
��������	�
����	�
�������������

��� ����!��"�����#�������

�$#$��!%�&�&$��

������'���(���������)))��*����������

© 2010, IJARCS All Rights Reserved 455

�����������	
��
�	�

Modified FPF algorithm for clustering the web

Dr. M. Hanumanthappa
*

Reader,

Department of Computer Science & Applications,

Bangalore University,

Bangalore,India

hanu6572@hotmail.com

B R Prakash

Research Scholar,

Department of Computer Science & Applications,

Bangalore University,

Bangalore,India

brp.tmk@gmail.com

Manish Kumar

Research Scholar,

Department of Computer Science & Applications,

Bangalore University,

Bangalore,India

manishkumarjsr@yahoo.com

Abstract: Clustering is a widely used technique to partition data in homogeneous groups. It finds applications to Web text and video information

retrieval. The main goal of clustering algorithms is to discover the hidden structure of data and group them without any a-priori knowledge of the

data domain. Clustering is often used for exploratory tasks. In this paper we survey the principal strategies for clustering, the main clustering

objective functions and related algorithms, first we discussed FPF algorithm for the k-center problem then we improved the Furthest-point-first

algorithm in terms of speed and quality.

Keywords : Clustering, k-center, k-means, FPF algorithm

I. INTRODUCTION TO CLUSTERING

Clustering is a technique to split a set of objects in groups

such that similar objects are grouped together, while objects

that are not similar fall in different clusters. The choice of the

notion of similarity (or distance) among objects that are

needed to be clustered is of crucial importance for the final

result. Clustering algorithms have no a-priori knowledge about

the data domain, its hidden structure and also the number of

hidden classes in which data are divided is unknown[1]. For

this characteristic, clustering is often referred as un-supervised

learning in contrast to classification (or supervised learning) in

which the number of classes is known and for each class a

certain number of examples are given. The independence of

clustering algorithms from the data domain is at the same time

the secret of its success and its main drawback. In fact since

clustering does not need any a-priori knowledge of the data

domain, it can be applied to a widerange of problems in

different application areas Dealing with text documents is one

of the foremost issues in information retrieval. In this context,

clustering plays a strategic role. Large text document corpora

have become popular with the growth of the Internet and the

decrease of price of disk storage space and connection band-

width[2].

A. Clustering Strategy

Clustering algorithms can be classified according with

many different characteristics. One of the most important is

the strategy used by the algorithm to partition the space [3]:

B. Partitional Clustering:

given a set O = {O1, On} of n data objects, the goal

is to create a partition C = {C1, . . . , Ck} such that:

� i � [1, k] Ci ��

When the data representation and the distance function d

have been chosen, partitional clustering reduces to a problem

of minimization of a given target function. The most widely

used:

K-center minimizes the maximum cluster radius

Minmax max d(x,Cj)

 j x� cj

C. FPF Algorithm for the k-Center Problem

One of the possible goals for partitional clustering is the

minimization of the largest cluster diameter solving the k-

center problem[4]. More formally the problem is defined as:

Definition 1. The k-centers problem: Given a set O of points

in a metric space endowed with a metric distance function d,

and given a desired number k of resulting clusters, partition O

into non-overlapping clusters C1, . . . ,Ck and determine their

“centers” c1, . . . , ck � O so that maxj max x�Cj d(x, cj) (i.e.

the radius of the widest cluster) is minimized.

II. BASIC ALGORITHM

Given a set O of n points, FPF increasingly computes the

set of centers c1 � . . . � ck � O, where Ck is the solution to

the k-center problem and C1 = {c1} is the starting set, built by

randomly choosing c1 in O. At a generic iteration 1 < i � k,

the algorithm knows the set of centers Ci−1 (computed at the

previous iteration) and a mapping � that associates, to each

M. Hanumanthappa et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,455-459�

© 2010, IJARCS All Rights Reserved 456

point p � O, its closest center �(p) � Ci−1. Iteration i consist

of the following two steps:

A. Find the point p � O for which the distance to its closest

center, d(p, �(p)),is maximum; make p a new center ci

and let Ci = Ci−1 �{ci}.

B. Compute the distance of ci to all points in O \ C i−1 to

update the mapping � of points to their closest center.

After k iterations, the set of centers Ck = {c1, . . . , ck}

and the mapping � define the clustering. Cluster Ci is the set

of points {p � O \ Ck such that �(p) = ci}, for i � [1, k]. Each

iteration can be done in time O(n), hence the overall cost of

the algorithm is O(kn)[5].

FPF:

Data: Let O be the input set, k the number of clusters

Result: C, k-partition of O

C = x such that x is an arbitrary element of O;

for i = 0; i < k; i + + do

Pick the element x of O \ C furthest from the closest element

in C;

Ci = Ci = x;

end

forall x � O \ C do

Let i such that d(ci, x) < d(cj , x), �j � i Ci append (x);

end

Algorithm 1: The furthest point first algorithm for the k-center

problem.

III. K-MEANS

The k-means algorithm is probably the most widely used

in the literature. Its success comes from the fact it is simple to

implement, enough fast for relatively small datasets and it

achieves a good quality. The k-means algorithm can be seen as

an iterative cluster quality booster. It takes as input a rough k-

clustering (or, more precisely, k candidate centroids) and

produces as output another k-clustering, hopefully of better

quality. K-means, as objective function, attempts to minimize

the sum of the squares of the inter-cluster point-to-center

distances[6]. More precisely, this corresponds to partition, at

every iteration, the input points into non-overlapping clusters

C1, . . . ,Ck and determining their centroids �1, . . . , �k so that

Is minimized.

It has been shown that by using the sum of squared

Euclidean distances as objective function, the procedure

converges to a local minimum for the objective function

within a finite number of iterations. The main building blocks

of k-means are [7]:

A. The Generation of the Initial k Candidate Centroids:

In this phase an initial choice of candidate centroids must

be done. This choice in critic because both the final clustering

quality and the number of iterations needed to converge are

strongly related to this choice.

B. The main Iteration Loop:

In the main iteration loop, given a set of k centroids, each

input point is associated to its closest centroid, and the

collection of points associated to a centroid is considered as a

cluster. For each cluster, a new centroid that is a (weighted)

linear combination of the points belonging to the cluster is

recomputed, and a new iteration starts.

C. The termination condition:

Several termination conditions are possible; e.g. the loop

can be terminated after a predetermined number of iterations,

or when the variation that the centroids have undergone in the

last iteration is below a predetermined threshold. The use of k-

means has the advantage that the clustering quality is steadily

enough good in different settings and with different data. This

makes k-means the most used clustering algorithm.

D. Initialize k-Means:

Essentially k-means accepts as input an initial clustering

that can be made with any clustering algorithm. It is well-

known that the quality of the initialization (i.e. the choice of

the initial k centroids) has a deep impact on the resulting

accuracy. Several methods for initializing k-means are:

RC The simplest initialization for k-means is the one in which

the initial centroids are Randomly Chosen among the input

points and the remaining points are assigned to the closest

centroid. The resulting clustering is often referred as random

clustering.

RP In the Random Perturbation, for each dimension dj of the

space, the distribution of the projections on dj of the data

points is computed, along with its mean �j and its standard

deviation �j ; the k initial centroids are obtained through k

perturbations, driven by the �j’s and �j’s, of the centroid of all

data points.

MQ MacQueen’s proposed a variant of k-means: the initial

centroids are randomly chosen among the input points, and the

remaining points are assigned one at a time to the nearest

centroid, and each such assignment causes the immediate

recomputation of the centroid involved. Then k-means is

initialized with the resulting clustering

IV. IMPROVING THE FPF ALGORITHM FOR

THE K-CENTER PROBLEM

In this paper we devoted to improve the Furthest Point

First algorithm from both the computational cost point of view

and the output clustering quality. Since theoretically the FPF

algorithm as proposed by Gonzalez [8] is optimal (unless P =

NP), only heuristics can be used to obtain better results and, in

the worst case, it is not possible to go behind the theoretical

bounds. We profiled FPF and analyzed the most

computational expensive parts of the algorithm. We found that

most of the distance computations are devoted to find the next

furthest point. We observed that there are cases such that some

distance computations can be avoided without changing the

final clustering algorithm. FPF clustering quality can be

improved modifying part of the clustering schema. We

describe approaches that use the random sampling technique

to improve clustering output quality, we call this algorithm M-

FPF. Another crucial shortcoming of FPF is that it selects a set

M. Hanumanthappa et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,455-459�

© 2010, IJARCS All Rights Reserved 457

of centers not representative of the clusters. This phenomenon

must be imputed to the fact that, when FPF creates a new

center, it selects the furthest point from the previous selected

centers and thus the new center can likely be close to a

boundary of the subspace containing the data set. To

overcome this problem we modify M-FPF to use medoids

instead of centers.

A. Exploiting the Triangular Inequality to Improve the

FPF Speed

We observed that most of the running time of the FPF

algorithm is devoted to compute distances for finding the

closest center to each point. More precisely at a generic

iteration 1 < i � k, after finding the center �k, n − k distances

must be computed to decide whether or not to assign a point to

the new center. If this is done in a straightforward manner it

takes O(n) time per iteration, thus the total computational cost

of the algorithm is O(nk).

Exploiting the triangular inequality, in certain conditions

we can avoid to compute the distances among all the points in

a cluster and the new center being sure that they are closer to

their center. Unfortunately the worst case time complexity still

remain O(nk) because the number of saved distance

computations depends on data distribution and thus, it can not

be predicted in advance.

B. We modified the Algorithm as Follows:

Consider, in the FPF algorithm, any center ci and its

associated set of closest points Ci. Store Ci as a ranked list, in

order of decreasing distance to ci. When a new center cj is

selected, scan Ci in decreasing order of distance, and stop

scanning when, for a point p� Ci, it is the case that d(p, ci) �

½ d(cj , ci). By the triangular inequality, any point p that

satisfies this condition cannot be closer to cj than to ci. This

rule filters out from the scan points whose neighbor cannot

possibly be cj , thus significantly speeding up the

identification of neighbors.

C. Using a Random Sample

The efficiency of the algorithm is further improved by

applying FPF algorithm not to the whole data set but only to a

random sample of size n� = �nk of the input points [9]. Note

that given that k � n, it is always true that n� � n. Then we add

the remaining (n − n�) points to the cluster of their closest

center, one by one.

Figure1: Exploiting the triangular inequality.

Also in the operation of insertion of the (n − n�) remaining

points, the bottleneck is the time spent computing distances to

the point to the closest center.

This operation can be made more efficiently [] exploiting

the triangular inequality even if the worst case running time

does not change. Consider to have available the distances

between all the pairs of centers of the clustering. Let p be the

new point to be inserted in the clustering, by the triangular

inequality if ½ d(ci, cj) > d(ci, p) then d(ci, p) < d(cj , p). It

means that the computation of the distance d(cj , p) can be

safely avoided.

µ-FPF:

Data: Let O be the input set, k the number of desired clusters

Result: C: a k-partition of O

Initialize R with a random sample of size �|O|k elements of O;

C = FPF(R, k);

forall Ci � C do

�i = getCenter (Ci);

end

forall p in O \ R do

assign p to cluster Ci such that d(p, �i) < d(p, �j), �j 6= i;

end

Algorithm 2: M-FPF.

D. Using Medoids as Centers

The concept of medoid was introduced by Kaufman and

Rousseeuw [10]. Medoids have two main advantages with

respect to centroids:

First of all, they are elements of the input and not

“artificial” objects. This make medoids available also in those

environments in which the concept of centroid is not well

defined or results artificious. evertheless, in many

environments (i.e texts) centroids tends to become dense

objects with a high number of features more of which of poor

meaning. This makes centroids to lose representativeness and

compute distances with them becomes more expensive with

respect to distances between “normal” objects.

The main drawback of the original definition is that the

clustering algorithm (Partition around Medoids) and the

computation of medoids is expensive to overcome this

disadvantage many different re-definitions of medoids were

introduced in the literature.

In the context of the Furthest Point First heuristic where

some input points are elected as cluster centers and are used to

determinate which input points belong to the cluster, the

restrictions of the use of centroids are not present. However,

we observed that, although the objects selected from FPF as

centers determine the points belonging to the cluster, they are

not “centers” in the sense suggested by the human intuition.

The computation of the medoid is quadratic in the number of

points of O. In fact, one should compute the distance between

all the possible pairs of objects of the input in order to find the

diametral points. Following [11] it is possible to find a good

approximation a and b in linear time using the following

search schema:

[a] Select a random point p � O

[b] In O (n) find the furthest point from p and call it a

[c] In O (n) find the furthest point from a and call it b

A further approximation of the medoid computation is

still possible. Although it reduces drastically the cost during

the update procedure, it is quite rough and should be used only

in those online contexts where computational time makes the

difference or in those environments where there is a huge

M. Hanumanthappa et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,455-459�

© 2010, IJARCS All Rights Reserved 458

amount of redundant data. After the first time in which we

find a, b and the medoid m, when a new point p is inserted in

the cluster, the update of the medoid can be done using the

following procedure:

i. If d(p, a) > d(a, b) � d(p, a) > d(p, b) discard b and

replace it with p

ii. If d(p, b) > d(a, b) � d(p, b) > d(p, a) discard a and

replace it with p

iii. If d(a, b) > d(p, a) � d(a, b) > d(p, b):

If |d(p, a) − d(p, b)| + |d(p, a) + d(p, b) − d(a, b)| < |d(m, a)

−

d (m, b)| + |d(m, a) + d(m, b) − d(a, b)| discard m and p

become the new medoid

– Otherwise discard p

After the first initialization, this procedure requires only the

computation of two distances

µ -FPF-MD:

Data: Let O be the input set, k the number of desired clusters

Result: C: a k-partition of O

Initialize R with a random sample of size �|O|k elements of O;

C = FPF(R, k);

forall Ci � C do

ti = getRandomPoint (Ci);

ai = ci such that max d(ci, ti) for each ci � Ci;

bi = ci such that max d(ci, ai) for each ci � Ci;

mi = ci such that

min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end

forall p in O \ R do

assign p to cluster Ci such that d(p,mi) < d(p,mj), �j � i;

if d(p, bi) > d(ai, bi) then ai = p ;

if d(p, ai) > d(ai, bi) then bi = p ;

if d(p, bi) > d(ai, bi) or d(p, ai) > d(ai, bi) then

mi = ci such that

min |d(ci, ai) − d(ci, bi)| + |d(ci, ai) + d(ci, bi) − d(ai, bi)|;

end

end

Algorithm 3: µ -FPF-MD.

V. CONCLUSION

Clustering based approaches are proposed in the literature

K-means is too slow to be applied to on-line contexts like the

Web. Clustering is typically not considered as a possible

approach due to its computational cost. In this paper we

studied the problem of FPF algorithm for the k-center problem

We Improving he FPF algorithm for the k-center problem by

Exploiting the triangular inequality to improve the FPF speed

Using medoids as centers called M-FPF-MD algorithm,

further we plan to evaluate the performance of the algorithm

for static and dynamic clustering.

VI. REFERENCES

[1] Domenico Cantone, Alfredo Ferro, Alfredo Pulvirenti,

Diego Reforgiato Recupero, and Dennis Shasha. Antipole

tree indexing to support range search and k-nearest

neighbor search in metric spaces. IEEE Transactionson

Knowledge and Data Engineering, 17(4):535–550, 2005.

[2] Fazli Can, Ismail Sengor Altingovde, and Engin Demir.

Efficiencyand effectiveness of query processing in

cluster-based retrieval. Inf.Syst., 29(8):697–717, 2004.

[3] Kenneth L. Clarkson. Nearest-neighbor searching and

metric space dimensions. In Gregory Shakhnarovich,

Trevor Darrell, and Piotr Indyk, editors, Nearest-

Neighbor Methods for Learning and Vision: Theory and

Practice, pages 15–59. MIT Press, 2006.

[4] Charles Elkan. Using the triangle inequality to accelerate

k-means.In ICML, pages 147–153, 2003.

[5] Mayank Bawa, Tyson Condie, and Prasanna Ganesan.

Lshforest: self-tuning indexes for similarity search. In

Proceedings of the 14th international conference on World

Wide Web, WWW 2005, Chiba, Japan, May 10-14, 2005,

pages 651–660, 2005.

[6] Ella Bingham and Heikki Mannila. Random projection in

dimensionality reduction: applications to image and text

data. In KDD ’01: Proceedings of the seventh ACM

SIGKDD international conferenceon Knowledge

discovery and data mining, pages 245–250, New York,

NY, USA, 2001. ACM.

[7] E. Ch´avez and G. Navarro. An effective clustering

algorithm to index high dimensional metric spaces. In

Proceedings of the6th International Symposium on String

Processing and Information Retrieval (SPIRE’2000),

pages 75–86. IEEE CS Press, 2000.

[8] Teofilo F. Gonzalez. Clustering to minimize the

maximum intercluster distance. Theoretical Computer

Science, 38(2/3):293–306, 1985.

[9] Piotr Indyk. Sublinear time algorithms for metric space

problems. In Proceedings of STOC-99, ACM Symposium

on Theory of Computing, pages 428–434, 1999.

[10] Leonard Kaufman and Peter J. Rousseeuw.Finding groups

in data: an introduction to cluster analysis. Wiley, 1990. A

Wiley-Interscience publication.

[11] Flavio Chierichetti, Alessandro Panconesi, Prabhakar

Raghavan, Mauro Sozio, Alessandro Tiberi, and Eli

Upfal. Finding near neighbors through cluster pruning. In

Proceedings of ACM PODS, 2007. To appear.

[12]Paolo Ferragina and Antonio Gulli. A personalized search

engine based on Web-snippet hierarchical clustering. In

Special InterestTracks and Poster Proceedings of WWW-

05, 14th International Conference on the World Wide

Web, pages 801–810, Chiba, JP, 2005.

[13] Karina Figueroa, Edgar Ch´avez, Gonzalo Navarro, and

Rodrigo Paredes. On the least cost for proximity

searching in metric spaces. In 5th International Workshop

on Experimental Algorithms (WEA), volume 4007 of

Lecture Notes in Computer Science, pages 279–290.

Springer, 2006.

[14] M. Furini, F. Geraci, M. Montangero, and M.

Pellegrini.VISTO: VIsual Storyboard forWeb Video

Browsing. In CIVR ’07: Proceedingsof the ACM

International Conference on Image and Video Retrieval,

July 2007.

[15]Filippo Geraci Ph.D Thesis Fast Clustering For Web

Information Retrieval Universit`A Degli Studi Di Siena

Facolt´A Di Ingegneria Dipartimento Di Ingegneria

Dell’informazione Anno Accademico 2007-2008

M. Hanumanthappa et al, International Journal of Advanced Research in Computer Science, 2 (2), May-June, 2011,455-459�

© 2010, IJARCS All Rights Reserved 459

[16] M. Furini. On ameliorating the perceived playout quality

in chunkdriven p2p media streaming systems. In ICC ’07:

Proceedings of the IEEEInternational Conference on

Communications,2007.

