
DOI: http://dx.doi.org/10.26483/ijarcs.v8i8.4617
Volume 8, No. 8, September-October 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 135

 ISSN No. 0976-5697

CONVENTIONAL TO COMPONENT-BASED SOFTWARE: A CRITICAL
SURVEY ON INTERACTION AND INTEGRATION COMPLEXITIES

Umesh Kumar Tiwari
Department of Computer Science and Engineering

Graphic Era University, Dehradun
Dehradun, India

Abstract: There are various standard paradigms of software development including conventional, modular, object-oriented and component-based
software engineering (CBSE). Interaction and integration complexities of various piece of code play a vital role in the overall behavior of
software. As the code count increases the interaction level of software also increases as per the requirements of the software. In this paper we
perform a critical literature survey on the works of eminent researchers and practitioners. In this work we analyze three paradigms of
development, namely, conventional software, object-oriented software and component-based software (CBS). In this survey, we have considered
three parameters of comparison: measures and metrics used, key findings, and factors affecting the interaction and integration behavior of
software.

Keywords: object-oriented; component-based software; interaction; integration; complexity

I. INTRODUCTION

In general, complexity is termed as the assessment of
hardware and software resources needed by software. In
software development, complexity is treated as an indirect
measurement unlike the direct measurements like lines-of-
code or cost-estimation [1]. Internal as well external
interactions contribute a major role in software complexity.
In the context of software development, interaction
behaviour of various parts of program is used to measure the
complexity. These parts may be single line code, a group of
line of codes (functions), a group of functions (modules) or
ultimately components. As the size of parts of s software
increases, the count of interactions will also increase, as well
as the complexity.

Software Engineering principles are applicable on the
applications developed through either development
paradigm. Component-based software development (CBSD)
emphasizes “development with reuse” as well as
“development for reuse”. Development with reuse focuses on
the identification, selection and composition of reusable
components. The property of reusability is not applied only
to develop the whole system but also to develop the
individual components. The development for reuse is
concerned with the development of such components that
may be used and then reused in many applications, in similar
and heterogeneous contexts.

After discussing the introduction of work in section 1, we
have summarized the interaction and integration issues in
section 2. In section 3, we have performed the survey on the
literature available. Finally section 4 concludes this work.

II. INTEGRATION AND INTERACTION ISSUES

Software applications are composed of dependent or
independently deployable components. Assembling of these
components has a common intension to contribute their
functionalities to the system. Technically this assembling is
referred to as integration of and interaction among
components. We have sufficient number of measures and

metrics to assess the complexity of stand alone programs as
well as small-sized conventional software, suggested and
practiced by numerous practitioners [2, 3, 4, 5, 6, 7, 8]. In
literature, complexity of programs and software is treated as
a “multidimensional construct” [3, 9].

III. LITERATURE SURVEY

Thomas J. McCabe [10] developed a method to assess the
Cyclomatic complexity of a program. He used control-flow
graph of code to compute the complexity. McCabe used
graph theoretic notations to draw the control-flow graph
where a graph denoted as ‘G’ having ‘n’ number of nodes,
‘e’ number of connecting edges and ‘p’ number of
components. Cyclomatic complexity V(G) calculated as,
V(G) = e - n + 2p, where 2 is the “result of adding an extra
edge from the exit node to the entry node of each component
module graph” [2]. In control-flow graph, a sequential block
of code or a single statement is represented as a node, and
control flows among these nodes are represented as edges.
Cyclomatic complexity metric is easy to compute and
maintenance, gives relative complexity of various designs.

Finally, Halstead's [5] identified a complete set of metrics
to measure the complexity of a program considering various
factors. These metrics include the program vocabulary,
length, volume, potential volume, and program level.
Halstead proposed methods to compute the total time and
effort to develop the software. These metrics are based on the
lines of codes of the program. He defined program
vocabulary as the count of distinct operators and distinct
operands used in the program. The count of total operators
and operands used in a program is proposed as the Program
length. The Program volume has been defined as the storage
volume required representing the Program, and the
representation of program in the shortest way without
repeating operators and operands is known as potential
volume. Halstead has also defined the relationship between
these factors and metrics of programs.

Alan Albrecht [6] proposed Function-point analysis
technique to measure the size of a system in terms of
functionalities provided by the system. FPA categorizes all

Umesh Kumar Tiwari, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,135-139

© 2015-19, IJARCS All Rights Reserved 136

the functionalities provided by the software in five specific
functional units: External inputs provided to the software,
External outputs provided by the software, External inquiries
of the system under consideration, Internal logical files
presents data and content residing in the system, and External
interface files are the data and contents residing with other
systems and can be called to system under consideration.
Three complexity weights High, Low and Medium are
associated with these functional units using a set of pre-
defined values. In function-point analysis, 14 complexity
factors have been defined, which have a rating from 0 to 5.
On the basis of these factors, Alan calculated the values of
unadjusted function-point, complexity adjustment factors,
and finally the value of function points [2].

Henry and Kafura [11] proposed a set of complexity
computation method for software modules. Author’s
suggested a “Software Structure Metrics Based on
Information Flow that measures complexity as a function of
fan-in and fan-out” [12]. Authors proposed the complexity as
“the procedure length multiplied by the square of fan-in
multiplied by fan-out." This method is used to calculate the
count of “local information flows” coming to (fan-in) and
going from (fan-out) the module. Henry and Kafura defined a
length of the module as the procedure length which
calculated with the help of LOC or McCabe's complexity
metric. This metric can be computed comparatively early
stage of the development.

Kenneth Morris [13] proposed some object-oriented
metrics to assess complexity and productivity metrics.
Author’s identified some complexity factors like
Maintainability, Reusability, Extensibility, Testability,
Comprehensibility, Reliability and Authorability, that they
called “productivity impact variables". Morris proposed a
complete set of nine eligible metrics for Methods, Class,
Inheritance, Coupling and Cohesion.

Boehm [7] developed the ‘object-point’ metric through
level of complexity of the amount of screenshots, reports and
components. The level of complexities is categorized as
simple, medium or difficult.

Chidamber and Kemerer's [14] proposed a metric suite
for object-oriented software called as CK Metrics-suite. This
metric suite is one of the most detailed and popular research
works for object-oriented applications. Authors defined
metric suite for complexity, coupling cohesion, depth of
inheritance, and response set. These metric set are used to
asses the complexity of an individual class as well as the
complexity of the entire software system. In their metrics,
Chidamber and Kemerer used Cyclomatic method for the
complexity computation of individual classes.

Abreu and Rogerio Carapuca [15, 16, 17] proposed a
metric set named ‘Metrics for Object-Oriented Design’. In
this metric suite, two fundamental properties of object-
oriented programming are used, attributes and methods.
Authors proposed metrics for the basic structural system of
object-oriented idea as encapsulation, inheritance,
polymorphism, and message passing. This suit consists of
metrics for methods and attributes as assessment method for
encapsulation.

Cho et al. [18] developed some measure for the quality
and complexity of components for CBSE. They used
mathematical equations and expressions in their metrics. In
their work, authors identified three categories of complexity,
quality of component, customizability and reusability. They
used size, costs, efforts, and reuse level as the complexity
factors.

Narasimhan et al. [19] suggested couple of metrics to
assess the complexity of Component-Based Software. The

packing density metric maps the count of integrated
components, and the interaction density metric is used to
analyse the interactions among components. They identified
some constituents of the component in their work; these
constituents include line of code, operations, classes, and
modules. Authors also suggested a set of criticality criteria
for component integration and interaction.

Vitharana et al. [20] developed a method for fabrication
of components. Authors suggested some managerial factors
like cost-efficiency; assembling easiness, customization,
reusability, and maintainability. These are used to estimate
technical metrics as coupling-cohesion, count, volume and
complexity of components. They developed ‘Business
Strategy-based Component Design’ model.

Rashmi Jain et al. [21] assesses the association and
mappings of cause-and-effect among the requirements of the
system, structural design of the system and the complexity of
the procedure of the systems integration. They argued the
requirement of fast integration of components so that the
complexity impact of integration on architectural design of
components can be controlled. Authors identified 5 major
factors to analyse the integration complexity of software
system. Further these factors are divided into 18 sub-factors
including commonality in hardware and software
subsystems, percentage of familiar technology, physical
modularity, level of reliability, interface openness,
orthogonality, testability and so on.

Trevor Parsons et al. [22] proposed some specific
dynamic methods for attaining and utilising interactions
among the components in component-based development.
They also proposed component-level interactions that
achieve and record communications between components at
runtime and at design time. For their work, authors used Java
components.

Lalit and Rajinder [23] proposed a set of integration and
interaction complexity metrics to analyse the complexity of
Component-Based Software. They argue that complexity of
interaction have two implicit features, first within the
component, and second interaction from the other
components. Their complexity metrics include percentage of
component interactions, interaction percentage metrics for
component integration, actual interactions, and total
interactions performed, complete interactions in a
Component-Based Software.

Some complexity assessment techniques for CBSE are on
the basis of complexity properties including communication
among components, pairing, structure, and interface. The
interaction and integration complexity measures available in
the literature are explored considering the development
paradigms like: Convention Software and Programs, Objet-
Oriented Software, and Component-Based Software and
summarized in Table 1.

Umesh Kumar Tiwari, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,135-139

© 2015-19, IJARCS All Rights Reserved 137

Table I. Summary of Interaction and Integration Complexities

Paradigm Measures and Metrics Used Key Findings
Factors affecting
Interaction and

Integration Complexity

Author(s)/
References

Conventional
Software and

Programs

• Line of Code,
• Interaction among

Statements,
• Nodes and Interactions

• Author used control flow
graph of a program to compute
the Cyclomatic complexity.

• McCabe used graph theoretic
notations to draw the control
flow graph where a graph G
with n vertices, e edges and p
connected components.

• Conditional
Statements,

• Loop
Statements

• Switch cases

Thomas J.
McCabe

[10]

Conventional
Software and

Programs

• Line of Code,
• Count of operators,
• Count of Dissimilar

operands,
• Total count of Dissimilar

operators,
• Total count of Dissimilar

operands.

• Proposed a complete set of
metrics to measure the
complexity of a program
considering various factors,
like Program vocabulary,
Program length, Program
volume,

• Potential volume, and others.

• Program
Vocabulary,

• Program
Length,

• Program
Volume,

• Effort,
• Time

M. H.
Halstead

[5]

Modular
Programming

• External inputs
• External outputs
• External Enquiries
• Internal logical files
• External Interface files

• Proposed Function-point
analysis technique to measure
the size of a system in terms of
functionalities provided by the
system.

• 5 functional
units,

• 14 Complexity
factors,

• Complexity
adjustment
factors,

• Degree of
influence.

Alan Albrecht
and J. E. Gaffney

[6]

Modular
Programming

• Fan-in information,
• Fan-out information,
• Complexity of the

module
• Line of Code
• McCabe Cyclomatic

Complexity

• Author’s suggested a
“Software Structure Metrics
Based on Information Flow
that measures complexity as a
function of fan-in and fan-
out”.

• Number of
calls to the
module,

• Number of
calls from the
module,

• Length of the
module.

S. Henry and
D. Kafura

[11]

Object-Oriented
Software

• Methods,
• Inheritance,
• Coupling,
• Cohesion,
• Object Library

Effectiveness,
• Factoring Effectiveness,
• Method Complexity
• Application Granularity.

• Proposed some object-oriented
metrics to assess complexity
and productivity metrics,
including Average number of
methods per object class,
Inheritance tree depth,
Average number of uses
dependencies per object, Arcs,
and Degree of cohesion of
objects.

• Maintainability,
• Reusability,
• Extensibility,
• Testability,
• Comprehensibil

ity,
• Reliability and
• Authorability

Kenneth
Morris

[13]

Object-Oriented
Software

• Lines of code to count the
size,

• Number of Screenshots,
• Number of reports.

• Authors suggested the object-
point metric that is computed
using counts of the number of
screenshots, reports and
components based on their
complexity levels.

• Complexity levels are
classified as simple, medium
or difficult.

• Line of Code,
• Complexity

Levels.

B. Boehm

[7]

Object-Oriented
Software

• Cyclomatic method,
• Class complexity,
• Methods,
• Object-oriented

properties.

• Proposed one of the most
detailed and popular research
works in the context of object
oriented software, including
Weighted Method per Class,
Depth of Inheritance Tree,
Number Of Children.

• Complexity,
• Coupling,
• Cohesion,
• Inheritance,
• Number of

children, and

S. Chidamber
and C. Kemerer

[14]

Umesh Kumar Tiwari, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,135-139

© 2015-19, IJARCS All Rights Reserved 138

• Response set
Object-Oriented

Software
• Method Hiding Factor,
• Attribute Hiding Factor,
• Method Inheritance

Factor,
• Attribute Inheritance

Factor for Inheritance,
• Polymorphism factors,
• Coupling factors

• Authors identified two
fundamental properties of
object-oriented programming
are used, attributes and
methods.

• The Method Hiding Factor
and (MHF) and Attribute
Hiding Factor (AHF) are
proposed together as measure
of encapsulation.

• Encapsulation,
• Inheritance,
• Polymorphism,

and
• Message

passing

Fernando
Brito and Rogerio

Carpuca

[15]

Component-
Based Software

• Levels of complexity,
• Quality of components,
• Customizability.

• Proposed metrics to measure
the quality and complexity of
components.

• They used mathematical
equations and expressions in
their metrics.

• Size,
• Costs,
• Efforts, and
• Reuse level

E.S. Cho,
M.S. Kim, and

S.D. Kim

[18]

Component-
Based Software

• Indicates these values as
high or low,

• Establishes a relationship
among these proposed
metrics.

• Proposed metrics through a
hierarchical model consisting
of three layers, quality, criteria
and metrics.

• Understandabili
ty,

• Adaptability,
and

• Portability

H. Washizaki,
Y. Hirokazu and

F. Yoshiaki

[19]
Component-

Based Software
• Line of code, Operations,
• Classes, and
• Modules,
• Number of components

• Suggested two sets of metrics
to assess the complexity of
Component-Based Software.

• Two complexity metric suites
Component Packing Density
metrics and Component
Interaction Density.

• Risk associated
with
components,

• Constituents,
• Interactions

among
components,

Narasimhan
et. al.

[20]

Component-
Based Software

• Coupling,
• Cohesion,
• Number of Components,
• Component Size,
• Complexity.

• Proposed a methodology for
fabrication of components.

• Syntax and
• Semantics

Padmal
Vitharana,

Hemant Jain, and
Fatemeh

“Mariam” Zahedi

[21]
Component-

Based Software
• Prioritization of

Requirements,
• Functional Modularity,
• Feasibility,
• Interface,
• Testability

• Assesses the association and
mappings of cause-and-effect
among the requirements of the
system, architecture of the
system and the complexity of
the procedure of the systems
integration.

• Identified 5 major factors to
analyse the integration
complexity of software
system.

• Further these factors are
divided into 18 sub-factors

• Commonality
in hardware
and software
subsystems,

• Percentage of
familiar
technology,

• Physical
modularity,

• Level of
reliability,

• Interface
openness,

• Orthogonality,
testability

Rashmi Jain,
Anithashree

Chandrasekaran,
George Elias, and
Robert Cloutier

[23]

Component-
Based Software

• Static Interaction
complexity,

• Dynamic Interaction
complexity,

•

• Proposed some specific
dynamic methods for attaining
and utilising interactions
among the components in
component-based
development.

• Component-level interactions
that achieve and record
communications between
components at runtime and at
design time.

• Call traces,
• Call graphs,
• Runtime paths
• Calling context

trees

Trevor
Parsons, Adrian

Mos, Mircea
Trofin, Thomas
Gschwind, and

John Murphy

[24]

Component-
Based Software

• Interface,
• Implementation,

• Proposed a set of integration
and interaction complexity

• Maintainability,
• Reusability,

Latika Kharb,
Rajender Singh

Umesh Kumar Tiwari, International Journal of Advanced Research in Computer Science, 8 (8), Sept–Oct 2017,135-139

© 2015-19, IJARCS All Rights Reserved 139

• Deployment,
• Incoming and
• Outgoing interactions

metrics to analyse the
complexity of Component-
Based Software, including
Percentage of component
Interactions, Interaction
percentage metrics for
component integration.

and
• Reliability

[25]

IV. CONCLUSION

After Methods and metrics proposed so far in the
literature are defined on the basis of interactions among
instructions, operations, procedures, and functions of
individual and standalone programs and codes. These metrics
are appropriate for small-sized codes. Some measures are
also defined for object-oriented software, but for CBSE
applications these methods are not inadequate. In the CBSE,
components have connections and communications with each
other to exchange services and functionalities. Interaction
edges are used to denote the connections among components.
So there is an edge for each requesting communication and
similarly an edge for each responding communication. But
practitioners and researchers have not included both edges in
their complexity computations. They have used single edge
theory in their graph representations and in all their
assessments, which is not true for CBSE.

V. REFERENCES

[1] B. W. Boehm, M. Pendo, A. Pyster, E. D. Stuckle, and R. D.
William, “An Environment for Improving Software
Productivity”, IEEE Computer, June 1984.

[2] S. Pressman Roger, “Software Engineering A practitioners
Approach. Sixth Edition”, TMH International edition, 2005.

[3] S. Wake and S. Henry, “A Model Based on Software Quality
Factors which Predict Maintainability”, In Proc. Conference
on Sofmare Maintenance, 1988, pp. 382-387.

[4] V. R. Basili and D. H. Hutchens, “An Empirical Study of a
Syntactic Complexity Family”, IEEE Transactions on
Software Engineering, vol. 9, no. 6, pp. 664-672, November
1983.

[5] M. H. Halstead, “Elements of Software Science”, New York:
Elsevier North Holland, 1977.

[6] Alan Albrecht and J. E. Gaffney, Software Function Source
Line of code and Development Effort Prediction: A Software
Science Validation, IEEE Trans. Software Engineering, SE-9,
639-648, 1983.

[7] B. Boehm, “Anchoring the Software Process”, IEEE
Software, vol. 13, no. 4, pp. 73-82, 1996.

[8] M. M. Lehmam, and L. A. Belady, “Program Evolution -
Processes of Software Change”, 1985.

[9] Usha Kumari and S. Bhasin, “A composite complexity
measure for component-based systems”, ACM SIGSOFT
Software Engineering Notes, vol. 36, no. 6, Nov 2011.

[10] T. McCabe, “A complexity measure”, IEEE Transactions on
Software Engineering, vol. 2, no. 8, pp. 308–320, 1976.

[11] S. Henry and D. Kafura, "Software Structure Metrics Based
on Information Flow", IEEE Transactions on Software
Engineering, vol. 7, pp. 510-518, 1981.

[12] http://en.wikipedia.org/wiki/complexity.
[13] K. Morris, "Metrics for Object Oriented Software

Development", Masters thesis, M.I.T., Sloan school of
management, Cambridge, MA, 1989.

[14] S. Chidamber and C. Kemerer, "A Metrics Suite for Object -
Oriented Design", IEEE Transactions on Software
Engineering, vol. 20, issue 6, pp. 476-493, 1994.

[15] F. B. Abreu and Rogerio Carapuca, "Object-Oriented
Software Engineering: Measuring and Controlling the
Development Process", 4th International Conference on
Software Quality, McLean, VA, USA, 1994, pp. 3-5.

[16] F. B. Abreu 1995, "Design Metrics for Object-Oriented
Software System", In Proc. Workshop on Quantitative
Methods £COOP, 1995, pp. l-30.

[17] F. B. Abreu and W. Melo, "Evaluating the Impact of Object-
Oriented Design on Software Quality", 3rd International
Software Metrics Symposium, Berlin, Germany, 1996.

[18] E.S. Cho, M.S. Kim, and S.D. Kim, Component Metrics to
Measure Component Quality, Proceedings of the Eighth Asia-
Pacific on Software Engineering Conference (APSEC '01),
IEEE Computer Society, Washington, DC, USA, 2001,
pp.419-426.

[19] V. L. Narasimhan and B. Hendradjaya, "Theoretical
Considerations for Software Component Metrics",
Transactions on Engineering, Computing and Technology,
vol.10, pp. 169-174, 2005.

[20] Padmal Vitharana, Hemant Jain, and Fatemeh “Mariam”,
Zahedi, “Strategy-Based Design of Reusable Business
Components”, IEEE Transactions on Systems, Man, and
Cybernetics—PART C: Applications and Reviews, vol. 34,
no. 4, Nov 2004.

[21] Rashmi Jain, Anithashree Chandrasekaran, George Elias, and
Robert Cloutier, “Exploring the Impact of Systems
Architecture and Systems Requirements on Systems
Integration Complexity”, IEEE Systems Journal, vol. 2, no. 2,
June 2008.

[22] Trevor Parsons, Adrian Mos, Mircea Trofin, Thomas
Gschwind, and John Murphy, “Extracting Interactions in
Component-Based Systems”, IEEE Transactions on Software
Engineering, vol. 34, no. 6, Nov/Dec 2008.

[23] Latika Kharb, Rajender Singh, “Complexity Metrics for
Component-Oriented Software Systems”, ACM SIGSOFT
Software Engineering Notes, vol. 33 no. 2, March 2008.

	INTRODUCTION
	INTEGRATION AND INTERACTION ISSUES
	LITERATURE SURVEY
	Conclusion
	REFERENCES

