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Abstract: Clustering is a widely used technique to partition data in homogeneous groups. It finds applications to Web text and video information 

retrieval. The main goal of clustering algorithms is to discover the hidden structure of data and group them without any a-priori knowledge of the 

data domain. Clustering is often used for exploratory tasks. In this paper we survey the principal strategies for clustering, the main clustering 

objective functions and related algorithms, first we discussed FPF algorithm for the k-center problem then we improved the Furthest-point-first 

algorithm in terms of speed and quality. 
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I. INTRODUCTION TO CLUSTERING 

Clustering is a technique to split a set of objects in groups 

such that similar objects are grouped together, while objects 

that are not similar fall in different clusters. The choice of the 

notion of similarity (or distance) among objects that are 

needed to be clustered is of crucial importance for the final 

result. Clustering algorithms have no a-priori knowledge about 

the data domain, its hidden structure and also the number of 

hidden classes in which data are divided is unknown[1]. For 

this characteristic, clustering is often referred as un-supervised 

learning in contrast to classification (or supervised learning) in 

which the number of classes is known and for each class a 

certain number of examples are given. The independence of 

clustering algorithms from the data domain is at the same time 

the secret of its success and its main drawback. In fact since 

clustering does not need any a-priori knowledge of the data 

domain, it can be applied to a widerange of problems in 

different application areas Dealing with text documents is one 

of the foremost issues in information retrieval. In this context, 

clustering plays a strategic role. Large text document corpora 

have become popular with the growth of the Internet and the 

decrease of price of disk storage space and connection band-

width[2]. 

A. Clustering Strategy 

Clustering algorithms can be classified according with 

many different characteristics. One of the most important is 

the strategy used by the algorithm to partition the space [3]: 

B. Partitional Clustering:  

given a set O = {O1, . . . . On} of n data objects, the goal 

is to create a partition C = {C1, . . . , Ck} such that: 

� i � [1, k]    Ci �� 

When the data representation and the distance function d 

have been chosen, partitional clustering reduces to a problem 

of minimization of a given target function. The most widely 

used: 

K-center minimizes the maximum cluster radius 

Minmax max d(x,Cj) 

            j    x� cj 

C. FPF Algorithm for the k-Center Problem 

One of the possible goals for partitional clustering is the 

minimization of the largest cluster diameter solving the k-

center problem[4]. More formally the problem is defined as: 

Definition 1. The k-centers problem: Given a set O of points 

in a metric space endowed with a metric distance function d, 

and given a desired number k of resulting clusters, partition O 

into non-overlapping clusters C1, . . . ,Ck and determine their 

“centers” c1, . . . , ck � O so that maxj max x�Cj d(x, cj ) (i.e. 

the radius of the widest cluster) is minimized. 

II. BASIC ALGORITHM 

Given a set O of n points, FPF increasingly computes the 

set of centers c1 � . . . � ck � O, where Ck is the solution to 

the k-center problem and C1 = {c1} is the starting set, built by 

randomly choosing c1 in O. At a generic iteration 1 < i � k, 

the algorithm knows the set of centers Ci−1 (computed at the 

previous iteration) and a mapping � that associates, to each 
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point p � O, its closest center �(p) � Ci−1. Iteration i consist 

of the following two steps: 

A. Find the point p � O for which the distance to its closest 

center, d(p, �(p)),is maximum; make p a new center ci 

and let Ci = Ci−1 �{ci}. 

B. Compute the distance of ci to all points in O \ C i−1  to 

update the  mapping � of points to their closest center. 

After k iterations, the set of centers Ck = {c1, . . . , ck} 

and the mapping � define the clustering. Cluster Ci is the set 

of points {p � O \ Ck such that �(p) = ci}, for i � [1, k]. Each 

iteration can be done in time O(n), hence the overall cost of 

the algorithm is O(kn)[5].  

FPF: 

Data: Let O be the input set, k the number of clusters 

Result: C, k-partition of O 

C = x such that x is an arbitrary element of O; 

for i = 0; i < k; i + + do 

Pick the element x of O \ C furthest from the closest element 

in C; 

Ci = Ci = x; 

end 

forall x � O \ C do 

Let i such that d(ci, x) < d(cj , x), �j � i Ci append (x); 

end 

Algorithm 1: The furthest point first algorithm for the k-center 

problem. 

III. K-MEANS 

The k-means algorithm is probably the most widely used 

in the literature. Its success comes from the fact it is simple to 

implement, enough fast for relatively small datasets and it 

achieves a good quality. The k-means algorithm can be seen as 

an iterative cluster quality booster. It takes as input a rough k-

clustering (or, more precisely, k candidate centroids) and 

produces as output another k-clustering, hopefully of better 

quality. K-means, as objective function, attempts to minimize 

the sum of the squares of the inter-cluster point-to-center 

distances[6]. More precisely, this corresponds to partition, at 

every iteration, the input points into non-overlapping clusters 

C1, . . . ,Ck and determining their centroids �1, . . . , �k so that 

 
Is minimized. 

It has been shown that by using the sum of squared 

Euclidean distances as objective function, the procedure 

converges to a local minimum for the objective function 

within a finite number of iterations. The main building blocks 

of k-means are [7]: 

A. The Generation of the Initial k Candidate Centroids:  

In this phase an initial choice of candidate centroids must 

be done. This choice in critic because both the final clustering 

quality and the number of iterations needed to converge are 

strongly related to this choice.  

 

B. The main Iteration Loop:  

In the main iteration loop, given a set of k centroids, each 

input point is associated to its closest centroid, and the 

collection of points associated to a centroid is considered as a 

cluster. For each cluster, a new centroid that is a (weighted) 

linear combination of the points belonging to the cluster is 

recomputed, and a new iteration starts. 

C. The termination condition:  

Several termination conditions are possible; e.g. the loop 

can be terminated after a predetermined number of iterations, 

or when the variation that the centroids have undergone in the 

last iteration is below a predetermined threshold. The use of k-

means has the advantage that the clustering quality is steadily 

enough good in different settings and with different data. This 

makes k-means the most used clustering algorithm.  

D. Initialize k-Means:  

Essentially k-means accepts as input an initial clustering 

that can be made with any clustering algorithm. It is well-

known that the quality of the initialization (i.e. the choice of 

the initial k centroids) has a deep impact on the resulting 

accuracy. Several methods for initializing k-means are: 

RC The simplest initialization for k-means is the one in which 

the initial centroids are Randomly Chosen among the input 

points and the remaining points are assigned to the closest 

centroid. The resulting clustering is often referred as random 

clustering. 

RP In the Random Perturbation, for each dimension dj of the 

space, the distribution of the projections on dj of the data 

points is computed, along with its mean �j and its standard 

deviation �j ; the k initial centroids are obtained through k 

perturbations, driven by the �j’s and �j’s, of the centroid of all 

data points. 

MQ MacQueen’s proposed a variant of k-means: the initial 

centroids are randomly chosen among the input points, and the 

remaining points are assigned one at a time to the nearest 

centroid, and each such assignment causes the immediate 

recomputation of the centroid involved. Then k-means is 

initialized with the resulting clustering 

IV. IMPROVING THE FPF ALGORITHM FOR 

THE K-CENTER PROBLEM 

In this paper we devoted to improve the Furthest Point 

First algorithm from both the computational cost point of view 

and the output clustering quality. Since theoretically the FPF 

algorithm as proposed by Gonzalez [8] is optimal (unless P = 

NP), only heuristics can be used to obtain better results and, in 

the worst case, it is not possible to go behind the theoretical 

bounds. We profiled FPF and analyzed the most 

computational expensive parts of the algorithm. We found that 

most of the distance computations are devoted to find the next 

furthest point. We observed that there are cases such that some 

distance computations can be avoided without changing the 

final clustering algorithm. FPF clustering quality can be 

improved modifying part of the clustering schema. We 

describe approaches that use the random sampling technique 

to improve clustering output quality, we call this algorithm M-

FPF. Another crucial shortcoming of FPF is that it selects a set 
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of centers not representative of the clusters. This phenomenon 

must be imputed to the fact that, when FPF creates a new 

center, it selects the furthest point from the previous selected 

centers and thus the new center can likely be close to a 

boundary of the subspace containing the data set. To 

overcome this problem we modify M-FPF to use medoids 

instead of centers.  

A. Exploiting the Triangular Inequality to Improve the 

FPF Speed 

We observed that most of the running time of the FPF 

algorithm is devoted to compute distances for finding the 

closest center to each point. More precisely at a generic 

iteration 1 < i � k, after finding the center �k, n − k distances 

must be computed to decide whether or not to assign a point to 

the new center. If this is done in a straightforward manner it 

takes O(n) time per iteration, thus the total computational cost 

of the algorithm is O(nk). 

Exploiting the triangular inequality, in certain conditions 

we can avoid to compute the distances among all the points in 

a cluster and the new center being sure that they are closer to 

their center. Unfortunately the worst case time complexity still 

remain O(nk) because the number of saved distance 

computations depends on data distribution and thus, it can not 

be predicted in advance.  

B. We modified the Algorithm as Follows: 

Consider, in the FPF algorithm, any center ci and its 

associated set of closest points Ci. Store Ci as a ranked list, in 

order of decreasing distance to ci. When a new center cj is 

selected, scan Ci in decreasing order of distance, and stop 

scanning when, for a point p� Ci, it is the case that d(p, ci) � 

½ d(cj , ci). By the triangular inequality, any point p that 

satisfies this condition cannot be closer to cj than to ci. This 

rule filters out from the scan points whose neighbor cannot 

possibly be cj , thus significantly speeding up the 

identification of neighbors.  

C. Using a Random Sample 

The efficiency of the algorithm is further improved by 

applying FPF algorithm not to the whole data set but only to a 

random sample of size n� = �nk of the input points [9]. Note 

that given that k � n, it is always true that n� � n. Then we add 

the remaining (n − n�) points to the cluster of their closest 

center, one by one. 

 
 

Figure1: Exploiting the triangular inequality. 

 

Also in the operation of insertion of the (n − n�) remaining 

points, the bottleneck is the time spent computing distances to 

the point to the closest center. 

This operation can be made more efficiently [] exploiting 

the triangular inequality even if the worst case running time 

does not change. Consider to have available the distances 

between all the pairs of centers of the clustering. Let p be the 

new point to be inserted in the clustering, by the triangular 

inequality if ½ d(ci, cj) > d(ci, p) then d(ci, p) < d(cj , p). It 

means that the computation of the distance d(cj , p) can be 

safely avoided.  

µ-FPF: 

Data: Let O be the input set, k the number of desired clusters 

Result: C: a k-partition of O 

Initialize R with a random sample of size �|O|k elements of O; 

C = FPF(R, k); 

forall Ci � C do 

�i = getCenter (Ci); 

end 

forall p in O \ R do 

assign p to cluster Ci such that d(p, �i) < d(p, �j), �j 6= i; 

end 

Algorithm 2: M-FPF. 

D. Using Medoids as Centers 

The concept of medoid was introduced by Kaufman and 

Rousseeuw [10]. Medoids have two main advantages with 

respect to centroids: 

First of all, they are elements of the input and not 

“artificial” objects. This make medoids available also in those 

environments in which the concept of centroid is not well 

defined or results artificious. evertheless, in many 

environments (i.e texts) centroids tends to become dense 

objects with a high number of features more of which of poor 

meaning. This makes centroids to lose representativeness and 

compute distances with them becomes more expensive with 

respect to distances between “normal” objects. 

The main drawback of the original definition is that the 

clustering algorithm (Partition around Medoids) and the 

computation of medoids is expensive to overcome this 

disadvantage many different re-definitions of medoids were 

introduced in the literature. 

In the context of the Furthest Point First heuristic where 

some input points are elected as cluster centers and are used to 

determinate which input points belong to the cluster, the 

restrictions of the use of centroids are not present. However, 

we observed that, although the objects selected from FPF as 

centers determine the points belonging to the cluster, they are 

not “centers” in the sense suggested by the human intuition. 

The computation of the medoid is quadratic in the number of 

points of O. In fact, one should compute the distance between 

all the possible pairs of objects of the input in order to find the 

diametral points. Following [11] it is possible to find a good 

approximation a and b in linear time using the following 

search schema: 

[a] Select a random point p � O 

[b] In O (n) find the furthest point from p and call it a 

[c] In O (n) find the furthest point from a and call it b 

A further approximation of the medoid computation is 

still possible. Although it reduces drastically the cost during 

the update procedure, it is quite rough and should be used only 

in those online contexts where computational time makes the 

difference or in those environments where there is a huge 
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amount of redundant data. After the first time in which we 

find a, b and the medoid m, when a new point p is inserted in 

the cluster, the update of the medoid can be done using the 

following procedure: 

i. If d(p, a) > d(a, b) �  d(p, a) > d(p, b) discard b and 

replace it with p 

ii. If d(p, b) > d(a, b) �  d(p, b) > d(p, a) discard a and 

replace it with p 

iii. If d(a, b) > d(p, a) � d(a, b) > d(p, b): 

If |d(p, a) − d(p, b)| + |d(p, a) + d(p, b) − d(a, b)| < |d(m, a) 

− 

d (m, b)| + |d(m, a) + d(m, b) − d(a, b)| discard m and p 

become the new medoid 

– Otherwise discard p 

After the first initialization, this procedure requires only the 

computation of two distances 

µ -FPF-MD: 

Data: Let O be the input set, k the number of desired clusters 

Result: C: a k-partition of O 

Initialize R with a random sample of size �|O|k elements of O; 

C = FPF(R, k); 

forall Ci � C do 

ti = getRandomPoint (Ci); 

ai = ci such that max d(ci, ti) for each ci � Ci; 

bi = ci such that max d(ci, ai) for each ci � Ci; 

mi = ci such that 

min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|; 

end 

forall p in O \ R do 

assign p to cluster Ci such that d(p,mi) < d(p,mj ), �j � i; 

if d(p, bi) > d(ai, bi) then ai = p ; 

if d(p, ai) > d(ai, bi) then bi = p ; 

if d(p, bi) > d(ai, bi) or d(p, ai) > d(ai, bi) then 

mi = ci such that 

min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|; 

end 

end 

Algorithm 3: µ -FPF-MD. 

V. CONCLUSION 

Clustering based approaches are proposed in the literature 

K-means is too slow to be applied to on-line contexts like the 

Web. Clustering is typically not considered as a possible 

approach due to its computational cost. In this paper we 

studied the problem of FPF algorithm for the k-center problem 

We Improving he FPF algorithm for the k-center problem by 

Exploiting the triangular inequality to improve the FPF speed 

Using medoids as centers called M-FPF-MD algorithm, 

further we plan to evaluate the performance of the algorithm 

for static and dynamic clustering. 
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