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Abstract: Cloud Computing uses Hadoop framework for processing BigData in parallel.  The Hadoop Map Reduce programming paradigm used 
in the context of Big Data, is one of the popular approaches that abstract the characterstics of parallel and distributed computing which comes off 
as a solution to Big Data. Improving performance of Map Reduce is a major concern as it affects the energy efficiency. Improving the energy 
efficiency of Map Reduce will have significant impact on energy savings for data centers. There are many parameters that influence the 
performance of Map Reduce . Various parameters like scheduling, resource allocation and data flow have a significant impact on Map Reduce 
performance. Cloud Computing leverages Hadoop framework for processing BigData in parallel. Hadoop has certain limitations that could be 
exploited to execute the job efficiently. Efficient resource allocation remains a challenge in Cloud Computing MapReduce platforms. We 
propose a methodology which is an enhanced Hadoop architecture that reduces the computation cost associated with BigData analysis.  
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INTRODUCTION  

In Cloud Computing the concept of parallel processing has 
come out as a versatile research area as data is highly 
voluminous and varied. To process and understand such an 
enormous amount of data traditional processing methods 
cannot be used. There is now an availability of freely available 
and marketable cloud computing parallel processing platforms 
that have paved the way to process structured, semi-structured 
or unstructured data [1]. We first define what actually is 
BigData and Hadoop and some terms related to it. 

BIG DATA CONCEPTS 

The term “Big Data” refers to large voluminous data sets that 
is composed of a wide range of structured data as well as 
unstructured data which can be too big, produced at a fast rate 
and thus being difficult to be managed by traditional 
techniques. 
BigData can be either a relational database that is structured, 
such as stock market data or non-relational database that is 
semistructured or unstructured, like social media data [2]. 
BigData is catagerized by 4V’s 1) Volume of the data, which 
means the data quantity 2) Velocity, which means the pace at 
which the data is generated 3) Variety of the data, which 
means the different forms of data that applications have to deal 
with such as numeric data or binary data. 4) Veracity of the 
data, which means the uncertain or imprecise data that provide 
meaningful information to the applications[3]. 
There are many challenges in Big Data[4] which can  be 
described as technical challenges such as the challenge of 
storing the BigData and also minimizing redundancy present 
in it. Also many challenges like data integration, 
representation of data and data cleaning are tedious tasks 
because of such high volume of data. Because of these issues, 
BigData needs such an environment or framework that can 
help to work through these issues smoothly. One of such 
framewok called Hadoop, which works with BigData sets, are  

 
now used by most organizations to process BigData, and helps 
overcoming theses challenges. 
Hadoop is a framework responsible for distributed storage and 
distributed processing, it is a freely available software 
framework written in java by Apache Software Foundation. It 
provides a file system that acts as an interface between the 
users’ applications and the local file system, known as Hadoop 
Distributed File System HDFS. The two main components of 
Hadoop are (i) Hadoop Distributed File System (HDFS) 
allowing for distributed storage (ii) MapReduce that allows for 
distributed processing [5] [6].  
Hadoop works by dividing the data into blocks where block 
size is defined beforehand .The blocks will then be written 
with the data and replicated in the HDFS. The blocks can be 
replicated ato a certain fixed value based set to 3 by default 
[7]. HDFS is one of the major components of Hadoop cluster 
and HDFS is designed to have Master-slave architecture. The 
Master node which is called NameNode and the slaves called 
DataNodes. The Name Node manages and organizes data 
storage capacity (HDFS), A particular NameNode manages the 
file system and perform tasks like saving the data, it also 
assigns the jobs to the suitable DataNodes that stores the 
application data required by the job[8]. DataNodes facilitate 
MapReduce to process the jobs in a parallel processing 
environment [5, 9]. 
Map Reduce brings compute to the data, which is significantly 
cheaper than moving data towards computation. MapReduce is 
now heading as a standard tool[4] as it offers immense storage 
power and substantially high amount of computing 
power.  Map Reduce also possess a Master-slave architecture. 
The Master here is Job Tracker and slaves here are the many 
Task Trackers. 
Master that is the Jobtrackers is the point of interaction 
between users and the map/reduce framework. JobTracker 
coordinates and deploys the applications to the DataNodes 
with TaskTracker services for execution and parallel 
processing [7]. The Job Tracker puts the MapReduce job in a  
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queue of pending jobs, executing them on a FCFS basis, and 
then assigns the map tasks and reduce tasks to the tasktrackers. 
Slaves that is the tasktrackes will now execute tasks upon 
instruction from the Master that is the Jobtracker and will be 
handling movement of data between the map and reduce 
phases. Thus, the master computer has two daemons, which 
are NameNode in terms of HDFS and JobTracker in terms of 
MapReduce. Similarly, the slaves also have two daemons, 
which are DataNodes in terms of HDFS and TaskTrackers in 
terms of MapReduce. 
 

 
 Figure 1: Concept of Master and Slaves in Hadoop 
MapReduce 

A MapReduce job works by splitting the present input dataset 
into autonomous chunks that is blocks and stores them in 
HDFS. In the process of MapReduce, the numerous Map tasks 
are processed in parallel which will be followed by many 
Reduce tasks that is also processed in parallel. The number of 
maps and reduce tasks performed are application dependent 
and their number can vary for every application processed. 
Also the number of map task and reduce task are not same  
and be different from each other. In HDFS data can be stored 
in different forms [3] such as in the form of <Key,Value>, 
where the Key is determined and then the value of Key is 
resolved at the end of Job.  

 

        Figure 2: Example of MapReduce Processing 

We try to explain MapReduce with the help of a simple  
example -One of the first phase is the Input Phase where a 
Record Reader transforms each record in an input file and 
forwards it to the map phase, where it is present in the form of 
key-value pairs. Now the next phase that is the Map phase is a 
user-defined function, which works by taking a sequence of 
key-value pairs and then processing each sequence to generate 
zero or more key-value pairs. These key-value pairs generated 
by the map phase are called intermediate keys. Then comes the 
wok of a combiner which is a type of local Reducer that will 
take similar data from the map phase and group it into 
exclusive sets. It is not necessarily a part of the main 
MapReduce algorithm and is optional. The other stage is of 
Shuffle and Sort. The task of Reducer starts with this very 
step. It copies the grouped key-value pairs onto the local 
machine, it is where the reducer is running. The specific key-
value pairs are sorted by key into a larger data list. The data 
list groups the alike keys jointly so that the reduce operation is 
performed easily. The final main task of Reducer is that it 
takes the alike key-value pairs as input and finally runs a 
Reducer function on each pair. Now the data can be combined, 
categorized and filtered. After this phase is over, zero or more 
key-value pairs are generated to proceed towards the final step. 
Finally, an output formatter translates the final key-value pairs 
taken from the Reducer function and incorporates them onto a 
file using a record writer. The NameNode provides the result 
that has all keys and their values as the ultimate and final 
result. 

In the following text, an overview of existing Hadoop 
MapReduce workflow is described and the limitations in terms 
of performance of MapReduce is focused upon. The next 
section discusses the issue that our proposed work tries to 
solve. Then, we have proposed an enhanced workflow for 
Hadoop MapReduce. In the next section, the implementation 
and testing phase is discussed, and the results are evaluated 
and enhancement of parameters achieved are conferred. 
Finally the the work is concluded. 

NATIVE HADOOP WORKFLOW 

In the existing Hadoop MapReduce architecture, a job that is 
provided by the client is sent using a Query language like Hive 
or by creating a job source code[11] to the Name Node.  
Blocks of equal size usually 64 or 128 MB of BigData are 
uploaded to the HDFS and are distributed among different 
DataNodes within the cluster. So any job that is ready for 
execution should have the name of the data file in HDFS, the 
source code file of MapReduce  job that is in java, the name of 
the file where the final reduced results will be stored in. 
In the present Hadoop MapReduce architecture, if for multiple 
jobs we have the same dataset, it will execute  completely 
independent of each other. For example if any job is executed 
once and takes a certain amount of time for execution then if 
another job of same nature, that is a similar job is given by the 
client, it will take the same amount of time as was done by the 
earlier job execution. 
Here we try to explain the workflow of a native Hadoop 
MapReduce: 
Firstly, a Client “A” sends a request for job execution to the 
NameNode. This request will handle the copying of data files 
to DataNodes. The NameNode will reply with the IP address 
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of DataNodes. Now the Client “A” will access the raw data 
and format it into HDFS format while dividing data blocks of 
fixed size. 
This data block will be send to different DataNodes  in form of 
multiple copies usually ‘3’ is the replication factor here. 
Now the Client “A” will send a MapReduce job to the 
JobTracker which in turn sends it to all the TaskTrackers 
holding the blocks of data. The TaskTracker will execute the 
specific task on each data block and sends final result back to 
the JobTracker. The JobTracker sends the final result to Client 
“A”. If another Client“B” comes up with a similar job again 
the processing of job is done again using MapReduce at the 
TaskTrackers, and take almost similar time as the earlier 
executed job of Client”A”. 
 

 
Figure 3: Workflow of Native Hadoop 

A. Native Hadoop Map Reduce Limitations 
One of the limitations we can observe here is that the job 
execution is independent of each other. So, every job has to go 
through the same process of execution even if it carries the 
same task to be performed as that of earlier jobs. If we have 
the same job executed more than once, it will read all the data 
every time; which may lead to declining of Hadoop 
performance. 
 

B. Research Problem 
In existing Hadoop architecture, as a new job arrives it is sent 
by the job tracker to all the task trackers. Task Trackers 
execute the Map-Reduce task and return results to Job Tracker 
which gives it back to client. If same job comes again then the 
same steps are repeated again. In our proposed work, if a job 
has already been executed ensured by checking in the common 
job table then the job does not undergoes Map Reduce 
Processing again but the results are fetched that have already 
been executed and thus it saves the execution time, as we don’t 
have to re-execute the job. The proposed system has been 
explained as follows. 

COMMON JOB TABLE 

The proposed work is almost same as the original Hadoop 
processing of job however some features have been added like 
the common job table that contains name of the already 
executed jobs. 
The Common Job Table stores information about jobs. The 
job’s common job name, Input path, and the Output path. The 
Common Job table has been built using Hive. This database 
forms the Common Job Table where we will save the data of 
all the previous jobs processed and this will help us in finding 
the already run jobs. 
Proposed work depends on Common Job Table for efficient 
data analysis. Each time a new job is executed it’s job name, 
Input path and Output path is saved in the Hive Common Job 
Table. Common features in the table can be compared and 
updated every time a client submits a new job in Hadoop. 
Job Tracker will direct any new job with the common features 
to common job table. Now if suppose there are two jobs J1 and 
J2. J1 employs Map Reduce processing to process the job. If 
J2 contains common features of J1, the output is mapped onto 
J2 also and Map Reduce processing is not performed again. 
If the Common Job Table is empty, the user will execute the 
Map Reduce job in a traditional way without getting the 
benefits of proposed solution. 
Size of our common job table can be limited using ‘Leaky 
Bucket’ or ‘Token Bucket’ algorithm, which can become a 
topic of future discussion. 
 

PROPOSED HADOOP MAPREDUCE WORKFLOW 

Enhanced Hadoop architecture does not clash with the 
already existing Hadoop architecture but there are some 
enhancements of only the software level through or table 
containing the common jobs. The workflow of our proposed 
system has been explained as: 

Firstly, a Client “A” sends a request for job execution to the 
NameNode. This request will handle the copying of data files 
to DataNodes. The NameNode will reply with the IP address 
of DataNodes. Now the Client “A” will access the raw data 
and format it into HDFS format while dividing data blocks of 
fixed size. 

This data block will be send to different DataNodes  in form 
of multiple copies usually ‘3’ is the replication factor 
here.Now the Client “A” will send a MapReduce job to the 
JobTracker which in turn sends it to all the TaskTrackers 
holding the blocks of data. The TaskTracker will execute the 
specific task on each data block and sends final result back to 
the JobTracker, the results are returned to the client and in turn 
JobTracker keeps the details of the job; its Jar file Name, Input 
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Path, Output Path in the Common Job Table of Hive.Then, if 
another Client”B” submits a new MapReduce Job “Job2” to 
JobTracker with the same Jar File Name and Input Path as 
“Job1” which is found out when JobTracker checks Common 
Job Table. Then, MapReduce processing is not performed 
again and this output is fetched directly from Output Path. The 
result is sent back to the Client.   

There is some training data present before executing the 
process of MapReduce so as to keep some metadata in the 
table of common jobs so as to observe the advantages of the 
new architecture.A relationship between processing of jobs, by 
our proposed system is made with the already existing solution 
and the proposed methodology comes out to be better.The 
flowchart given below explains the above mentioned steps of 
our proposed system.  
 

 
Figure 4: Workflow of Proposed Hadoop MapReduce 

IMPLEMENTATION AND TESTING 

In, this section we have an implementation plan for the 
proposed solution and its expected results. 

C. Creating Common Job Table 
We can create the Common Job Table using many different 
techniques. One of the techniques is Hive, that gives a SQL-
like interface that helps in querying data stored in databases 
and file systems that are integrated with Hadoop. It allows for 
portability of SQL-based application to Hadoop. It uses a SQL 
like query language called HiveQL. 

D. Designing User Interface 
As we proposed earlier the user interface should contain user-
friendly interface so that the user is receive the benefits of the 
enhanced design when choosing common data from lists. For 
example, when choosing the Common Job Name from a list of 
common job names that are related to the similar data files. 
Different forms of user interfaces can be designed based on the 
user’s needs. One of the common user interfaces is, the 
command line that is commonly used when the user knows the 
commands and the related parameters they will use. Hadoop 
and Hive are controlled by the same command line, which is a 
shell command line in Linux. Therefore, in our work, we use 
the shell command line as a user interface to implement the 
proposed solution. The commands that are used here are the 
same original Hadoops’ commands. 

E. MapReduce Job 
We executed a Job written in Java. The Job finds the 
maximum and minimum temperature for the day. The data 
was collected for 6 months. A more detailed and enormous can 
be worked upon in the proposed system as a future prospect. 

F. Units 
We have Hadoop and Hive running on shell interface of linux. 
Following applications are used: 
• We have one Master node, that serves as the NameNode and 

The JobTracker.  
• We have 2 slave nodes that will serve as DataNodes and 

TaskTrackers in different locations. 
• Linux Ubuntu version 16.04 as an operating sytem on all 

nodes. 
 

We executed some MapReduce Jobs. Our first Job involved 
temperature Input data. To check the authenticity of our work 
we executed the same MapReduce Job the next time. The 
proposed work did not perform MapReduce proceesing again 
as the job was already executed. Another Job with same work 
but with different Job Name and Input Path was saved and 
executed and it performed MapReduce processing again to 
execute the Job. Thus, we observed if same jobs are arriving 
again and again at Job Tracker then MapReduce processing is 
not performed everytime. 
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RESULTS AND EVALUATION 
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Figure 5: CPU Time for Job Execution  
 
Figure 5 shows the difference of CPU Time taken by each Job 
(3 Jobs taken) when run for the first time using our proposed 
system that simply works like normal Hadoop framework and 
when another similar Job comes and is run and processed 
using our proposed system , it takes much less CPU time than 
before. As it does not perform MapReduce operation again and 
again. 
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 Figure 6: Wall Time for Job Execution  
 

The another parameter considered to compare the performance 
is Wall Time for Jobs executed using our proposed system. As 
the above figure shows the Wall time for the execution of Job 
run using proposed architecture for first time and then second 
time observes that Wall time Using Common Job table 
requires less time than native Hadoop Architecture. 

CONCLUSION 

The proposed work presented here focuses on the software 
aspect of Native Hadoop Architecture and brings out some 
enhancements in the same. The work allows for the 
NameNode to identify the already run Jobs using a Common 
Job Table to store the Jobs with common name and Input Path 

and saving the time spent in MapReduce processing of similar 
Jobs by fetching the already present result. The proposed 
architecture’s workflow was discussed and the time taken by 
first execution where MapReduce processing has been 
performed to the execution of similar Job arriving where 
MapReduce is not performed again. Thus achieving significant 
gain in Hadoop performance. 
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