
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 440

ISSN No. 0976-5697

Efficient Coordinated Checkpointing Protocol for Mobile Distributed Systems

Mukesh kumar*

Research Scholar, Department of CSE

Singhania University,

Pacheri Bari ,Rajasthan ,India

mrana91@gmail.com

Parveen Kumar
Professor

MIET, Meerut ,India

pk223475@yahoo.com

Abstract: Mobile Computing represents a new paradigm that aims to provide continuous network connectivity to users regardless of their

location. A wide spectrum of portable, personal computing devices has recently been introduced in the market that range from laptop computers

to handheld personal digital assistants. Coupled with the advent of wireless networking, this has given rise to a new style of computing wherein

the computer can move with the user and yet maintain its network connections. Solutions to communication and synchronization problems in

distributed systems have so far been designed for networks comprising solely of static hosts.

Keywords: Distributed system, mobile computing, consistent global state, coordinated checkpointing systems.

1. INTRODUCTION

In the mobile distributed system, some of the processes

are running on mobile hosts (MHs). An MH communicates

with other nodes of the system via a special node called

mobile support station (MSS) [1]. A cell is a geographical

area around an MSS in which it can support an MH. An MH

can change its geographical position freely from one cell to

another or even to an area covered by no cell. An MSS can

have both wired and wireless links and acts as an interface

between the static network and a part of the mobile network.

Static network connects all MSSs. A static node that has no

support to MH can be considered as an MSS with no MH.

Checkpoint is defined as a designated place in a program at

which normal process is interrupted specifically to preserve

the status information necessary to allow resumption of

processing at a later time. Checkpointing is the process of

saving the status information. By periodically invoking the

checkpointing process, one can save the status of a program

at regular intervals. If there is a failure one may restart

computation from the last checkpoints thereby avoiding

repeating computation from the beginning. The process of

resuming computation by rolling back to a saved state is

called rollback recovery. The checkpoint-restart is one of

the well-known methods to realize reliable distributed

systems. Each process takes a checkpoint where the local

state information is stored in the stable storage. Rolling back

a process and again resuming its execution from a prior state

involves overhead and delays the overall completion of the

process, it is needed to make a process rollback to a most

recent possible state. So it is at the desire of the user for

taking many checkpoints over the whole life of the

execution of the process [6].

In a distributed system, since the processes in the

system do not share memory, a global state of the system is

defined as a set of local states, one from each process. The

state of channels corresponding to a global state is the set of

messages sent but not yet received. A global state is said to

be “consistent” if it contains no orphan message; i.e., a

message whose receive event is recorded, but its send event

is lost. To recover from a failure, the system restarts its

execution from a previous consistent global state saved on

the stable storage during fault-free execution. This saves all

the computation done up to the last checkpointed state and

only the computation done thereafter needs to be redone. In

distributed systems, checkpointing can be independent,

coordinated [6, 11, 13] or quasi-synchronous [2]. Message

Logging is also used for fault tolerance in distributed

systems [22].

In synchronous checkpointing, processes take

checkpoints in such a manner that the resulting global state

is consistent. Mostly it follows two-phase commit structure

[6, 11, 23]. In the first phase, processes take tentative

checkpoints and in the second phase, these are made

permanent. The main advantage is that only one permanent

checkpoint and at most one tentative checkpoint is required

to be stored. In the case of a fault, processes rollback to last

checkpointed state.

Synchronous checkpointing protocols can be classified

into two types: blocking and non-blocking. In blocking

algorithms, some blocking of processes takes place during

checkpointing [4, 11, 24, 25] In non-blocking algorithms,

no blocking of processes is required for checkpointing [5,

12, 15, 21]. The coordinated checkpointing algorithms can

also be classified into following two categories: minimum-

process and all process algorithms. In all-process

coordinated checkpointing algorithms, every process is

required to take its checkpoint in an initiation [6], [8]. In

minimum-process algorithms, minimum interacting

processes are required to take their checkpoints in an

initiation [11].

In minimum-process coordinated checkpointing

algorithms, a process Pi takes its checkpoint only if it a

member of the minimum set (a subset of interacting

process). A process Pi is in the minimum set only if the

checkpoint initiator process is transitively dependent upon

it. Pj is directly dependent upon Pk only if there exists m

such that Pj receives m from Pk in the current checkpointing

interval [CI] and Pk has not taken its permanent checkpoint

after sending m. The ith CI of a process denotes all the

computation performed between its ith and (i+1)th

checkpoint, including the ith checkpoint but not the (i+1)th

Mukesh kumar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 440-444

© 2010, IJARCS All Rights Reserved 441

checkpoint. In minimum-process checkpointing protocols,

some useless checkpoints are taken or blocking of processes

takes place. In this paper, we propose a minimum-process

coordinated checkpointing algorithm for non-deterministic

mobile distributed systems, where no useless checkpoints

are taken. An effort has been made to minimize the blocking

of processes and the loss of checkpointing effort when any

process fails to take its checkpoint in coordination with

others.

II. SYSTEM MODEL

There are n spatially separated sequential processes P0,

P1,.., Pn-1, running on MHs or MSSs, constituting a mobile

distributed computing system. Each MH/MSS has one

process running on it. The processes do not share memory

or clock. Message passing is the only way for processes to

communicate with each other. Each process progresses at its

own speed and messages are exchanged through reliable

channels, whose transmission delays are finite but arbitrary.

When an MH sends an application message, it is first sent to

its local MSS over the wireless cell. The MSS piggybacks

appropriate information with the application message, and

then routes it to the destination MSS or MH. When the MSS

receives an application message to be forwarded to a local

MH, it first updates the data structures that it maintains for

the MH, strips all the piggybacked information, and then

forwards the message to the MH. Thus, an MH sends and

receives application messages that do not contain any

additional information; it is only responsible for

checkpointing its local state appropriately and transferring it

to the local MSS.

3. DATA STRUCTURE

Here, we describe the data structures used in the proposed

checkpointing protocol. A process on MH that initiates

checkpointing, is called initiator process and its local MSS

is called initiator MSS. If the initiator process is on an MSS,

then the MSS is the initiator MSS. All data structures are

initialized on completion of a checkpointing process if not

mentioned explicitly.

(i) Each process Pi maintains the following data

structures, which are preferably stored on local MSS:

p-csni: A monotonically increasing integer

checkpoint sequence number for each

process. It is incremented by 1 on mutable

checkpoint.

tentativei A flag that indicates that Pi has taken its

tentative checkpoint for the current initiation.

dd_seti[]: A bit vector of size n; dd_seti[j] is set to ‘1’

if Pi receives a message from Pj such that Pi

becomes directly dependent upon Pj for the

current CI. Initially, the bit vector is

initialized to zeroes for all processes except

for itself, which is initialized to ‘1’. For MHi

it is kept at local MSS. On global commit,

dd_set [] of all processes are updated. In all-

process checkpointing, each process

initializes its dd_set [] on tentative

checkpoint.

blockingi A flag that indicates that the process is in

blocking period. Set to ‘1’ when Pi receives

the dd_set [] request; set to ‘0’ on the receipt

of mutable checkpoint request for a non-

minimum-set process. A process comes out

of the blocking state only after taking its

mutable checkpoint if it is a member of the

minimum set; otherwise, it comes out of

blocking state after getting the mutable

checkpoint request.

bufferi: A flag. Set to ‘1’ when Pi buffers first

message in its blocking period.

C_statei

A flag. Set to ‘1’ on the receipt of the

minimum set. Set to ‘0’ on receiving commit

or abort.

(ii) Initiator MSS maintains the following Data structures:

min_vect[]: A bit vector of size n. Computed by taking

transitive closure of dd_set [] of all

processes with the dd_set [] of the initiator

process [4]. Minimum set={Pk such that

min_vect [k]=1}.

R_tent[]: A bit vector of length n. r_tent[i] is set to ‘1’

if Pi has taken a tentative checkpoint.

R_mut[]: A bit vector of length n. r_mut[i] is set to ‘1’

if Pi has taken a mutable checkpoint.

Timer1: A flag; set to ‘1’ when maximum allowable

time for collecting minimum-process global

checkpoint expires.

(iii) Each MSS (including initiator MSS) maintains the

following data structures:

D[]: A bit vector of length n. D[i]=1 implies Pi

is running in the cell of MSS.

Ee_tent[]: A bit vector of length n. EE_tent[i] is set to

‘1’ if Pi has taken its tentative

Checkpoint.

Ee_mut[]: A bit vector of length n. EE_mut[i] is set to

‘1’ if Pi has taken a mutable checkpoint.

�_bit: A flag at MSS. Initialized to ‘0’. Set to ‘1’

when some relevant process in its cell

fails to take its tentative checkpoint.

Pin: Initiator process identification.

csn[] An array of size n, maintained on every

MSS, for n processes. csn[i] represens the

most recently committed checkpoint

sequence number of Pi. After the commit

operation, if m_vect[i]=1 then csn[i] is

incremented. It should be noted that entries

in this array are updated only after

converting tentative checkpoints in to

permanent checkpoints and not after taking

tentative checkpoints.

G_chkpt: A flag which is set to ‘1’ on the receipt of (i)

checkpoint request in all-process

checkpointing or (ii) dd_set [] request in

minimum-process algorithm.

Chkpt A flag which is set to 1 when the MSS

receives the checkpoint request in the

minimum-process algorithm.

mss_id An integer. It is unique to each MSS and

cannot be null.

IV. DESIGN OF COORDINATED CHECK-

POINTING PROTOCOL

Mukesh kumar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 440-444

© 2010, IJARCS All Rights Reserved 442

The mechanism of our protocol is following: The

initiator MSS sends a request to all MSSs to send the dd_set

vectors of the processes in their cells. All dd_set vectors

are at MSSs and thus no initial checkpointing messages or

responses travels wireless channels. On receiving the dd_set

[] request, an MSS records the identity of the initiator

process (say mss_ida) and initiator MSS, sends back the

dd_set [] of the processes in its cell, and sets g_chkpt. If the

initiator MSS receives a request for dd_set [] from some

other MSS (say mss_idb) and mss_ida is lower than

mss_idb,the, current initiation with mss_ida is discarded and

the new one having mss_idb is continued. Similarly, if an

MSS receives dd_set requests from two MSSs, then it

discards the request of the initiator MSS with lower mss_id.

Otherwise, on receiving dd_set vectors of all processes, the

initiator MSS computes min_vect [], sends mutable

checkpoint request along with the min_vect [] to all MSSs.

When a process sends its dd_set [] to the initiator MSS, it

comes into its blocking state. A process comes out of the

blocking state only after taking its mutable checkpoint if it is

a member of the minimum set; otherwise, it comes out of

blocking state after getting the mutable checkpoint request.

On receiving the mutable checkpoint request along

with the min_vect [], an MSS, say MSSj, takes the following

actions. It sends the mutable checkpoint request to Pi only if

Pi belongs to the min_vect [] and Pi is running in its cell. On

receiving the checkpoint request, Pi takes its mutable

checkpoint and informs MSSj. On receiving positive

response from Pi, MSSj updates p-csni, resets blocking,

and sends the buffered messages to Pi, if any. Alternatively,

If Pi is not in the min_vect [] and Pi is in the cell of MSSj,

MSSj resets blockingi and sends the buffered message to Pi,

if any. For a disconnected MH, that is a member of

min_vect [], the MSS that has its disconnected checkpoint,

converts its disconnected checkpoint into the required one.

During blocking period, Pi processes m, received from Pj, if

following conditions are met: (i) (!buferi) i.e. Pi has not

buffered any message (ii) (m.psn <=csn[j]) i.e. Pj has not

taken its checkpoint before sending m (iii) (dd_seti[j]=1) Pi

is already dependent upon Pj in the current CI or Pj has

taken some permanent checkpoint after sending m.

Otherwise, the local MSS of Pi buffers m for the blocking

period of Pi and sets buffer i. When an MSS learns that all

of its processes in minimum set have taken their mutable

checkpoints or at least one of its process has failed to

checkpoint, it sends the response message to the initiator

MSS. In this case, if some process fails to take mutable

checkpoint in the first phase, then MHs need to abort their

mutable checkpoints only. The effort of taking a mutable

checkpoint is negligible as compared to the tentative one.

When the initiator comes to know that all relevant processes

have taken their mutable checkpoints, it asks all relevant

processes to come into the second phase, in which, a process

converts its mutable checkpoint into tentative one.

Finally, initiator MSS sends commit or abort to all

processes. On receiving abort, a process discards its

tentative checkpoint, if any, and undoes the updating of data

structures. On receiving commit, processes, in the min_vect

[], convert their tentative checkpoints into permanent ones.

On receiving commit or abort, all processes update their

dd_set vectors and other data structures.

A. Example

We explain the proposed minimum-process checkpointing

algorithm with the help of an example. In Figure 1, at time

t1, P4 initiates checkpointing process and sends request to

all processes for their dependency vectors. At time t2, P4

receives the dependency vectors from all processes (not

shown in the Figure 1) and computes the minimum set

(min_vect[]) which is {P3, P4, P5}. P4 sends min_vect[]to

all processes and takes its own mutable checkpoint. A

process takes its mutable checkpoint if it is a member of

min_vect[]. When P3 and P5 get the min_vect[], they find

themselves in the min_vect[]; therefore, they take their

mutable checkpoints. When P0, P1 and P2 get the

min_vect [], they find that they do not belong to min_vect [],

therefore, they do not take their mutable checkpoints

Figure 1: Example of Proposed Protocol

A process comes into the blocking state immediately

after sending the dd_set[]. A process comes out of the

blocking state only after taking its mutable checkpoint if it is

a member of the minimum set; otherwise, it comes out of

blocking state after getting the mutable checkpoint request.

P4 receives m4 during its blocking period. As dd_set4[5]=1

due to m3, and receive of m4 will not alter dd_set4[];

therefore P4 processes m4. P1 receives m5 from P2 during

its blocking period; dd_set1[2]=0 and the receive of m5 can

alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3

buffers m6. P3 processes m6 only after taking its mutable

checkpoint. P1 process m5 after getting the min_vect [].P2

processes m7 because at this movement it not in the

blocking state. Similarly, P3 processes m8. At time t3, P4

receives responses to mutable check point requests from all

relevant processes (not shown in the Figure 1) and issues

tentative checkpoint request to all processes. A process in

the minimum set converts its mutable checkpoint into

tentative one. Finally, at time t4, P4 receives responses to

tentative checkpoint requests from all relevant processes

(not shown in the Figure 1) and issues the commit request.

Mukesh kumar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 440-444

© 2010, IJARCS All Rights Reserved 443

V. CONCLUSION

The proposed scheme is based on keeping track of

direct dependencies of processes. Similar to [4], initiator

process collects the direct dependency vectors of all

processes, computes minimum set, and sends the checkpoint

request along with the minimum set to all processes. In this

way, blocking time has been significantly reduced as

compared to[11].

During the period, when a process sends its dependency

set to the initiator and receives the minimum set, may

receive some messages, which may add new members to the

already computed minimum set [25]. In order to keep the

computed minimum set intact, We have classified the

messages, received during the blocking period, into two

types: (i) messages that alter the dependency set of the

receiver process (ii) messages that do not alter the

dependency set of the receiver process. The messages in

point (i) need to be delayed at the receiver side [25]. The

messages in point (ii) can be processed normally. All

processes can perform their normal computations and send

messages during their blocking period. When a process

buffers a message of former type, it does not process any

message till it receives the minimum set so as to keep the

proper sequence of messages received. When a process gets

the minimum set, it takes the checkpoint, if it is in the

minimum set. After this, it receives the buffered messages,

if any. The proposed minimum-process blocking algorithm

forces zero useless checkpoints at the cost of very small

blocking.

VI. REFERENCES

[1] A. Acharya and B. R. Badrinath, Checkpointing
Distributed Applications on Mobile Computers, In
Proceedings of the 3rd International Conference on
Parallel and Distributed Information Systems (PDIS
1994), 1994, 73-80.

[2] R. Baldoni, J-M Hélary, A. Mostefaoui and M. Raynal,

A Communication-Induced Checkpointing Protocol that

Ensures Rollback-Dependency Tractability, In

Proceedings of the International Symposium on Fault-

Tolerant-Computing Systems, 1997, 68-77.
[3] G. Cao and M. Singhal, On coordinated checkpointing

in Distributed Systems, IEEE Transactions on Parallel
and Distributed Systems, 9 (12), 1998, 1213-1225.

[4] G. Cao and M. Singhal, “On the Impossibility of Min-
process Non-blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile Computing
Systems,” In Proceedings of International Conference
on Parallel Processing, 1998, 37-44.

[5] G. Cao and M. Singhal, Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems, IEEE Transaction On Parallel and Distributed

Systems, 12(2), 2001, 157-172.

[6] K.M. Chandy and L. Lamport, “Distributed Snapshots:

Determining Global State of Distributed Systems,”

ACM Transaction on Computing Systems, 3(1), 1985,

63-75.

[7] E. N. Elnozahy, L. Alvisi, Y. M. Wang and D. B.

Johnson, “A Survey of Rollback-Recovery Protocols in

Message-Passing Systems,” ACM Computing Surveys,

34(3), 2002, 375-408.

[8] E.N. Elnozahy, D.B. Johnson and W. Zwaenepoel, The

Performance of Consistent Checkpointing, In

Proceedings of the 11th Symposium on Reliable

Distributed Systems, 1992, 39-47.

[9] J.M. Hélary, A. Mostefaoui and M. Raynal,

Communication-Induced Determination of Consistent

Snapshots, In Proceedings of the 28th International

Symposium on Fault-Tolerant Computing, 1998, 208-

217.
[10] H. Higaki and M. Takizawa, Checkpoint-recovery

Protocol for Reliable Mobile Systems, Transactions of
Information processing Japan, 40(1), 1999, 236-244.

[11] R. Koo and S. Toueg, Checkpointing and Roll-Back

Recovery for Distributed Systems, IEEE Transactions

on Software Engineering,

13(1), 1987, 23-31.

[12] P. Kumar, L. Kumar, R. K. Chauhan and V. K. Gupta,

A Non-Intrusive Minimum Process Synchronous

Checkpointing Protocol for

Mobile Distributed Systems, In Proceedings of IEEE

ICPWC-2005, 2005.

[13] J.L. Kim and T. Park, An efficient Protocol for

checkpointing Recovery in Distributed Systems, IEEE

Transactions on Parallel and Distributed Systems, 1993,

955-960.

[14] L. Kumar, M. Misra, R.C. Joshi, Checkpointing in

Distributed Computing Systems, In Concurrency in

Dependable Computing, 2002,

273-92.

[15] L. Kumar, M. Misra, R.C. Joshi, Low overhead optimal

checkpointing for mobile distributed systems, In

Proceedings of 19th IEEE International Conference on

Data Engineering, 2003, 686 – 88.

[16] L. Kumar and P.Kumar, A Synchronous Checkpointing

Protocol for Mobile Distributed Systems: Probabilistic

Approach, International Journal of Information and

Computer Security, 1(3), 2007, 298-314.

[17] L. Lamport, Time, clocks and ordering of events in a

distributed system, Communications of the ACM,

21(7), 1978, 558-565.

[18] N. Neves and W.K. Fuchs, Adaptive Recovery for

Mobile Environments, Communications of the ACM,

40(1), 1997, 68-74.

[19] W. Ni, S. Vrbsky and S. Ray, Pitfalls in Distributed

Nonblocking Checkpointing, Journal of Interconnection

Networks, 1(5), 2004, 47-78.

[20] D.K. Pradhan, P.P. Krishana and N.H. Vaidya,

Recovery in Mobile Wireless Environment: Design and

Trade-off Analysis, In Proceedings of 26th International

Symposium on Fault-Tolerant Computing, 1996, 16-25.

[21] R. Prakash and M. Singhal, Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,

IEEE Transaction On Parallel and Distributed Systems,

7(10), 1996, 1035-1048.

[22] K.F. Ssu, B. Yao, W.K. Fuchs and N.F. Neves,

Adaptive Checkpointing with Storage Management for

Mobile Environments, IEEE Transactions on

Reliability, 48(4), 1999, 315-324.

[23] L.M. Silva and J.G. Silva, Global checkpointing for

distributed programs, In Proceedings of the 11th

symposium on Reliable Distributed Systems, 1992,

155-62.

[24] Sunil Kumar, R K Chauhan, Parveen Kumar, “A

Minimum-process Coordinated Checkpointing Protocol

Mukesh kumar et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011, 440-444

© 2010, IJARCS All Rights Reserved 444

for Mobile Computing Systems”, International Journal

of Foundations of Computer science,Vol 19, No. 4, pp

1015-1038 (2008).

[25] Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed

systems”, Mobile Information Systems. pp 13-32, Vol.

4, No. 1, 2007.

