarget.com/definition/Network-File-System�
http://searchenterprisedesktop.techtarget.com/definition/Network-File-System�

	Introduction
	Docker Concept
	Docker Architeture
	The Docker Daemon
	The Docker Client
	Docker Registries
	Docker Images
	Docker Containers

	Docker v/s Virtual Machine
	Advantages of Docker Containers
	Free and Open Source
	Ultra Consistent
	Rapid Deployment
	Portability
	Isolation
	Security

	Disadvantages of Docker Containers
	Persistent Data Storage is Complicated
	Compatibility with Older Machines
	Containers don’t run at Bare Metal Speed
	Platform Dependant

	Virtualization v/s Containers
	Conclusion and Future Scope
	References

