
��������	�
����	�������������

��� ��������!�������

�"!"�� #�$�$"��

����%���&��������'''��(��������

© 2010, IJARCS All Rights Reserved 143

ISSN No. 0976-5697

Implementation of Web usage Mining tool using Efficient Algorithm

Kapil Sharma*
Information Technology deptt,

LNCT

Bhopal, India

Kapil.rjit@gmail.com

Prof. Vineet Richhariya
HOD CSE deptt,

LNCT

Bhopal, India

Vineet_rich@yahoo.co.in

Yogendra S. Rathore
Computer Science & Engg. deptt,

 ITM

Gwalior, India

Yogendra.cse.2006 @gmail.com

Abstract: In this paper,The World Wide Web (WWW) continues to grow at an astounding rate in both the sheer volume of traffic and the size

and complexity of Web sites. An important input to website design is the analysis of how a Web site is being used by the users. Usage analysis

includes straightforward statistics, such as page access frequency, as well as sophisticated forms of analysis, such as finding the common

traversal paths through a Web site. Web Usage Mining is usually done using data mining techniques to determine frequent access patterns of the

users. There are two phases in the Web Usage Mining. The first phase is Data Preprocessing. There are several preprocessing tasks i.e. Data

Cleaning, User Identification, Session Identification and Transaction Identification. These tasks are computationally intensive and time

consuming. Which need to be performed on the data, this data collected from web server logs. The work initially develops on usage data

preparation techniques in order to identify users and the user sessions. There after groups the user sessions of the users based on semantically

meaningful access paths of the users. These access paths help to generate the frequent access patterns of the user that can be used for effective

web page design. The second phase is Mining the frequent patterns. This phase generate the frequent patterns from the access paths of the users.

Keywords: Weblog, Access Paths, Patterns,mining,,min support

I. INTRODAUCTION

A. Web Mining

The Web contains huge amount of web sites. A web site

usually contains great amounts of information distributed

through hundreds of pages. Without proper guidance, a

visitor often wanders aimlessly without visiting important

pages, loses interest and leaves the site sooner than

expected. This consideration is at the basis of the great

interest about Web Usage Mining both in the academic and

the industrial world. In the online shopping, E-commerce

site if the user is not getting his required pages, he will

simply switches to the another web site. For avoiding this

we have to find the frequent user access patterns from his

previous or history. Web Usage mining will generate user

access patterns from the web log records. This Web log

records are stored in the web server application server.

Web Usage Mining is one type of Web mining.

architecture divides the Web usage mining process into two

main parts. Input to the Web usage Mining process is Web

Server Logs, Error logs, User Cookies and Client Cache

Records. The first part includes the domain dependent

processes of transforming the Web data into suitable

transaction form. This includes preprocessing, transaction

identification, and data integration components. The second

part includes the largely domain independent application of

generic data mining and pattern matching techniques (such

as the discovery of association rule and sequential patterns)

as part of the system’s data mining engine. The below figure

shows architecture of Web Usage Mining tool.

B. Data Preprocessing

The input to the preprocessing phase is web logs. This

file is stored in a common log format. This format [11] is

given by W3C (World Wide Web Community). But which

is in unstructured format for Web Usage Mining. The below

figure shows the common log file data format.

Figure.2 Common Log Format in the Web Server

Kapil Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,143-148

© 2010, IJARCS All Rights Reserved 144

Client IP: Client IP address or hostname (if DNS lookups

are performed)

UserID: User name (‘-‘if anonymous)

Access Time: dd/mm/yy, hh:mm:sec (date format)

HTTP request: HTTP methods are GET, POST, and

HEAD…

Protocol: Protocol used for transmission (HTTP/1.0,

HTTP/1.1)

Status Code: The status code returned by the server as

9response (200 o.k., 404 for not found….);

Bytes Transferred: The no. of bytes transferred for that

particular request.

User Agent: Which identify the client application used to

retrieve the resource?

Referrer or Referring Resource: This contains the URL of

the document issuing the link to the current request page.

The below figure shows the example of Web Server Log

Record Format.

Figure.3 Example of Web Server Log Record Format

 This information can be used to reconstruct the

user Identification and user sessions within the site from

which the log data originates. In an ideal scenario each user

is allocated a unique IP address whenever he accesses a

given web site. Moreover, it is expected that a user visits the

site more than once, each time possibly with a different goal

in mind. Therefore, a user session is usually defined as a

sequence of requests from the same IP address such that no

two consecutive requests are separated by more than

minutes, where is a given parameter. According to the W3C

[11] the session or “visit” the group of activates performed

by the user from the moment she enter the site and she left

the site. Since a user may visit a site more than once, the

Web server log records multiple sessions for each user. We

use the name \user activity log" for the sequence of logged

activities belonging to the same user. Thus, “sessionizing" is

the process of segmenting the user activity log of each user

into sessions. A tool that implements this process is a

“sessionizing heuristic": it reconstructs a session on the

basis of assumptions about user behavior. The contents of a

(re)constructed session depend on the requirements of the

mining application. In many applications, including market

basket analysis and establishment of usage problems, the

expert is interested in the pages being accessed during a

session but not in the order of access, nor on revisitations.

Hence, a session is a set of activities. If the navigational

behavior of users is studied, the order of access is of interest.

Then, a session must be modeled as a sequence of activities.

If the effect of revisitations is of interest, e.g. to investigate

the causes of disorientation, then it is necessary to expand

each session with the pages revisited but not recorded, due

to caching. A “real session" contains the activities that the

user performed together according to a reference model,

which in our experiments is provided by the Web server of

the test site.

The below figure shows the preprocessing tasks of Web

Usage Mining. The inputs to the preprocessing phase are the

server logs, site files. The outputs are the user session file,

transaction file

Access Paths and Patterns

The output of the preprocessing step is user access paths.

The below example shows the difference between user

access paths and user access patterns [13].

Example:

IP Address Userid Time Method/ URL/ Protocol

Status Size Referrer Agent

1 <123.456.78.9 - [25/Apr/1998:03:04:41 -0500] "GET

A.html HTTP/1.0" 200 3290 - Mozilla/3.04 (Win95,

I)>

2< 123.456.78.9 - [25/Apr/1998:03:05:34 -0500] "GET

B.html HTTP/1.0" 200 2050 A.html Mozilla/3.04

(Win95, I)>

3 <123.456.78.9 - [25/Apr/1998:03:05:39 -0500] "GET

L.html HTTP/1.0" 200 4130 - Mozilla/3.04 (Win95, I)>

Kapil Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,143-148

© 2010, IJARCS All Rights Reserved 145

The figure shows the one user browsing web pages for

single session. In this figure the nodes represent the web

pages and links represents the navigation of web pages.

The user access patterns follow only forward references.

The user access paths follow both forward and backward

references of web pages.

The user path through which Uid accesses certain

website: A-B-C-D-B-G-E-H-G-C-A-I-K-I-D.

The user access patterns are: A-B-C-D, A-B-G-E-H, A-I-K-

I-D.

The frequent access patterns have to satisfy the

condition i.e. the number of occurrences of access

patterns is more than equal to the minimum support. The

minimum support is number of occurrences per total

transactions. The minimum support also given as input for

generating user access patterns.

II EXISTING ALGORITHMS

A. Apriori Algorithm

This algorithm has two important and common steps: (i)

Candidate generation, and (ii) I/O operation. The initial

candidate set generation, especially for the frequent 2-

patterns, is the key issue to improve the performance of

frequent pattern discovery algorithms. Another performance

measure is the amount of data that has to be scanned during

the discovery of the Frequent Patterns [1, 2].

 The Apriori algorithm requires one pass over the database

 of all transactions for each iteration [14].

B. Partition Algorithm

The Partition algorithm attempts to reduce the I/O

operations by considering smaller segments of the database

[14]. The partition algorithm is based on the observation that

the frequent patterns are normally very few in number

compared to the set of all patterns. As a result, if we

partition the set of transactions to smaller segments such that

each segment can accommodated in the main memory, then

we can compute the set of frequent patterns of each of these

partitions. It is assumed that these patterns (set of local

frequent patterns) contain a reasonably small number of

patterns. Hence, we can read the whole database (the

unsegmented one) once, to count the support of the set of all

local frequent patterns

C. FP-Tree Algorithm

The recent development of the FP-tree algorithm avoids

the candidate generation steps [15]. The main idea of the

algorithm is to maintain a frequent pattern tree (FP-Tree) of

the database. It is an extended prefix-tree structure, storing

crucial quantitative information about frequent sets. The tree

nodes are frequent items and are arranged in such a way that

more frequently occurring nodes will have a better chances

of sharing nodes than the less frequently occurring ones.

The method starts from frequent 1-itemsets as an initial

suffix pattern and examines only its conditional pattern base

(a subset of the database), which consists of the set of

frequent items co-occurring with the suffix pattern. The

algorithm constructs the conditional FP-tree and performs

mining on this tree

Kapil Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,143-148

© 2010, IJARCS All Rights Reserved 146

III IMPROVED ALGORITHM

There are many existing algorithms for generating

frequent access patterns from the access paths. But they

have less efficient in terms of execution time and memory

requirement. This proposed algorithm is modification of FP-

tree Algorithm, but this algorithm will not use recursion for

generating Frequent Patterns. So this Algorithm will take

less execution time for access paths which are not having

uncommon items. This is explained in the below example.

The main idea of the algorithm is to maintain a frequent

pattern tree of the database. It is an extended prefix-tree

structure, storing crucial quantitative information about

frequent patterns. This algorithm is not using recursion

unlike FP-tree Algorithm. This algorithm scans the data base

once for generating page table. This table stores the

information about web pages, the number of times the user

accessed that web page and the pointer field that stores the

reference of that webpage in the pattern base tree. The page

table nodes are sorted according to the page count. The tree

nodes are frequent items and are arranged in such a way that

more frequently occurring nodes will have a better chances

of sharing nodes than the less frequently occurring ones.

The method starts from frequent 1-itemsets as an initial

suffix pattern and examines only its conditional pattern base

(a subset of the database), which consists of the set of

frequent items co-occurring with the suffix pattern. The

page table nodes are used for generating frequent access

patterns. Start from the page table seqptr, which stores the

reference of the tree node then traverse the tree from bottom

to the root node. Add the entire nodes which are in the

traversal with the condition pagecount > min_sup. If this

condition is not satisfied then move to the next path in the

tree. Generate all the frequent patterns of the users by using

backward traversals of the tree.

Example

Assume A,BC,D,E,F,G,H,I,K are the web pages in a

particular web site. U1 is the userID and S1, S2, S3, S4 are

different sessions of that particular user. This is shown in

the below table.

 Table 3.1 Access paths of single user in different

sessions

In the above page table gives information about web pages

and no of occurrences of all the access paths. The page table

contents are stored in ascending order according to the user

access page count. For generating Access patterns it will

take one more database scan. The tree stores all access paths

in compressed format. Each node in the tree represents the

page name and page count. Each node has two pointers to

parent node and to the child nodes. The root node is null

node; the child nodes of this root node will give all access

Kapil Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,143-148

© 2010, IJARCS All Rights Reserved 147

paths. If the user follow the same path in different session,

this tree simply increment page count instead of creating

new nodes.

IV.IMPLEMENTATION DETAILS

Access log record: Access log record is in the web server.

This data is stored in text format and it is in unstructured

format. First load the data into Data base from the text

format.

Data Cleaning: Elimination of the items deemed irrelevant

can be reasonably accomplished by checking the Suffix of

the URL name. For instance, all log entries with filename

suffixes such as, gif, jpeg, GIF, JPEG, jpg, JPG, and map

can be removed. Scripts such as “count.cgi” can also be

removed.

Step1:- write query for eliminate gif, jpeg, GIF, JPEG, jpg,

JPG from the database.

 Remove all the rows which are having the above

suffix in the Request field in the database.

Step2: By using StringTokanizer class in java divide the

agent field into two fields i.e Browser, its version and

Operating System.

Step3: Remove irrelevant information in the data field i.e. in

the request field. We want user requested page only, but the

request is in the below form.

 GET/biblio/riviste/img/r-t/rew4.html.

 From this we have to remove prefix of rew4.html and again

store this rew4.html in Request field of database. Now the

data base is useful for the Preprocessing.

User Identification

Step1: First create the website topology.

 Take each page as one node and link to the previous page

and next page. The below java class represent the Webpage.

 Public class Webpage {

 Protected String pagename;

 Protected TreeNode parent; //parent node

 Protected TreeNode fchild; //first child

 Protected TreeNode subling; //gives the subling node }

V. RESULTS

For validation of the algorithm data used from the web

site www.musicmachines.com. The log records are available

from September 1998 to December 1998. Simulations were

performed using an AMD Athlon processor, with 256 MB

of main memory, 756 MB of virtual memory, 40 GB of

local disk space and on Microsoft Windows XP Operating

System. These results checked for constant size data base

(i.e50MB, 150MB). The two algorithms i.e. Apriori

Algorithm and Proposed Algorithm are implemented by

using Java.

The user screens are shown in the Appendix A for both the

algorithms.

 The following figure shows the comparison result.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8

Minimum Support(%)

S
e

c
o

n
d

s Proposed

Algorithm

Existing Apriori

Algorithm

Figure 3.4. Apriori and Proposed Algorithm results

Comparison

Analysis Of Results

The above figure shows the comparisons of both the

algorithms in term of execution time. An evident from the

figure, the minimum support is less then the execution time

is more; because more number of candidate sets will be

generated. Hence, Apriori Algorithm execution time is more

than the proposed Algorithm. The proposed Algorithm is not

generating any candidate sets, but more number of patterns

will be generated, due to this the number of tree traversals

will be more. From the above Figure 3.4 the proposed

algorithm is taking less time compare to the Apriori

algorithm in all instances. If the minimum threshold is more

the both algorithm execution time is less.

VI.CONCLUSION AND SCOPE FOR WORK

Information content on the WWW is increasing at an

exponential rate and it is not surprising to find users having

difficulty in navigation and finding relevant information.

Hence, the e-commerce site developers find it difficult to

observe potential customers or web site structure. This

paper used a Web Access log file of a Web site to apply data

mining techniques for finding frequent access patterns of the

users.

VII.SCOPE FOR WORK

However the work may be extended to analyze the Data

Preprocessing phase in detail. One work has been carried

out mostly for the frequent pattern analysis. The work can

be extended to analyzed and suggest modifications for the

Data Preprocessing phase. It can also simulated using

variable memory sizes, instead of the constant memory

sizes, instead of the constant memory size adapted for the

study. Graph theory and Statistical analysis etc. can also be

done for Web Usage Mining. By using efficient algorithm

we can reduce the runtime and memory requirement

VIII.REFERENCES

[1] Wang Jicheng, Huang Yuan, Wu Gangshan and Zhang

Fuyan. Web Mining: Knowledge Discovery on the
Web. IEEE Intl Confirence, 1999, p 137-141.

Kapil Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,143-148

© 2010, IJARCS All Rights Reserved 148

[2] Yan Wang. Web Mining and Knowledge Discovery of
Usage Patterns, Project (part1), CS748T, February,
2000, Worcester polytechnic Institute.

[3] Jiawei Han and Jai pei. Mining Frequent Patterns by
pattern Growth: Methodology and Implications
.SIGKDD, December2000, ACM.

[4] Lizhen, Junjie Chen and Hantao Song. The Research of
Web Mining, the 4th World Congress on Intelligent
Control and Automation. Pp 2333 – 2337

 June 10 -14, 2002.

[5] R. Cooly, B. Mobasher and J. Srivastava. Web Mining:
Information and Pattern Discovery on the World
Wide Web. Pp.558 – 566. August 1997 IEEE.

[6] Jaideep Srivasthava. Web Mining accomplishments
and Future Work. http://
www.cs.umn.edu/faculty/srivasta.html visited on
november 2004.

[7] Yan Wang. Web Mining and Knowledge Discovery of
Usage Patterns, Project (part1), CS748T, February,
2000.

[8] R. Cooley, B. Mobasher and J. Srivastava. Data
Preparation for Mining World wide Web Browsing
Patterns. KISS, October 1998.

[9] http://www.webtrends.com/WUM.html

[10] R. Cooley, B.Mobasher and J. Srivastava. Grouping
Web Page References into Transactions for Mining
World Wide Web Browsing Patterns. Dec2000,
IEEE.

[11] www.w3c.org/clf.html

[12] Gabriele Bartolini. Web Usage Mining and Discovery
of association rules from HTTP server logs. October
2001,IEEE.

[13] Jain Pei, Jiawei Han, BehZad Motazavi-asl and Hua
Zhu. Mining Access Patterns Efficiently from Web
Logs. Technical ReportCS2000, CS, imon Fraser
University.

[14] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In Proc. of Intl. Conf. on
Very Large Databases (VLDB), September 1994.

[15] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In, pp-365-378,
September 1998, IEEE.

[16] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers, San
Francisco, CA, 2001.

[17] Fang Zhang and HuI-You Chand Research and
Development in Web Usage Mining Systems—Key
Issues and Proposed Solutions. A Survey. IEEE
International Confirence, pp.986, April 2002.

[18] Lizhen Research, Chen and Hartao Song. The
Research of Web Mining, The 4 th world Congress
on Intellegent Control. Pp 238 -242, January 1998,
IEEE.

[19] IBM, http://www.software.ibm.com/data/iminer

[20] Jaideep Srivasthava. Web Mining accomplishments
and Future Work. srivsta@cs.umn.edu http://
www.cs.umn.edu/faculty/srivasta.html

[21] WangBin and LiuZhijing. Web Mining Research,
Fifith International Conference on Computational
Intelligence and Multimedia Applications, Jan 2003.

[22] www.mysql.org/tutorial

[23] Park Jong Soo, Chen Ming-Syan, and Yu Philip S.
Using a hash-based method with transaction
trimming for mining association rules. IEEE
transactions on knowledge and data Engineering, 9
,no. 5,Sept/oct 1997.

[24] www.musicmachines.com/downloads/sampledata

[25] F. Masseglia, P. Poncelet and M. Teisseire. Using
Data Mining Techniques on Web Access Logs to
Dynamically Improve Hypertext Structure. In ACM
SigWeb Letters, 8(3):13-19, October 1999.

[26] T. W. Yan, M. Jacobsen, H. G. Molina, and U. Dayal.
From User Access Patterns to Dynamic Hypertext
Linking. In Proceedings of the 5th International
Wrold-Wide Web Conference, pages 7-11, Paris,
France, May 1996.

