
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4402

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 767

ISSN No. 0976-5697

PATH PLANNING TECHNIQUE TO ACHIEVE A DYNAMIC TARGET POINT
Subhadip Boral

Department of Computer Science
BarrackporeRastraguruSurendranath College

Barrackpore, India

Sudipta Biswas
Department of Computer Science

BarrackporeRastraguruSurendranath College
Barrackpore, India

Abstract: In this paper a method has been proposed to identify the lowest cost path to reach a destination point from a source point. However,
unlike most of the colloquial graph traversal problems, here the destination point is dynamic— not fixed, i.e. changes its position with time. This
causes the chaser to update its path planning accordingly, by constantly sensing the position of the destination. During the progression, the
chaser may has to side-track many obstacles, for which, in addition to the algorithm for reaching dynamic target through optimal path, two
techniques have also been proposed for avoiding obstacles. The proposed method has been compared with the existing techniques for reaching
dynamic target such as D*, D* Lite etc. and also with the existing obstacle avoidance techniques such as Bug, NHNA etc., mainly used in
Robotics.

Keywords: GIS, Graph Traversal, Dynamic Target, GPS, Obstacle avoidance techniques, NetBeans IDE.

I. INTRODUCTION

In GIS finding shortest (or least cost on the basis of influencing
criteria) [3] path between two points plays a very important
role. In robotics, in addition to path planning, the robot has to
side-track the existing obstacles [1][2][4][5]. Practically the
target point may be dynamic also (e.g. to track a pirate ship, to
chase a wounded animal adorned with radio collaretc.). During
planning for shortest path, existing obstacles should also be
avoided. In this proposed method, two obstacle avoidance
techniques, namely — Iterative Recovery Method and Shortest
Leap Method; have been proposed. Here a number of existing
algorithms both for dynamic target search and obstacle
avoidance are been studied along with their demerits and the
proposed technique tries to overcome them.

II. RELATED WORKS

There exists a number of graph search techniques for
finding optimal path to reach a dynamic target. D* [7] is one of
them. It splits the search area into suitable sized 8-connected
grid world and starts computing the optimal path. This
mechanism starts exploring from a particular node and assigns
cost to the neighbor 8 nodes and add them in a priority queue
based on their cost (costs are additive) and tries to reach goal.
As D * is very complex to implement so another technique D*
Lite [8] was proposed, which searches back from destination
toward source. Lifelong Planning A* or LPA* [10] uses A*,
where before exploring a new node future movement cost is
updated and decision is taken accordingly.

Obstacles avoidance is a central thing in Robotics as it
allows robots to reach its destination avoiding collisions
[1][2][4][5]. There are many popular algorithms for the
purpose. In Bug 0 Technique, when the robot hits an obstacle it
starts following the edge of the obstacle and checks whether the
obstacle is avoided or not by imagining a straight line between
that point and the goal. In Bug 1 [6], facing an obstacle, the
Robot commence its journey along the edge of the obstacle
until it reaches the starting point and in this locus, the point
with the minimum distance from the destination, is the new
journey starting point avoiding obstacle. Bug 2 algorithm [6]
creates an incline from the starting point to the goal. After

facing an obstacle, the Robot starts moving by following the
boundary of the obstacle and every time generates a new
incline from each and every position until the newly generated
slope becomes identical to the previous one. The “New Hybrid
Navigation Algorithm” [6] is another obstacle avoidance
algorithm, which is based on two layers, deliberative layer and
reactive layer. These two layers are not dependent to each
other. Deliberative layer arranged a reference path on the basis
of information that is stored earlier. As well as Reactive layer
guide robot independently on the path planed by the
deliberative layer. A number of problems observed in the
algorithms mentioned here. In Bug 0 algorithm, the direction of
journey to avoid the obstacle is chosen arbitrarily, which
weakens the method in some cases, particularly when the
object is nearer to one end of the obstacle. In Bug 1 the
problem may arise when the size of the obstacle is large enough
for which the algorithm takes excessive amount of time. In Bug
2, the problem due to biased decision like Bug 0 may arise.
Although NHNA technique is beneficial, but it takes a large
amount of time to make precise decision. Thus new obstacle
avoidance techniques could be proposed to overcome these
problems.

III. THE SCHEME

The main motto of the proposed technique is to achieve a
dynamic target i.e. a target which changes its position over
time, by traversing as shortest distance as possible. Doing so, if
it encounters any obstacle in the path, then those obstacles are
also efficiently being side-tracked.

Here the works begin with the initial positions of the target
and the chaser onto a map containing digitized obstacles.

To meet the objective stated, the scheme could be sub-
divided into two broader parts.

1. Methodology to decide the shortest route between
the current position of the chaser and the target. It
is calculated/determined after each predefined
interval of time, as the target point changes its
position over time.

2. If any obstacle exists in the proposed path, suitable
mechanism is incorporated to side-track that
obstacle. Two techniques— namely shortest Leap

Subhadip Boral et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,767-772

© 2015-19, IJARCS All Rights Reserved 768

Method and Iterative Recovery Method, have been
proposed to avoid the obstacles.

The following two sections throws light on Path planning
and Obstacle avoidance respectively. Two proposed
mechanisms of obstacle avoidance are mentioned in sub
sections respectively.below:

Path planning:
To incorporate successful seizing of the target by the chaser

some curtailments have been adapted. Firstly, the chaser
always has the provision to be familiar with the current position
of the target, so that the direction on which the chaser has to
move, could be determined accordingly. Next, the movement
of the target is self-governing and beyond the control of the
proposed algorithm. Thirdly, the speed of the chaser is always
greater than the speed of the target.

In real world environment, the position of the target is
constantly fetched by using laser gun or GPS device or
likewise, however presently to make a simulation of the thing
and in order to take a flavour of random dynamic behavior of
the target, the following methodology has been incorporated.

Let “a” is the maximum distance which could be travelled
by the target per unit time. Obviously the minimum distance
traversed in unit time is 0, when the Target has just become
still. It can move in any direction also. If the current position of
the target is (Xn,Yn) then its next position (Xn+1,Yn+1) is:

Xn+1 = Xn + gcos(α) (1)

Yn+1 = Yn + gsin(α) (2)

An imaginary straight line is drawn always between the

current positions of the source and the destination. Following
this path, chaser changes its position in unit time. The chaser
senses the target after each unit time and decides its next move.
To decide the direction of the next movement, the chaser
incorporate the following methodology.

Let, LAST_POINT(XLst,YLst) denotes the coordinate of the
current position of the chaser, DESTINATION(Xd,Yd) denotes
the coordinates of the current position of the target, r denotes
the distance between LAST_POINT (XLst,YLst) and
DESTINATION (Xd,Yd), h denotes the distance which can be
travelled by the chaser in one unit time, NEXT
POINT(Xt,Yt)denotes the point that will be reached (h unit) by
chaser towards the destination (i.e. target) after one unit time.
In other words, the point with the coordinate (Xt,Yt) is at a
distance of h unit from the LAST_POINT(XLst,YLst) and is
nearest from DESTINATION (Xd,Yd), which is initially on the
straight line , connecting LAST_POINT and DESTINATION.

It is known that, if AB is a straight line connecting two
points (x1,y1) and (x2,y2) and P(x,y) is a point lying on the
straight line that internally divides the line into two segments
with the ratio m:n, then the coordinate of the point P(x,y) could
be calculated by using the following formula :

x =((m×x2) + (n×x1))/(m + n) (3)

y =((m×y2) + (n×y1))/(m + n) (4)

Let AB is the connecting edge between

LAST_POINT(XLst,YLst) and DESTINATION (Xd,Yd). Let
NEXT POINT(Xt,Yt) is the point lying on the straight line
which internally divides the straight line into two segments
with the ratio of m:n , where m is same as h, i.e. distance
traversed in one unit time and n measures the remaining path
between LAST_POINT(XLst,YLst) and DESTINATION(Xd,Yd),

which values as (r-h). Then the coordinate of NEXT POINT
(Xt,Yt) can be found by incorporating the above formula:

Xt =((h×Xd) + ((r−h)×XLst))/(h + (r−h)) (5)

Yt =((h×Yd) + ((r−h)×YLst))/(h + (r−h)) (6)

By solving the above equations, the coordinate value of

NEXT POINT (Xt,Yt) could be found. Special treatment is
needed when the next calculated point to reach by the chaser
falls within the premises of an obstacle, which is not a
legitimate one. The method of Ray-casting is used to determine
whether NEXT POINT(Xt,Yt) falls within any obstacle or not.
If the NEXT POINT is inside the obstacle, then a point is found
which lies on the circumference of the obstacle(polygon). For
doing this, a circle is imagined with centre at
LAST_PONT(XLst,YLst) and radius h. Let the coordinates of the
points constituting the polygon are (x1,y1),(x2,y2). . . .(xn,yn).
The constituent points (x1,y1) of the polygon lies on the circle if
the following condition satisfied:

(x1–XLst)2 + (y1–YLst)2 −h2 = 0 (7)
This checking is done for each and every constituent point

of the polygon. Let two intersecting points (M and N) of the
circle and the polygon are found. The distance between
DESTINATION(Xd,Yd) and each of the two points M and N is
now calculated, which possess a lesser distance is regarded as
the next destination point. After selecting the legitimate NEXT
POINT it is checked, if there exists any more obstacles between
LAST POINT and NEXT POINT. For this purpose the slope m
between LAST_POINT (XLst,YLst) and NEXT POINT (Xt,Yt) is
found.

m = (Yt −YLst)/(Xt −XLst) (8)

Next its found that which points of the polygon lie on the
edge between the LAST POINT and NEXT POINT. This
checking is done for each and every obstacle (digitized
polygon). Let z points are found as intersecting points between
obstacle (i.e. polygon) and the edge. Among those z points, the
point which possess minimum distance from LAST_POINT is
denoted as INSC_POINT(Xi,Yi) and the remaining (z-1) points
are stored in ascending order depending on the distance from
LAST_POINT.

Figure 1: Line Intersecting Obstacles

If there are no such intersecting points or in other words,

the line does not come across any obstacle then a direct journey
will be made from the LAST_POINT to the NEXT POINT by
following the straight line. However, if the connecting edge or
the line segment between the LAST_POINT and NEXT

Subhadip Boral et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,767-772

© 2015-19, IJARCS All Rights Reserved 769

POINT passes through any obstacle then the method of
obstacle avoidance has to invoke.

Obstacle Avoidance Technique:

Let the distance between INSC_POINT and LAST_POINT

is d, where 0 < d < h. Thus after traveling d unit along the edge
between LAST_POINT and NEXT POINT, the chaser first hits
the obstacle at the INSC_POINT. Then any obstacle avoidance
scheme has to apply. Two such schemes, namely — Shortest
Leap Method and Iterative Recovery Method have been
devised here, each with their own merits and demerits. In both
of the procedures the idea of driving the search around both of
the sides of the obstacle has been included to avoid biased
decision and it will always produce shortest path to avoid
obstacle in result. Following two sections discuss these
methodologies.

A. Shortest Leap Method to avoid Obstacles:

In this obstacle avoidance technique, an idea of two-way

search has been incorporated i.e. the mechanism should follow
the edge of the obstacle from INSC_POINT in the direction of
both left and right for (h-d) unit.

In the first unit of time, the mechanism will travel only (h-
d) unit because in unit time the chaser can travel h unit and
already d unit has been travelled for reaching from
LAST_POINT to INSC_POINT, leaving (h-d) unit remaining
in that time unit. Incorporating two-way traversal following the
edge of the obstacle, it will reach two points, say A and B. Now
the distance between DESTINATION to A and
DESTINATION to B is calculated. Let the distances be
denoted as dA and dB , then point A will be chosen as NEXT
POINT iffdA ≤ dB , point B otherwise.

Figure 2: Procedure of Shortest Leap Method

So there will be two conditions that should be considered
by the algorithm—

1. As mentioned earlier, the chaser can only travel
remaining (h-d) unit in between INSC_POINT and
NEXT POINT and will stop after completion of
this amount

2. After reaching at the stored INSC_POINT, the
INSC_POINT will be sensed as NEXT POINT
and way of propagation is calculated again

Thus the journey will be propagated from LAST_POINT to
INSC_POINT and from INSC_POINT to NEXT POINT. The
NEXT POINT will be treated as LAST_POINT in future. The

aforesaid procedure can drive the chaser in trounce scenario
from where progress towards the target is impeded due to
occurrence of a pendulum motion, observed in certain cases.
Such a scenario could be explained with the help of following
figure (Figure. 3).

Figure 3: Occurrence of Pendulum Motion Criteria

Let at the 1st instance, the target is at the position 1 then the
chaser will decide to reach the point m after facing the obstacle.
In the 2nd instance, let the target moves to position 2 and the
chaser senses point m as INSC_POINT and between m1 and n
it will select n as NEXT POINT and move there. In the 3rd
instance, if target is at point 3, chaser will select point m again
as the NEXT POINT. Thus if the target changes once in the left
side and then in the right side of the obstacle, the chaser will
also move just like a pendulum, without causing a fruitful result
to overcome the obstacle.

To overcome this problem of occurrence of pendulum
motion, a particular Threshold value is set (say 5). If the chaser
continuously changes its direction, then after reaching the
Threshold (i.e. after consecutively changing its direction 5
times), it will stop sensing the Target and without changing its
direction furthermore it will just progress to the end of the
obstacle to overcome it.

B. Iterative Recovery Method to avoid Obstacles:

There could occur a number of situations where Shortest

Leap Method get into such states, from where recovery is very
time consuming.

• Situation 1: Possibility of occurrence of pendulum
motion from which recovery is time consuming as
discussed above (Figure. 3).

• Situation 2: Shortest Leap Method will face
another major drawback for a situation when the
chaser is inside a circle like obstacle and the target
is outside the obstacle, as shown below (Figure. 4),
then the chaser will follow the inside edge of the
obstacle endlessly and never going to avoid the
obstacle, neither announce the failure.

Figure 4: Occurrence of Ceaseless Criteria

Iterative Recovery Method is proposed to overcome some
demerits of Shortest Leap Method, discussed in above two
situations. In this proposed obstacle avoidance technique, a two
way journey is started by the chaser from the INSC_POINT
following the edge of the obstacle. The algorithm imagines a

Subhadip Boral et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,767-772

© 2015-19, IJARCS All Rights Reserved 770

straight line from each of the points, one after another, on the
edge of the obstacle, to DESTINATION. If that particular
polygon comes across the straight line, then the algorithm will
progress to the next point on the edge of the obstacle until a
line connecting a point on the edge of the obstacle and the
DESTINATION does not come across that particular polygon
but other polygon may come across the connecting path.
Suppose from point K connecting line between K and
DESTINATION is free of that obstacle then point K will be
sensed as new NEXT POINT and this procedure will be
triggered from both side of the INSC_POINT and will continue
until any of them find the new NEXT POINT or meet each
other.

Figure 5: Procedure of Iterative Recovery Method

Following this process one can overcome the ceaseless criteria
stated above inside circular obstacle, as both the triggered
algorithm meet each other following the inside edge of the
circle like obstacle (Figure. 4) so the procedure stops and
announces unsuccessful case of obstacle recovery.

IV. IMPLEMENTATION AND RESULTS

The following Results are found applying the proposed
method on the map of Eastern portion of “Giridih” and
Northern portion of “Dhanbad”, Jharkhand, India; taken as case
study area. The results of enactment, design of GUI and all the
required operations have been done using Net Beans IDE 8.0.2
(Java) , which is based on flat -file systems without using
databases, hence have increased its portability. The work
begins with selection of a map (may be a scanned image or
likewise) onto which the obstacles are digitized. Figure 6
demonstrates how the target changes its position randomly and
the chaser also updates its path accordingly and finally achieves
the target. Here sea-green colored trailing line denotes the
movement of the chaser and similarly yellow trailing line is the
locus of the target. The locations of the target and chaser are
chosen in such a way, that no obstacle avoidance is required.

Figure 6: Method of Dynamic Chasing

Figure 7 demonstrate the avoidance of obstacle using

Shortest Leap Method. An idea of occurrence of pendulum
motion and its avoidance has also been shown.

Figure 7: Avoiding Obstacle by Shortest Leap Method

Figure 8 demonstrate the avoidance of obstacle using

Iterative Recovery Method.

 Figure 8: Avoiding Obstacle by Iterative Recovery Method.

V. ANALYSIS AND COMPARISON

In order to make a complexity analysis, let, k denotes the
number of obstacles, ni denotes number of digitized points on
ith obstacle, N = denotes thetotal number of points. The
complexity to find NEXT_POINT is O(1). Next the chaser has
to determine whether the NEXT_POINT lies inside any
obstacle or not and this checking has to be done for k obstacles
i.e. N points should be considered. So, the complexity of
checking whether the NEXT_POINT inside or outside any
obstacle is O(N). If the NEXT_POINT is inside of ith obstacle,
then to determine a suitable NEXT POINT lying outside the
obstacle can be done in O(ni) time.

Subhadip Boral et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,767-772

© 2015-19, IJARCS All Rights Reserved 771

O(1)+O(N)+O(ni)+O(N)+O(ni)=O(N)
By keeping both the source and the destination fixed and by

increasing the number of obstacles, execution time has
measured for both the Iterative Recovery and shortest Leap
Method.

By varying the number of obstacles from 1 to 8, execution
time has measured for both Shortest Leap and Iterative
Recovery Method, reflected in Table 1.

Table 1: Performance Analysis for Shortest Leap and Iterative

Recovery Method
Number of
Obstacles

Time Taken in Milliseconds
Shortest Leap

Method
Iterative Recovery

Method
1 210 189
2 249 294
3 324 351
4 506 513
5 667 778
6 1220 1061
7 1420 1568
8 1951 2027

Shortest Leap Method senses the target each time during

obstacle avoidance also, enabling it to mould its way as per the
target’s latest position. It seems quite advantageous to seize the
target in a timely manner. However, as discussed earlier, it can
fall into a situation of occurrence of Pendulum Motion, where
without progressing towards the target it moves around a
confined area just like a pendulum. Though the mechanism
detects the problem and takes action accordingly but if this
criterion arises, the amount of time consumed increases rapidly
and give a poor performance.

Another situation forces Shortest Leap Method to perform
undesirable steps occurs when the target is practically
unreachable i.e. the target or the chaser is surrounded by a
group of obstacles which are unavoidable. In this scenario,
Shortest Leap Method fails to state the un-reachability and stop
and instead of that it goes on processing.

The Iterative Recovery Method works on the principle that
when it faces an obstacle it must avoid the obstacle first in
direction of the target no matter what are the changes persist in
the position of the target in the meantime. This principle makes
the method more efficient in case of obstacle avoidance.

There are some situations where Iterative Recovery Method
performs unworthy moves. As Iterative Recovery Method
performs an obstacle avoiding move in a single step and does
not sense the target in the meantime, so it is unable to decide
the proper direction of its next move to avoid obstacle. It may
be the case that while avoiding the obstacle it has reached to an
end of the obstacle, whereas the other end was a much better
choice.

Figure 9: Incorporation of wrong direction in Iterative Recovery Method

For example, in the above figure (Fig ure. 9), depending
upon the initial position of the target (1), the chaser starts its
movement (direction shown by blue arrow), but in the
meantime the target changes its position to 2 and then 3,
causing to reach the chaser to reach an end, which is far from
the target than the other end point.

As compared to Bug 0, Shortest Leap Method senses the
obstacle each time; having a probability to search for suitable
path to avoid the obstacle quite more often. Iterative Recovery
Method although follows somehow almost similar kind of
principle but the difference is that it undergoes a two -way
tracking, unlike one-way of Bug 0 ; causing to prevent the
biased decision taking, as may arise in Bug 0.

In case of Bug 1 [6], the entire obstacle has to traverse first,
before getting the way out; which seems to be very time
consuming for larger obstacles. But both in Shortest Leap
Method and Iterative Recovery Method, they complete their
goal (i.e. to avoid the obstacle) even more faster as they sense
the obstacle in two way fashion. Even though the obstacle is
large, the mechanisms can sense the minimum distant point
from the destination in less amount of time and does not have
to traverse the total obstacle. In case of Shortest Leap Method,
it checks the position of the target in every unit time and
decides whether further obstacle avoidance is needed or not and
thus makes the mechanism more promising. So the proposed
algorithms are less time consuming than the existing one.

In Bug 2 [6], the problem of making biased decision may
arise due to the fact that the algorithm tries to avoid the
obstacle by making its journey in any arbitrary direction,
without any measurement, which may cause sometimes
tochoose the wrong one side, making the procedure time
consuming one. For example, from the current position
indicated by blue circle (Fig. 10), if the particle decides to
move towards B, instead of A for avoiding the obstacle, then it
is a bad choice; which is possible in Bug 2.

Figure 10: Incorporation of wrong direction in Bug 2 Method

However, both Shortest Leap Method and Iterative

Recovery Method make a bi-directional move (i.e. journey
towards both A and B) and choose the shortest one path as
final, preventing it take any wrong decision. Moreover, Shortest
Leap Method always keeps eye on the target to determine
whether further avoidance is needed or not and stops making
unworthy moves.

Unlike NHA [6], for both of Shortest Leap Method and
Iterative Recovery Method, no such reference path is needed to
supervise the progress of the robot.

The existing dynamic goal search techniques [8][9][10] are
mostly grid based, where the exploration is restricted only in 8
directions i.e. the movement of the object is not possible in
random direction. But as the proposed technique is not grid
based, hence random movement in any direction is permissible.
Moreover, the existing techniques (which are grid base)
explores cells based on their cost (without sensing the target
always), so they do not guarantee that the exploration of cells
are in the direction of the goal, which may cause to explore
cells in the opposite direction of the goal and creates

Subhadip Boral et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,767-772

© 2015-19, IJARCS All Rights Reserved 772

unnecessary cell exploration and makes the procedure time
consuming.

Though PerSel[11] , a system works in pen-based user
interfaces for group selection, provides better result than lasso
or rectangle selection, yet when applied for path planning
invokes a large set of user interaction in its gestural user
interaction. In dynamic goal searching increase in user
intervention will result in higher time consumption. In second
phrase the system determines linearity coefficient for each and
every objects, which is analogous to co-ordinate in GIS, and
associated path. PerSel[11] will be excessively time consuming
in case of wide ranging target as it will calculate LC for each
point and associated path in between target and chaser.

Proposed approach is based on point to pint connection
which will be also successful for curvy-linear path like
PerSel[11] but will perform better on obstacle avoidance as
PerSel need user intervention to select a path to avoid obstacle
due to lack of proper intelligence. And this may result in worst-
fit path selection.

However, in the proposed method the chaser always routes
itself by sensing the target, hence no possibility to move in the
opposite way of the target.

VI. CONCLUSION

This work presents a technique to reach a destination in an
optimal way, which is dynamic i.e. changes its position over
time. During its way it may face some obstacle. The work also
presents two methods for avoiding obstacles. There exists a
number of techniques both for reaching a dynamic target and
for avoiding obstacles. But they have some problems. These
problems have been found and tried to overcome in the
proposed techniques.

This method could be applied for a number of application
areas. It can be used for chasing a GPS enabled car/ boat etc.
For biological research purpose, it could be used to chase an
animal adorned with radio collar. In this era of automation, it
can easily be used to chase something by automated aircraft/
car, where no requirement of manual intervention for avoiding
obstacles also required.

VII. ACKNOWLEDGMENT

The authors are thankful to Department of Computer
Science, BarrackporeRastraguruSurendranath College,
Kolkata-700 120, W.B., India for providing all the
infrastructural support to carry out the intended work.

VIII. REFERENCES

[1] M. S. Ganeshmurthy, G. R. Suresh, Path planning algorithm for
autonomous mobile robot in dynamic environment, 3rd
International Conference on Signal Processing, Communication
and Networking (ICSCN), pp 1-6, DOI:
10.1109/ICSCN.2015.7219901, IEEE Conference Publications,
March 2015

[2] Luyi Shen et. al., Multi-swarm Optimization with Chaotic
Mapping for Dynamic Optimization Problems, , 8th
International Symposium on Computational Intelligence and
Design (ISCID), pp 132-137, DOI:
10.1109/ISCID.2015.173,IEEE Conference Publications, 2015

[3] M. Gracia et. al., Dynamic Graph-Search algorithm for Global
Path Planning in Presence of Hazardous Weather, Journal of
Intelligent & Robotic Systems with a special section on
Unmanned Systems,Springer Science+ Business Media B.V.,
2012

[4] Seohyun Jeon et. al., Cooperative Multi-robot Searching
Algorithm, Proceedings of the 12th International Conference -
Intelligent Autonomous Systems IAS-12, Volume 2, pp. 749-
756, Springer-Verleg Berlin Heidelberg, 2013

[5] Jinpyo Hong et. al, A new mobile robot navigation using a
turning point searching algorithm with the consideration of
obstacle avoidance, The International Journal of Advanced
Manufacturing Technology, Springer-Verleg London Limited,
2010

[6] M. Zohaib, M. Pasha, R. A. Riaz, N. Javaid1, M. Ilahi, R. D.
Khan ,Control Strategies for Mobile Robot With Obstacle
Avoidance,Journal of Basic and Applied Scientific Research
(JBASR) 3 (4), pp.- 1027-1036, 2013

[7] Steven Bell, An Overview of Optimal Graph Search Algorithms
for Robot Path Planning in Dynamic or Uncertain Environments
, Proceedings of Student Paper Contest, Institute of Electrical
and Electronics Engineers Conference, Oklahoma, March, 2010

[8] Sven Koenig ,Maxim Likhachev, D* Lite , Proceeding
Eighteenth national conference on Artificia l intelligence,
American Association for Artificial Intelligence, pp 476 -483,
Menlo Park, CA, USA, 2002

[9] Sven Koenig, Maxim Likhachev, Fast Replanning for
Navigation in Unknown Terrain, IEEE Transactions on Robotics
(TRO), 21(3), pp. 354-363, 2005

[10] Sven Koenig, Maxim Likhachev, David Furcy, Lifelong
Planning A*, Journal Artificial Intelligence, Volume 155 Issue
1-2, pp 93 - 146, Elsevier Science Publishers Ltd. Essex, UK,
May 2004

[11] H. Dehmeshki, W. Stuerzlinger, Design and Evaluation of a
Perceptual-based Object Group Selection Technique, British
HCI 2010, ISBN 978-178017130-2, 365-372, Sept. 2010.

	Introduction
	Related works
	The Scheme
	Path planning:

	Implementation and Results
	Analysis and Comparison
	CONCLUSION
	Acknowledgment
	References

