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Abstract: The forecasting of temperature on a seasonal time scales has been attempted by many researchers by different techniques at different 

time across the globe. It is a challenging task to forecast temperature on monthly and seasonal time scale. In this paper, an attempt has been 

made to develop a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to long term temperature data of Dibrugarh, Assam, 

for the period of fifty (50) years (1966-2015). The analysis revels that the best seasonal models which are satisfactory to describe the data are 

SARIMA(2,1,1)(0,1,1)12 for monthly maximum and SARIMA(2,1,1)(0,1,1)12 for monthly minimum temperature data respectively.  
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1. INTRODUCTION 

 

Climate change, now a days is one of the biggest 

environmental threat to all over the world. It is one of the 

growing problems to water resources, livelihoods and forest 

diversity. The analysis of long-term data sets on 

hydroclimatic plays an important role in climatic studies. In 

recent years, it has been becoming a field of interest to the 

scientific community of the whole world. But it is a difficult 

task to analyze the changing pattern of climate as it is 

happens due to various reasons, some of which are local and 

some are global factors. Analysis on hydroclimatic variables 

can provide information on how the climate has evolved 

over time. Since, the events are evolving with respect to 

time and they have some successive relation, hence it is 

relevant to apply time series analysis on the time dependent 

data. The main focus of time series analysis is to give some 

future prediction by analyzing the past data through 

modelling. To assess the nature of the climate change in 

different regions of the world, a number of time series 

studies have been conducted in recent years. Out of the 

existing approaches, auto regressive integrated moving 

Average (ARIMA) model is the most widely used methods 

in recent times in the field of hydroclimatology. It was 

firstly proposed by Box and Jenkins in 1970 [18]. It can not 

only grasp more original time series information but also its 

flexibility nature, it is widely used in meteorology [13], [5]. 

Another advantage of ARIMA model is that, it can also 

apply in non-stationary time series data with some clearly 

identifiable trends [18]. The model is generally written as 

ARIMA(p, d, q), where p and q are non-negative integers 

that correspond to the order of  autoregressive and moving 

average process respectively whereas d stands for order of 

difference the model. Since, periodicity of periodical time 

series is usually due to seasonal changes or any other natural 

reasons and so to account seasonal parameter, we can build 

a seasonal model viz., ARIMA(P,D,Q) model [11], where 

the parameters P, D and Q are seasonal autoregressive 

parameter, seasonal integrated parameter and seasonal 

moving average parameter respectively. Depending upon the 

data, one can build a multiplicative seasonal autoregressive 

moving average model (SARIMA), in short SARIMA(p, d, 

q)(P, D, Q)s model [19] where s represents period of time 

series data. In practical, the order of SARIMA model is 

generally not too large [9].  

[17] applied SARIMA models that counted for 92% of the 

total variability in the monthly means of air temperature and 

found good agreement with the actual observed values of 

temperature. According to them for highly variable time 

series, SARIMA models gives better forecasts report than 

the simple models which are only based on means of 

previous observations. [12] analyzed weather variability and 

the incidence of cryptosporidiosis with the comparison of 

time series Poisson regression and SARIMA models. They 

used time series Poisson regression and SARIMA models in 

testing the potential impact of weather variability on the 

transmission of cryptosporidiosis and found SARIMA 

model having better predictive ability than the Poisson 

regression model. [7] applied SARIMA on hourly bicycle 

count and temperature data and modelled Vancouver 

Bicycle Traffic using weather variables. By using SARIMA 

model on average monthly temperature, [1] found that the 

average temperatures are rising over time in Ahwaz station, 

which was an indication the fact that the globe is warming. 

For forecasting of monthly minimum and maximum 

temperatures in the Moulvibazar and Sylhet districts of 

Bangladesh, [15] used SARIMA model and found SARIMA 

(1,1,1) (1,1,1)12 , SARIMA (1,1,1) (0,1,1)12 and SARIMA 

(1, 1, 0) (1, 1, 1)12 , SARIMA (0, 1, 1) (1, 1, 1)12 for the 

maximum and minimum temperatures at Sylhet and 

Moulvibazar district, respectively. According to them these 

results would help the researchers to estimate the missing 
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temperature values and decision makers to establish better 

strategies. Further, [4] carried out a study for analyzing the 

trend and forecast maximum monthly temperature over the 

South Eastern Nigeria using SARIMA model. Depending on 

the best suited SARIMA model, the forecasted five years 

maximum temperature reflects to be slightly stable from that 

of the reference period. Moreover, [14] applied SARIMA 

technique to predict temperature and rainfall of Mirzapur, 

Uttar Pradesh (India) for five years by analyzing twelve 

years data from 1994 to 2006. The performances of the 

models were carried out using of correlation coefficient and 

root mean square error. The results witnessed of some 

reliable and satisfactory predictions for rainfall and 

temperature parameters on monthly scale. In another study, 

[16] fitted SARIMA model to average temperature for the 

period of 1980-2010 of Dibrugarh using automatic arima 

function i.e. auto.arima() in R software.  Keeping these 

points in mind, an attempt has been made to develop a 

SARIMA model to historical temperature data of Dibrugarh 

for the period of 1966-2015. The model is developed for 

both minimum and maximum temperature readings. 

The organizations of the paper are as follows: Section 2 

deals with the description of the study area. In Section 3, we 

have given sources of data and methodology undertaken in 

this study. Results and discussion are given in Section 4.  

Finally, conclusion of the study is given in Section 4.     

 

2. AREA OF THE STUDY 

 

The climate of North East India (NEI) is different from the 

other part of India. The river Brahmaputra plays the main 

role in this region. This happens due to some major factors 

such as orography, presence of alternating pressure cells of 

North West and that of the Bay of Bengal, tropical maritime 

humid air masses, roving periodic and occasional western 

disturbances and the local mountain and valley winds; and 

some minor factors like sub-tropical location and occasional 

development of local depression, reduction of thermal 

difference by the extensive forest etc. [2]. The region 

belongs to the transitions zone of tropic and extra tropic for 

which depression, cyclonic storms happens during pre-

monsoon, monsoon, post-monsoon season. Agriculture and 

allied activities gets the most importance in case of 

livelihood throughout the NEI. Tea is another key crop of 

NEI and Brahmaputra valley is the largest production area in 

India. Assam has 68.2% of the total NEI population against 

an area of 29.9% of the region, out of which 72% area came 

under hilly ecosystems. This entire region has two main 

river basins- Brahmaputra and Barak. A large number of the 

habitants have depended on natural resources of this region. 

This region is under diverse climate regimes which mainly 

depend on the southwest monsoon, (during June to 

September). Rainfall is the main resource of water for more 

than 60% of the crop area of Assam, and so these areas 

highly vulnerable to climate variability and climate change. 

The Brahmaputra valley receives a mean annual rainfall of 

2,293 mm [6]. 

 

 
Map: Study location 

 

The study area Dibrugarh (27.40 N, 94.90 E, 111 m amsl) is 

situated by the southern bank of Brahmaputra, in eastern 

part Assam. It is extends from 27o 5' 38'' N to 27o 42' 30'' N 

latitude and 94⁰33' 46'' E to 95⁰ 29'8'' E longitude, and 

bounded by Dhemaji district at North, Tinsukia district at 

East, Sibsagar district at North and South-West and Tirap 

district of Arunachal State on South-East. The area stretches 

from the South Bank of the Brahmaputra, which flows a 

length of 95 km through the northern margin of the district, 

to the Patkai foothills on the South. The Burhi Dihing, a 

major tributary of the Brahmaputra, flows through the 

district from east to west.  The Himalayan foothills, which 

are nearly 100 km away in the north of Dibrugarh and the 

other hills and mountain ranges in the eastern and southern 

part, prevents the rain bearing monsoon winds from 

escaping this region on one hand, while they do not allow 

the dry and cold winds of central Asia to enter the northeast 

region on the other. The Dibrugarh town experiences mild 

climate with low temperature and high rainfall throughout 

the years. In last four-five decades, the mean maximum 

temperature and mean minimum temperature are increases 

in case of most of the months as well as seasons during day 

time and night time of this region [8], [16].  

 

3. DATA AND METHODOLOGY: 

 

The data used in this study is completely secondary in 

nature. We have collected fifty (50) years temperature data 

of Dibrugarh from India Meteorological Department, 

Guwahati for the period of 1966-2015.  In this study, 

seasonal autoregressive integrated moving average 

(SARIMA) model propounded by [3] has been used. This is 

an advance technique of forecasting requires long seasonal 

time series data. This model decomposes historical data into 

an Autoregressive (AR) process, where there is a memory of 

past values, an Integrated (I) process, which accounts for 
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stabilizing or making the data stationary plus a Moving-

Average (MA) process, which accounts for previous error 

terms making it easier to forecast.  

 

3.1 Multiplicative Seasonal Autoregressive Integrated 

Moving Average:  

The multiplicative seasonal autoregressive integrated 

moving average (SARIMA) model is given by [3] 
S D d S

p S t Q tΦ (B ) (B) X μ Θ (B ) (B)e                      

                 (3.1.1) 

where et is the usual white noise process. The general model 

is denoted by ARIMA (p, d, q) (P, D, Q)S. The ordinary 

autoregressive and moving average components are 

represented by the following polynomials (B) and (B) of 

orders p and q, respectively,  
p

p BBB   ....-1(B) 2
21    

      (3.1.2) 
q

q
2

21 B....BB1(B) θθθθ      (3.1.3) 

and the seasonal autoregressive and moving average 

components are represented by the following polynomials

)(P
SB and )(BS

Q  of order P and Q respectively, 

S S 2S PS

P 1 2 PΦ (B ) 1 Φ B Φ B ... Φ B         (3.1.4) 

S S 2S QS

Q 1 2 Q(B ) 1 B B ... B         (3.1.5) 

Seasonal difference components are represented by: 
d d D S D

S(1 B) and (1 B )     
 

The steps involving in Box and Jenkins (1970) methodology 

are given below [10]: 

Step- 1 

a. Data Preparation: Transform data to stabilize 

variance and difference 

data to obtain stationary 

series. 

b. Model Selection: Examine autocorrelation 

function (ACF) and partial 

autocorrelation function 

(PACF) to identify 

potential models. 

Step: 2 

a. Estimation: Estimate parameters in potential 

models. Select the best model 

using suitable criterion. 

b. Diagnostic: Check ACF and PACF of residuals. 

Examine residuals follow white 

noise or not. If it does not 

follow white noise, select 

another model by model 

selection criterion. 

Step: 3 

a. If residuals follow white noise, use the model for 

forecasting. 

 

4. RESULTS AND DISCUSSION 

 

The long term temperature records consisting of monthly 

average of minimum and maximum temperature data for 50 

years, starting on January 1966 to December, 2015 has been 

used in this study. Here, we have considered following two 

cases: 

Case I: Developing a seasonal ARIMA model for monthly 

minimum temperature data. 

Case II: Developing a seasonal ARIMA model for monthly 

maximum temperature data.   

 

4.1 Case I: Developing a seasonal ARIMA model for 

monthly minimum temperature data  

We have plotted year in X-axis and observed minimum 

temperature data in Y-axis in Fig. 4.1.1. But it seems 

difficult to determine the trend of the data by visual 

inspection. Therefore, to examine the trend, we decompose 

the data by additive decomposition method by the statistical 

software R as depicted in Fig. 4.1.1. From decomposition, a 

distinct upward trend of minimum temperature pattern from 

1966 to 2015 could be obtained. In Fig. 4.1.1, it is also 

observed that the presence of strapping seasonal cycle in the 

minimum temperature data set.  

 
Fig. 4.1.1: Decomposition of Time Series by Additive 

Method during 1966-2015 

 

Fig. 4.1.2 consists of plots of ACF and PACF taking 48 lag 

values in X-axis and autocorrelation values in Y-axis for the 

monthly minimum temperature series. The seasonal 

autocorrelation relationships are shown quite prominently in 

this display. Therefore, as shown in Fig 4.1.1 and Fig. 4.1.2, 

due to the presence of upward trend and strong seasonality 

would lead us to specify a non stationary model.  But, 

according to B-J methodology we must ensure that the time 

series being analyzed is stationary before we fit SARIMA 

model. 

 
Fig. 4.1.2: ACF and PACF of the original data 

 

 Fig.4.1.3 shows ACF and PACF of the of the 

minimum temperature data after taking a first difference. 

The strong seasonality is still present as evidenced by the 

behavior of ACF shown in Fig. 4.1.3. Therefore, we decide 

to take 12-month differences of the first differenced data to 

remove the seasonal influence. 
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Fig. 4.1.3: ACF and PACF of first difference of the 

original data 

 

We plot the ACF and PACF for the seasonal differenced 

series in Fig. 4.1.4.  In Fig. 4.1.4, it is observed that the 

seasonality of the data is gone now. It also confirms that 

very little autocorrelation remains in the series after these 

two differences have been undertaken. Also, the p-

value=0.11 of the KPSS test is greater than 0.05, so, we 

cannot reject the null hypothesis of level or trend stationary  

 
Fig. 4.1.4: ACF and PACF of first and seasonal 

difference of the original data 

 

Next, our aim is to find an appropriate ARIMA model from 

the ACF and PACF as shown in Fig. 4.1.4. In Fig.4.1.4, the 

significant spike at lag 1 in the ACF suggesting a non-

seasonal MA(1) component. Similarly, the significant spike 

at seasonal lag 12 in the ACF indicating a seasonal MA(1) 

component. Further, there are two prominent significant 

spikes at lags 1 and 2 in the PACF indicating an AR(2) 

might be feasible non-seasonal component. Therefore, we 

acquire a rough idea that ARIMA(2,1,1)×(0,1,1)12 model, 

may be tentatively appropriate to our minimum temperature 

data which is given by 

 
12 2 12

t 1 2 1 1(1 B)(1 B )X (1 B B )(1 B)(1 B )      
 

      (4.1.1)
 

The maximum likelihood estimates of the parameters 
obtained from R software are as follows:   

1 2 1 1
ˆ ˆ ˆ ˆ=0.0945, 0.0867, 0.9398, 0.8802         

and then estimated model is given b 
12 2

t

12
t

(1 B)(1 B )X (1 0.0945B 0.0867B )(1 0.9398B)

                                (1 0.8802B )e

     

     

      (4.1.2)
 

All the coefficients of the estimated model are highly 

significant because p-values are less than 0.05. Next, for 

checking, we have considered other ARIMA models to our 

minimum temperature data with different combinations of p, 

d, q, P, D and Q and compared their performance using AIC. 

List of top four ARIMA models are given in Table 4.1.1 

with their respective AIC values [Akike (1974)] and found 

that the ARIMA(2,1,1)(0,1,1)12 model selected initially has 

the lowest AIC value. Thus, in the next step we go for the 

diagnostic checking of fitted ARIMA(2,1,1)(0,1,1)12 model.  

 
Fig. 4.1.5.: Diagonistic checking of residuals 

 

If the model fits well, the standardized residuals estimated 

from this model should behave as an i.i.d. (independent and 

identically distributed) sequence with mean zero and 

variance 2. Such a sequence is referred to as white noise. 

Fig. 4.1.5 displays a plot of the standardized residuals, the 

ACF of the residuals and the p-values of the Q-statistic at 

lag 1 through 12. From standardized plot of residuals, it is 

observed that only one residual fall outside the limit of -3 

and +3 which is accounted as outliers for the model. Here, 

the Ljung-Box test statistic is 3.9248, and the p-value is 

0.9721, so we cannot reject the null hypothesis of 

independence in this residual series. Using the white noise 

test (from the normwn.test package in R: Perform a 

univariate test for white noise), we obtain the p-value of 

0.0911 which means the residuals series is white noise (with 

mean 0 and variance 2). To be sure that the predictive 

model cannot be improved upon, it is also a good idea to 

check whether the forecast errors are normally distributed 

with mean zero and constant variance. The histogram of the 

forecast error is given in Fig. 4.1.6. 

 
Fig. 4.1.6: Histogram of residuals 
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Fig 4.1.6 shows that the distribution of forecast errors is 

roughly centered on zero, and is more or less normally 

distributed. Moreover, we have applied Komogorov-

Smirnov (K-S) test to the residuals and found that 

D=0.0277, p-value =0.3212 which indicates that the 

residuals follow normal distribution well. Now, to check the 

validity of the fitted model, the actual observations are 

plotted with predicted values from 2006-2015 (120 months) 

in Fig. 4.1.7. where red line represents predicted minimum 

temperature values from our model whereas blue line 

represents actual observations. From Fig. 4.1.7, it is 

observed that the amount of predicted minimum temperature 

from 2006-2015 is almost equal and exact pattern with the 

actual temperature data. Therefore, our proposed model 

would be good fitted to the observed minimum temperature 

data. 

 
Fig. 4.1.7:  Plot of predicted values with original series 

(2006-2015) 

Table 4.1.1: Some ARIMA models for minimum 

temperature data 

Model AIC Root Mean Square 

Error 

ARIMA(2,1,1)(0,1,1) 1541.3 0.8663 

ARIMA(2,1,1)(1,1,1) 1542.4 0.8710 

ARIMA(1,1,1)(1,1,1) 1550.1 0.8810 

ARIMA(0,1,1)(0,1,1) 1560.8 0.8897 

 

4.2 Case II: Developing a seasonal ARIMA model for 

monthly maximum temperature data: 

 Similarly, as in Section 4.1, we have plotted year in 

X-axis and observed maximum temperature data in Y-axis 

in Fig. 4.2.1. To examine the trend, we decompose the data 

by additive decomposition as depicted in Fig. 4.2.1. A clear 

upward trend of temperature pattern from 1966 to 2015 

could be observed in Fig. 4.2.1. It is also observed that the 

presence of strong seasonal cycle in the maximum 

temperature data set.  

 
Fig. 4.2.1: Decomposition of Time Series by Additive 

Method during 1966-2015 

Next, plots of ACF and PACF taking 48 lag values for the 

monthly maximum temperature series are given in Fig. 

4.2.2. It is observed that the seasonality in the data is shown 

quite significantly in Fig. 4.2.2 which indicates that our data 

is non stationary.  According to B-J methodology we have to 

transform our data to stationary by using suitable 

transformation. 

 
Fig. 4.2.2: ACF and PACF of the original data 

 

 
Fig. 4.2.3: ACF and PACF of first difference of the 

original data 

 

Therefore, we have taken first difference to our data to make 

it stationary. Fig. 4.2.3 shows ACF and PACF of the of the 

transform data. But, the seasonality is still present because 

of the significant spikes are shown in the seasonal lags of 

ACF in Fig. 4.2.3. Therefore, we come to a decision to take 

12-month differenced of the first differenced maximum 
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temperature data to remove the seasonal influence. After 

that, stationarity of the differenced data is checked by KPSS 

test and found that p-value of the statistic is 0.32which is 

greater than 0.05, so, we accept the null hypothesis of level 

or trend stationary of the difference data. 

 
Fig. 4.2.4: ACF and PACF of first and seasonal 

difference of the original data 

 

Next, the ACF and PACF for the seasonal differenced of the 

first difference series is given in Fig. 4.2.4, which is almost 

similar to ACF and PACF of minimum difference data.  In 

Fig. 4.2.4, the significant spike at lag 1 in the ACF 

signifying a non-seasonal MA(1) component. Similarly, the 

significant spike at seasonal lag 12 in the ACF indicative of 

a seasonal MA(1) component. Further, there are two 

prominent significant spikes at lags 1 and 2 in the PACF 

representing an AR(2) might be reasonable non-seasonal 

component. Therefore, we attain a rough idea that 

ARIMA(2,1,1)×(0,1,1)12 model, be hesitantly appropriate to 

our maximum temperature data. The maximum likelihood 

estimate of the parameters for ARIMA(2,1,1)×(0,1,1)12  
obtained is as follows:   

1 2 1 1
ˆ ˆ ˆ ˆ=0.1509, 0.1052, 0.9820, 0.9189        

and then estimated model is given by 
12 2

t

12

(1 B)(1 B )X (1 0.1501B 0.1052B )(1 0.9820B)

                                (1 0.9189B )

     

            

      (4.2.1)
 

The coefficients of the estimated model are highly 

significant (p-value <0.05). Similarly, as in Section 4.1, for 

checking purpose, we have considered other ARIMA 

models to our maximum temperature data with different 

combinations of p, d, q, P, D and Q and compared their 

performance using AIC. Similarly, top four ARIMA models 

are given in Table 4.2.1. Among them our initial selection 

model i.e. ARIMA(2,1,1)(0,1,1)12  has the lowest AIC value. 

Therefore, we move for the diagnostic checking of the 

residuals of fitted ARIMA(2,1,1)(0,1,1)12 model. 
 

 

 
Fig. 4.2.5: Diagonistic checking of residuals 

 

Fig. 4.2.5 displays a plot of the standardized residuals, the 

ACF of the residuals and the p-values of the Q-statistic at 

lag 1 through 12.  Also, this figure shows, none of the 

autocorrelations is individually statistically significant.  

Further, the Ljung-Box test statistic is 13.32, and the p-value 

is 0.2727, so we accept the null hypothesis of independence 

in the residual series. Moreover, p-value of the white noise 

test is 0.9723 which means that the residuals series follow 

white noise (with mean 0 and variance 2) process. The 

histogram of the forecast error is given in Fig. 4.2.5. 

 
Fig. 4.2.6:  Histogram of residuals 

 

Fig. 4.2.6 shows that the distribution of forecast errors is 

roughly centered on zero, and is more or less normally 

distributed. Also, K-S test (D = 0.0277, p-value= 0.7480) 

confirms that residuals follow normal distribution well. As 

in Section 4.1, to check the validity of the fitted model, the 

actual observations are plotted with predicted values from 

2006-2015 (120 months) in Fig. 4.2.6. where red line 

represents predicted maximum temperature values whereas 

blue line represents actual. From Fig. 4.2.7, it is observed 

that the amount of predicted maximum temperature from 

2006-2015 is almost equal and similar pattern with the 

actual temperature for the last 10 years. Therefore, our 

proposed model would be good fitted to the observed 

maximum temperature data. 
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Fig. 4.2.7: Plot of predicted values with original series 

(2006-2015) 

Table 4.2.1: Some ARIMA models for maximum 

temperature data 

Model AIC Root Mean Square 

Error 

ARIMA(2,1,1)(0,1,1) 1867.29 1.134 

ARIMA(1,1,1)(0,1,1) 1875.1 1.173 

ARIMA(0,1,1)(1,1,1) 1880.74 1.321 

ARIMA(0,1,1)(0,1,1) 1883.7 1.673 

 

5. CONCLUDING REMARKS 

 

In this paper, the monthly temperature record in the 

Dibrugarh region has been studied using the Box-Jenkins 

(SARIMA) methodology. The estimation and diagnostic 

analysis results revealed that the models’ are adequately 

fitted to the historical data. The residual analysis, confirmed 

that there is no violation of assumptions in relation to model 

adequacy. Our selected models, SARIMA (2, 1, 1) (0, 1, 

1)12 and SARIMA (2, 1, 1) (0, 1, 1)12 for maximum and 

minimum temperature data which can be used for 

forecasting purpose that can help decision makers to 

establish strategies for Dibrugarh, Assam, India. As such our 

selected model may add to the existing knowledge of 

weather forecasting in North-East India, particularly in 

Assam.  Weather forecaster in this region may be benefited 

with the presented statistical model. 
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