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Abstract: A numerical behaviour for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic 
field, thermo diffusion and convective condition is presented. The governing partial differential equations are rehabilitated into nonlinear, 
ordinary, and coupled differential equations and are solved with Keller-Box technique. The effects of key parameters such as magnetic 
parameter, curvature parameter, Prandtl number, Soret number and the local Biot number are explained by the graphs. The numerical outcomes 
are compared with the published data and are found to be in an excellent agreement. 
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I. INTRODUCTION  

Magneto-hydronomics (MHD) boundary layers through 
heat and mass transfer over flat surfaces are recognized in 
numerous engineering and geophysical applications such as 
cooling of nuclear reactors , geothermal reservoirs, thermal 
insulation, enhanced oil recovery and packed-bed catalytic 
reactors. In numerous chemical engineering process like 
metallurgical and polymer extrusion processes absorb 
cooling of a molten liquid being stretched into a cooling 
method. The fluid mechanical properties of the last product 
depend primarily on the cooling liquid worn and the rate of 
stretching. A number of polymer liquids like polyethylene 
oxide and polyisobuylene solution have improved 
electromagnetic properties are normally worn as cooling 
liquid as their flow container be keeping up by outside 
magnetic fields in order to progress the eminence of the final 
product. Rahman et al. [1] observed the effects of joule 
heating and magneto-hydro dynamics mixed convection in 
an obstructed lid-driven square cavity. Olanrewaju et al. [2] 
studied the stagnation point flow of micro polar fluid over a 
vertical plate with thermal radiation and MHD. Gangadhar 
[3] investigated the effects of viscous dissipation and 
radiation on MHD boundary layer flow of heat and mass 
transfer through a porous vertical flat plate. Mohammed 
Ibrahim et al. [4] investigated on oscillatory flow of heat and 
mass transfer  of MHD. Rawat et al. [5] studied the effects of 
MHD and Non Darcy porous medium on micro polar fluid 
over a non-linear stretching sheet and they concluded that on 
mounting the material parameter leads to a declining skin-
friction coefficient and also couple stress.  

It is well established fact that Fourier’s law gives an 
expression relating to energy flux with temperature gradient. 
Fick’s law shows the relation between the mass flux and 
concentration gradient. It also pointed out that energy flux 
can also be caused by composition pressure gradients. 
Dufour pointed out about the production of energy flux by 
composition gradient and hence in literature it was referred to 
the thermo-diffusion effect or  the Dufour effect . Soret also 
observe that the temperature gradient creates the mass flux. 
Note that both these effects are have small order of 

magnitudes when compared with the Fourier’s or Fick’s laws 
and usually neglected the effect of heat and mass transfer 
situations. Note that thermo-diffusion effect is very important 
for isotope separation and in mixture between the gases with 
very light molecular weight (H2, He) and of medium 
molecular weight (N2, air) [6] and in such situations thermo-
diffusion effect cannot be ignored. Makinde and Olanrewaju 
[7] observed the Soret and Dufour effects in an unsteady 
mixed convection flow over a porous medium, plate moving 
through a binary mixture of chemically reacting fluid. 
Shehzad et al. [8] presented the analytical solution of Soret 
and Dufour effects on the stagnation point flow of Jeffery 
fluid under convective boundary conditions. Makinde [9] 
also studied the Soret and Dufour effects in MHD mixed 
convection flow over a vertical porous plate. Recently, 
Olanrewaju and Makinde [10] studied the effects of thermal 
diffusion in chemically reacting MHD boundary layer flow 
of heat and mass transfer through a vertical plate with 
suction/injection. 
 

Many researchers recently studied recently on the 
boundary layer flow problems with a convective surface 
boundary condition have achieved to a great extent. This was 
first established by Aziz [11], who considered the thermal 
boundary layer flow over a flat plate in a uniform free stream 
with a convective surface boundary condition. This problem 
was extended by Bataller [12] by considering the both 
Blasius and Sakiadis flows under a convective surface 
boundary condition in the presence of thermal radiation. 
Gangadhar et al. [13] investigated the hydrodynamic effect 
on heat and mass transfer through a vertical plate with 
additional effects of convective boundary condition and 
chemical reaction. Ishak [14] find the similarity solutions for 
the steady laminar boundary layer flow with a convective 
boundary condition over a permeable plate. Makinde and 
Aziz [15] investigated numerically the effect of a convective 
boundary condition on the two dimensional boundary layer 
nanofluid fluid flows past a stretching sheet. 

 
So far as we are aware, no attempt has ever been made to 

study the impact of magnetic field, thermo diffusion and 
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prescribed convective heating on axisymmetric boundary 
layer flow along a stretching cylinder. In this paper, the 
governing partial differential equations of the flow and 
temperature fields are reduced to ordinary differential 
equations, which are solved numerically by using Keller – 
Box method.  

II. MATHEMATICAL FORMULATION 

A study considered that the axisymmetric boundary layer 
flow of an incompressible viscous fluid over a circular 
stretching cylinder of radius a  witha constant 
temperature ∞T . The x-axis is measured along the tube, and 
the r-axis is calculated in the radial direction. 
 C∞  
 C∞ 
 B0    T∞ 
                                                                    
       Tf    Cω 
 
                                                  2 a  Uω                   
  
                        
v , r 
 
 
 u , x 
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Figure 1: Diagram of the physical problem 
 
A uniform magnetic field of strength 0B  is implicit to 

act in the radial direction, while the induced magnetic field is 
negligible, which can be justified for MHD flow at small 
magnetic Reynolds number [16]. Further, the cylinder is 
assumed to be axially stretched with velocity 

)/()( 0 LxUxU =ω , where 0U  is a constant and L is the 
characteristics length as shown in Fig. 1. 

With these assumptions, the boundary layer equations 
govern the flow and heat transfer 
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were u and v are the fluid velocity components along x-
direction, r- directions respectively, v  is the kinematic 
viscosity, σ is electrical conductivity, 0B  is the transverse 
magnetic field, ρ is the fluid density, α is the thermal 
diffusivity, T is the fluid temperature in the boundary layer, 
S is the thermo diffusion coefficient and C is the fluid 
concentration in the boundary layer. 

The hydrodynamic boundary conditions of this problem 
are 

),()( 0 L
xUxUu == ω 0=v  at ar =   

 and 0→u  as ∞→r      (5) 
The thermal and concentration boundary conditions are 

( )∞−−=
∂
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∞→ TT  as ∞→r     (6) 
ωCC =  at ar =  and ∞→ CC  as ∞→r   (7) 

here subscript w corresponds to the wall condition; fh  is 

the convective heat transfer coefficient; fT  is the ambient 

fluid temperature; ωC  the ambient fluid concentration. 
The continuity equation (1) is satisfied by introducing the 
stream function ψ such that 
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Where  f is the dimensionless stream function and η  is the 
similarity variable. By defining η  in this way, the boundary 
condition at ar =  is reduced to the boundary condition 
at 0=η , which is further suitable for numerical 
computations [17]. 
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Substituting (8)- (9) into (2)-(7), the governing equations 
and boundary conditions reduce to 
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Subject to the boundary conditions  
0=f , 1=′f , ( )θθ −−=′ 1Bi , 1=φ at 0=η   (13) 

0,0,0 →→→′ φθf  as ∞→η                (14) 
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cylinder 1=γ  and for a plate 0=γ . 0=M (without 

magnetic field) and 0=ωf (without suction/injection), the 
problem under consideration reduces to that considered by 
Ishak et al. [18] (with 1,0 === nMε ) and Liu [19] 
(with 1,0 == βMn ) in those papers. For particular cases, 
the solutions of the present stretching cylinder model well 
competition with those accounted by Ishak et al. [18], and 
Liu [19] for stretching plate.  
 
    Quantities of physical interest for the phenomena we are 
studying the skin friction coefficient fC  and the local 

Nusselt number xNu . Physically, fC represents the wall 

shear stress and xNu defines the heat transfer rate and these 
can be written as    
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here ωτ  is the skin friction and ωq  is heat flux from the 
cylinder which are given by 
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Substituting  (8) into  (15)-(16), we get 
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Where 
ν
ω xU

x =Re  is the local Reynolds number. 

III. SOLUTION OF THE PROBLEM 

Equations (10)-(12) are nonlinear, it is not possible to 
obtain the closed form solutions, as a result the equations 
through the boundary conditions (13) & (14) are solved 
numerically by means of a finite-difference scheme 
recognized as the Keller-box method. The major steps in the 
Keller-box method to obtain the numerical solutions are the 
following:  

• Decrease the specified ODEs to a system of first 
order equations.  

• Write down the condensed ODEs to finite 
differences.  

• Linearized the algebraic equations by using 
Newton’s method and write down them in vector 
form.  

• Solve the linear system through the block 
tridiagonal elimination technique. 
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     In this study, a consistent grid of size Δ  = 0.006 is found 
to be convince the convergence and the solutions are 
obtained through an error of tolerance 510−  in all cases. In 
our study, this gives regarding six decimal places perfect to 
the majority of the agreed quantities. 

IV. RESULTS AND DISCUSSION 

In this section we present solutions of equations (10)-(12) 
along with the boundary conditions (13) and (14) using the 
Keller – Box method iteration method. Tables 1 gives a 

comparison between the present results and Butt and Ali 
[20], Fang et al. [21], Mukhopadhyay [22] and Maboob et 
al. [23] for the local skin-friction coefficient. There is a 
good agreement between the two sets of results with the 
Keller-Box method having up to seven decimal places. The 
velocity components for axial f (η) and transverse )(ηf ′ are 
plotted in Fig. 2 for different values of the magnetic field 
parameter M for both cylinder and plate respectively. It is 
clear that the velocities decreases with increases in the 
magnetic parameter. Increasing magnetic interaction number 
M from purely hydrodynamic case M = 0 to higher values of 
M, gives rise to a strong deceleration in the flow. Presence 
of a magnetic field in an electrically conducting fluid 
introduces a Lorentz force which acts against the flow in the 
case that magnetic field is applied in the normal direction as 
considered in the present problem. The described type of 
resistive force tends to slow down the flow field. For all 
situations, the velocity vanishes far from the surface of the 
cylinder. Higher the value of M, the more prominent is the 
reduction in hydrodynamic boundary layer thickness. The 
Prandtl number gives no effect to the velocity profile can be 
seen from Eq. (10). 
 
    Figures 3 and 4 illustrate the dimensionless temperature 
and concentration profiles for various values of magnetic 
parameter M for both cylinder and plate. Generally, the 
temperature and concentration is the maximum at the plate 
surface but decreases exponentially to zero far away from 
the plate surface satisfying the free stream conditions. The 
magnetic field has profound effects on the temperature and 
concentration profiles. The effect of transverse magnetic 
field M is to enhance the temperature and concentration 
profiles since M reduces the flow field. 
 
     Figures 5 and 6 show the effect of the local Biot number 
Bi the process of convective heating increases on the 
thermal and species concentration in the boundary layers 
respectively for both cylinder and plate. For Biot number 
smaller than 0.1 the heat conduction inside the body is 
quicker than the heat convection away from its surface, and 
temperature gradients are negligible inside of it. Having a 
Biot number smaller than 0.1 labels a substance as thermally 
thin, and temperature can be assumed to be constant 
throughout the materials volume. The opposite is also true: 
A Biot number greater than 0.1 (a ‘‘thermally thick’’ 
substance) indicates that one cannot make this assumption, 
and more complicated heat transfer equations for ‘‘transient 
heat conduction’’ will be required to describe the time-
varying and non-spatially-uniform temperature field within 
the material body. Physically, a large Biot number simulates 
a strong surface convection which as a result provides more 
heat to the surface of the sheet. More over concentration 
boundary layer thickness decreases with the strong 
convective heating. 
 
     An increase in Prandtl number Pr shows a decrease in 
temperature and thermal boundary layer thickness (see Fig. 
7) for both cylinder and plate. Prandtl number is inversely 
proportional to the thermal diffusivity of fluid. Thermal 
diffusivity is weaker for higher Prandtl fluids and stronger 
for lower Prandtl fluids. Weaker thermal diffusivity 
corresponds to lower temperature and stronger thermal 
diffusivity shows higher temperature. 
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It is clearly observed that the concentration profiles 
increases at all points in the flow field with the increasing 
values of Soret number (Sr) this is shown in figure 8. This is 
because of the fact that the diffusive species with higher 
values of Soret parameter (Sr) has the tendency of 
increasing concentration profiles. Thus, it is concluded from 
Fig. 8 that the concentration distributions are more 
influenced with the values of Soret parameter. Figure 9 
indicates that concentration is reduced continuously 
throughout the boundary-layer with increasing the value of 
Sc. Schmidt number measures the relative effectiveness of 
momentum and mass transport by diffusion. Larger values 
of Sc are equivalent to reducing the chemical molecular 
diffusivity i.e. less diffusion therefore takes place by mass 
transport. 
 

Figure 10 is prepared to show the variation of skin 
friction factor with magnetic parameter and with different 
values of curvature parameter. It is noticed that the skin 
friction monotonically increases with curvature parameter 
and the same variation of skin friction factor can be observed 
for magnetic parameter at the boundary. The variation of the 
Nusselt number is shown for different parameters in Fig. 11. 
Figure 11 exhibit the behavior of heat transfer rates against 
Biot number and magnetic parameter with varies values of 
curvature parameter. The heat transfer rates diminish with an 
increase in magnetic parameter. Also it is noticed that the 
heat transfer rate for cylinder is higher as compared to plate 
surface. Bi arises in the wall temperature gradient boundary 
condition in Eq. (19). As Bi increases from Bi = 0.1 
(thermally thin case) to Bi > 0.1 (thermally thick case) the 
rate of thermal conduction heat transfer inside the plate 
becomes dramatically lower than the heat convection away 
from its surface, and temperature gradients are increased at 
the plate. Figure 12 shows the various values of magnetic 
parameter and Soret number with different values of 
curvature parameter against local Sherwood number. It is 
clear that magnetic field strength and Soret number reduces 
the local Sherwood number because concentration boundary 
layer thickness increases. Moreover local Sherwood number 
increases with a increase in curvature parameter.  

V. CONCLUSIONS 

In the present work, the MHD boundary layer flow and 
heat transfer over permeable stretching cylinder with thermo 
diffusion under convective heating have been investigated. 
The present results are in fine concurrence with those 
reported in open literature for some special cases. From the 
study, the following remarks can be summarized. 

• On rising the magnetic parameter, the resultant 
dimensionless velocity distribution reduces within 
the boundary layer but the dimensionless 
temperature distribution increases within the 
boundary layer. 

• The local skin friction coefficient decreases and 
local Nusselt number increases by increasing the 
magnetic parameter. 

• Convective heating are strongly influenced the 
temperature and heat transfer rate in the boundary 
layer of the flow. 

• On increasing the Soret number is to reduce the 
local Sherwood number but its boundary layer 
thickness increases. 
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Figure 2: Dimensionless velocity distributions )(&)( ηη ff ′  for 

different values of M. 
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Figure 3: Dimensionless temperature distribution for different values of M. 
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Figure 4: Concentration distribution for different values of M. 
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Figure 5: Dimensionless temperature distribution for different values of Bi. 
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Figure 6: Dimensionless concentration distribution for different 

values of Bi. 

 

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

η

θ 
( η

)

Red : γ = 0.0
Blue : γ = 1.0

Pr = 0.71, 2.62, 4.24, 7

M = 0.5, Sc = 2, Sr = 0.5, Bi = 0.1

 
 

 

Figure 7: Dimensionless temperature distribution for different values of Pr. 
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Figure 8: Dimensionless concentration distribution for different 

values of Sr. 
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Figure 9: Dimensionless concentration distribution for different 

values of Sc. 
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Figure 10: Skin friction coefficient for different values of M and γ. 
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Figure 11: Local Nusselt number for different values of M, Bi and γ. 
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Figure 12: Local Sherwood number for different values of M, Sr and γ. 
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