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Abstract: Mobile Computing represents a new paradigm that aims to provide continuous network connectivity to users regardless of their 

location. A wide spectrum of portable, personal computing devices has recently been introduced in the market that range from laptop computers 

to handheld personal digital assistants. Coupled with the advent of wireless networking, this has given rise to a new style of computing wherein 

the computer can move with the user and yet maintain its network connections. Solutions to communication and synchronization problems in 

distributed systems have so far been designed for networks comprising solely of static hosts. 
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1. INTRODUCTION 

In the mobile distributed system, some of the processes 

are running on mobile hosts (MHs). An MH communicates 

with other nodes of the system via a special node called 

mobile support station (MSS) [1]. A cell is a geographical 

area around an MSS in which it can support an MH. An MH 

can change its geographical position freely from one cell to 

another or even to an area covered by no cell. An MSS can 

have both wired and wireless links and acts as an interface 

between the static network and a part of the mobile network. 

Static network connects all MSSs. A static node that has no 

support to MH can be considered as an MSS with no MH. 

Checkpoint is defined as a designated place in a program at 

which normal process is interrupted specifically to preserve 

the status information necessary to allow resumption of 

processing at a later time. Checkpointing is the process of 

saving the status information. By periodically invoking the 

checkpointing process, one can save the status of a program 

at regular intervals. If there is a failure one may restart 

computation from the last checkpoints thereby avoiding 

repeating computation from the beginning. The process of 

resuming computation by rolling back to a saved state is 

called rollback recovery.  The checkpoint-restart is one of 

the well-known methods to realize reliable distributed 

systems. Each process takes a checkpoint where the local 

state information is stored in the stable storage. Rolling back 

a process and again resuming its execution from a prior state 

involves overhead and delays the overall completion of the 

process, it is needed to make a process rollback to a most 

recent possible state. So it is at the desire of the user for 

taking many checkpoints over the whole life of the 

execution of the process [6]. 

In a distributed system, since the processes in the 

system do not share memory, a global state of the system is 

defined as a set of local states, one from each process. The 

state of channels corresponding to a global state is the set of 

messages sent but not yet received. A global state is said to 

be “consistent” if it contains no orphan message; i.e., a 

message whose receive event is recorded, but its send event 

is lost. To recover from a failure, the system restarts its 

execution from a previous consistent global state saved on 

the stable storage during fault-free execution. This saves all 

the computation done up to the last checkpointed state and 

only the computation done thereafter needs to be redone. In 

distributed systems, checkpointing can be independent, 

coordinated [6, 11, 13] or quasi-synchronous [2]. Message 

Logging is also used for fault tolerance in distributed 

systems [22]. 

In synchronous checkpointing, processes take 

checkpoints in such a manner that the resulting global state 

is consistent. Mostly it follows two-phase commit structure 

[6, 11, 23]. In the first phase, processes take tentative 

checkpoints and in the second phase, these are made 

permanent. The main advantage is that only one permanent 

checkpoint and at most one tentative checkpoint is required 

to be stored. In the case of a fault, processes rollback to last 

checkpointed state. 

Synchronous checkpointing protocols can be classified 

into two types: blocking and non-blocking. In blocking 

algorithms, some blocking of processes takes place during 

checkpointing [4, 11, 24, 25]  In non-blocking algorithms, 

no blocking of processes is required for checkpointing [5, 

12, 15, 21]. The coordinated checkpointing algorithms can 

also be classified into following two categories: minimum-

process and all process algorithms. In all-process 

coordinated checkpointing algorithms, every process is 

required to take its checkpoint in an initiation [6], [8]. In 

minimum-process algorithms, minimum interacting 

processes are required to take their checkpoints in an 

initiation [11].  

In minimum-process coordinated checkpointing 

algorithms, a process Pi takes its checkpoint only if it a 

member of the minimum set (a subset of interacting 

process). A process Pi is in the minimum set only if the 

checkpoint initiator process is transitively dependent upon 

it. Pj is directly dependent upon Pk only if there exists m 

such that Pj receives m from Pk in the current checkpointing 

interval [CI] and Pk has not taken its permanent checkpoint 

after sending m. The ith CI  of a process denotes all the 

computation performed between its ith and (i+1)th 

checkpoint, including the ith checkpoint  but not the (i+1)th 
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checkpoint. In minimum-process checkpointing protocols, 

some useless checkpoints are taken or blocking of processes 

takes place. In this paper, we propose a minimum-process 

coordinated checkpointing algorithm for non-deterministic 

mobile distributed systems, where no useless checkpoints 

are taken. An effort has been made to minimize the blocking 

of processes and the loss of checkpointing effort when any 

process fails to take its checkpoint in coordination with 

others. 

II. SYSTEM MODEL 

There are n spatially separated sequential processes  P0, 

P1,.., Pn-1, running on MHs or  MSSs, constituting a mobile 

distributed computing system. Each MH/MSS has one 

process running on it.  The processes do not share memory 

or clock. Message passing is the only way for processes to 

communicate with each other. Each process progresses at its 

own speed and messages are exchanged through reliable 

channels, whose transmission delays are finite but arbitrary.  

When an MH sends an application message, it is first sent to 

its local MSS over the wireless cell. The MSS piggybacks 

appropriate information with the application message, and 

then routes it to the destination MSS or MH. When the MSS 

receives an application message to be forwarded to a local 

MH, it first updates the data structures that it maintains for 

the MH, strips all the piggybacked information, and then 

forwards the message to the MH. Thus, an MH sends and 

receives application messages that do not contain any 

additional information; it is only responsible for 

checkpointing its local state appropriately and transferring it 

to the local MSS.  

3. DATA STRUCTURE 

Here, we describe the data structures used in the proposed 

checkpointing protocol. A process on MH that initiates 

checkpointing, is called initiator process and its local MSS 

is called initiator MSS. If the initiator process is on an MSS, 

then the MSS is the initiator MSS. All data structures are 

initialized on  completion of a checkpointing process if not 

mentioned explicitly. 

(i) Each process Pi maintains the following data 

structures, which are preferably stored on local MSS: 

p-csni: A monotonically increasing integer 

checkpoint sequence number for each 

process. It is incremented by 1 on mutable 

checkpoint. 

tentativei A flag that indicates that Pi has taken its 

tentative checkpoint for the current initiation.  

dd_seti[]:    A bit vector of size n; dd_seti[j] is set to ‘1’ 

if Pi receives a message from Pj such that Pi 

becomes directly dependent upon Pj for the 

current CI. Initially, the bit vector is 

initialized to zeroes for all processes except 

for itself, which is initialized to ‘1’. For MHi 

it is kept at local MSS. On global commit, 

dd_set [] of all processes are updated. In all-

process checkpointing, each process 

initializes its dd_set [] on tentative 

checkpoint.  

blockingi  A flag that indicates that the process is in 

blocking period.  Set to ‘1’ when Pi receives 

the dd_set [] request; set to ‘0’ on the receipt 

of mutable checkpoint request for a non-

minimum-set process. A process comes out 

of the blocking state only after taking its 

mutable checkpoint if it is a member of the 

minimum set; otherwise, it comes out of 

blocking state after getting the mutable 

checkpoint request.  

bufferi: A flag. Set to ‘1’ when Pi buffers first 

message in its blocking period.  

C_statei 

 

A flag. Set to ‘1’ on the receipt of the 

minimum set. Set to ‘0’ on receiving commit 

or abort. 

(ii) Initiator MSS maintains the following Data structures: 

min_vect[]: A bit vector of size n. Computed by   taking 

transitive closure of dd_set []   of all                

processes with the dd_set [] of the  initiator 

process [4].  Minimum set={Pk such that  

min_vect [k]=1}. 

R_tent[]:         A bit vector of length n. r_tent[i] is set to ‘1’ 

if Pi has taken a tentative checkpoint.  

R_mut[]:         A bit vector of length n. r_mut[i] is set to ‘1’ 

if Pi has taken a mutable checkpoint. 

Timer1:      A flag; set to ‘1’ when   maximum allowable 

time for collecting minimum-process global 

checkpoint expires.  

 

(iii) Each MSS (including initiator MSS) maintains the 

following data structures:   

D[]: A bit vector of length n. D[i]=1 implies   Pi 

is running in the cell of  MSS. 

Ee_tent[]: A bit vector of length n. EE_tent[i] is set to 

‘1’ if Pi has taken its tentative  

Checkpoint. 

Ee_mut[]: A bit vector of length n. EE_mut[i] is set to 

‘1’ if Pi has taken a mutable checkpoint. 

�_bit: A flag at MSS. Initialized to ‘0’. Set to ‘1’ 

when some relevant process in its cell        

fails to take  its tentative checkpoint.   

Pin: Initiator process identification. 

csn[]      An array of size n, maintained on  every 

MSS, for n processes. csn[i] represens the 

most recently committed checkpoint 

sequence number of Pi. After the commit 

operation, if m_vect[i]=1 then csn[i] is 

incremented. It should be noted that entries 

in this array are updated only after 

converting tentative checkpoints in to 

permanent checkpoints and not after taking 

tentative checkpoints. 

 

G_chkpt: A flag which is set to ‘1’ on the receipt of (i) 

checkpoint request in all-process 

checkpointing or (ii) dd_set [] request in 

minimum-process algorithm.  

Chkpt A flag which is set to 1 when the MSS 

receives the checkpoint request in the 

minimum-process algorithm.  

mss_id An integer. It is unique to each MSS and 

cannot be  null.  

 

IV. DESIGN OF COORDINATED  CHECK-

POINTING PROTOCOL 
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The mechanism of our protocol is following: The 

initiator MSS sends a request to all MSSs to send the dd_set 

vectors of   the processes in their cells. All dd_set vectors 

are at MSSs and thus no initial checkpointing messages or 

responses travels wireless channels. On receiving the dd_set 

[] request, an MSS records the identity of the initiator 

process (say mss_ida) and initiator MSS, sends back the 

dd_set [] of the  processes in its cell, and sets g_chkpt. If the 

initiator MSS receives a request for dd_set [] from some 

other MSS (say mss_idb) and mss_ida is lower than 

mss_idb,the, current initiation with mss_ida is discarded and 

the new one having mss_idb is continued. Similarly, if an 

MSS receives dd_set requests from two MSSs, then it 

discards the request of the initiator MSS with lower mss_id. 

Otherwise, on receiving dd_set vectors of all processes, the 

initiator MSS computes min_vect [], sends mutable 

checkpoint request along with the min_vect []  to all MSSs. 

When a process sends its dd_set [] to the initiator MSS, it 

comes into its blocking state. A process comes out of the 

blocking state only after taking its mutable checkpoint if it is 

a member of the minimum set; otherwise, it comes out of 

blocking state after getting the mutable checkpoint request. 

On receiving the mutable checkpoint request along 

with the min_vect [], an MSS, say MSSj, takes the following 

actions. It sends the mutable checkpoint request to Pi only if 

Pi belongs to the min_vect [] and Pi is running in its cell. On 

receiving the checkpoint request, Pi takes its mutable 

checkpoint and informs MSSj. On receiving positive 

response from Pi, MSSj updates p-csni,  resets blocking,  

and sends the buffered messages to Pi, if any. Alternatively, 

If Pi is not in the min_vect [] and Pi is in the cell of MSSj, 

MSSj resets blockingi  and sends the buffered message to Pi, 

if any. For a disconnected MH, that is a member of 

min_vect [], the MSS that has its disconnected checkpoint, 

converts its disconnected checkpoint into the required one. 

During blocking period, Pi processes m, received from Pj, if 

following conditions are met: (i) (!buferi) i.e. Pi has not 

buffered any message (ii) (m.psn <=csn[j]) i.e. Pj has not 

taken its checkpoint before sending m (iii) (dd_seti[j]=1) Pi 

is already dependent upon Pj in the current CI or Pj has 

taken some permanent checkpoint after sending m. 

Otherwise, the local MSS of Pi buffers m for the blocking 

period of Pi and sets buffer i. When an MSS learns that all 

of its  processes in minimum set  have taken their mutable  

checkpoints   or at least one of its process has failed to 

checkpoint, it sends the response message to the initiator 

MSS.  In this case, if some process fails to take mutable 

checkpoint in the first phase, then MHs need to abort their 

mutable  checkpoints only. The effort of taking a mutable  

checkpoint is negligible as compared to the tentative one. 

When the initiator comes to know that all relevant processes 

have taken their mutable  checkpoints, it asks all relevant 

processes to come into the second phase, in which, a process 

converts its mutable  checkpoint into tentative one. 

Finally, initiator MSS sends commit or abort to all 

processes. On receiving abort, a process discards its 

tentative checkpoint, if any, and undoes the updating of data 

structures. On receiving commit, processes, in the min_vect 

[], convert their tentative checkpoints into permanent ones. 

On receiving commit or abort, all processes update their 

dd_set vectors and other data structures.  

A. Example 

We explain the proposed minimum-process checkpointing 

algorithm with the help of an example. In Figure 1, at time 

t1, P4 initiates checkpointing process and sends request to 

all processes for their dependency vectors. At time t2, P4 

receives the dependency vectors from all processes (not 

shown in the Figure 1) and computes the minimum set 

(min_vect[]) which is   {P3, P4, P5}. P4 sends min_vect[]to 

all processes and takes its own mutable checkpoint. A 

process takes its mutable checkpoint if it is a member of 

min_vect[]. When P3 and P5 get the min_vect[], they find 

themselves in the min_vect[]; therefore, they take their 

mutable checkpoints.   When P0, P1 and P2 get the 

min_vect [], they find that they do not belong to min_vect [], 

therefore, they do not take their mutable checkpoints 

 
Figure 1: Example of Proposed Protocol 

A process comes into the blocking state immediately 

after sending the dd_set[]. A process comes out of the 

blocking state only after taking its mutable checkpoint if it is 

a member of the minimum set; otherwise, it comes out of 

blocking state after getting the mutable checkpoint request. 

P4 receives m4 during its blocking period. As dd_set4[5]=1 

due to m3, and receive of m4 will not alter dd_set4[]; 

therefore P4 processes m4. P1 receives m5 from P2 during 

its blocking period; dd_set1[2]=0 and the receive of m5 can 

alter dd_set1[]; therefore, P1 buffers m5. Similarly, P3 

buffers m6. P3 processes m6 only after taking its mutable 

checkpoint. P1 process m5 after getting the min_vect [].P2 

processes m7 because at this movement it not in the 

blocking state. Similarly, P3 processes m8. At time t3, P4 

receives responses to mutable check point requests from all 

relevant processes (not shown in the Figure 1) and issues 

tentative checkpoint request to all processes. A  process in 

the minimum set converts its  mutable checkpoint into 

tentative one. Finally, at time t4, P4 receives responses to 

tentative checkpoint requests from all relevant processes 

(not shown in the Figure 1) and issues the commit request. 
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V. CONCLUSION 

 

The proposed scheme is based on keeping track of 

direct dependencies of processes. Similar to [4], initiator 

process collects the direct dependency vectors of all 

processes, computes minimum set, and sends the checkpoint 

request along with the minimum set to all processes.  In this 

way, blocking time has been significantly reduced as 

compared to[11].  

During the period, when a process sends its dependency 

set to the initiator and receives the minimum set,  may 

receive some messages, which may add new members to the 

already computed minimum set [25]. In order to keep the 

computed minimum set intact, We have classified the 

messages, received during the blocking period, into two 

types: (i) messages that alter the dependency set of the 

receiver process (ii) messages that do not alter the 

dependency set of the receiver process. The messages in 

point (i)  need to be delayed at the receiver side [25].  The 

messages in point (ii)  can be processed normally. All 

processes can perform their normal computations and send 

messages during their blocking period. When a process 

buffers a message of former type, it does not process any 

message till it receives the minimum set so as to keep the 

proper sequence of messages received. When a process gets 

the minimum set, it takes the checkpoint, if it is in the 

minimum set. After this, it receives the buffered messages, 

if any. The proposed minimum-process blocking algorithm 

forces zero useless checkpoints at the cost of very small 

blocking. 
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