
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4256

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 570

ISSN No. 0976-5697 ISSN No. 0976-5697

EFFICIENT PROCESSING OF JOB BY ENHANCING HADOOP MAPREDUCE
FRAMEWORK

Ayesha Saad
Pursuing M.tech, Dept. Of Computer Science and

Engineering
Integral University

Lucknow,India

M. Akheela Khanum
HOD,Dept.

Of Computer Science and Engineering
Integral University

Lucknow, India

Abstract: Cloud Computing uses Hadoop framework for processing BigData in parallel. The Hadoop Map Reduce programming paradigm used
in the context of Big Data, is one of the popular approaches that abstract the characterstics of parallel and distributed computing which comes off
as a solution to Big Data. Improving performance of Map Reduce is a major concern as it affects the energy efficiency. Improving the energy
efficiency of Map Reduce will have significant impact on energy savings for data centers. There are many parameters that influence the
performance of Map Reduce . Various parameters like scheduling, resource allocation and data flow have a significant impact on Map Reduce
performance. Cloud Computing leverages Hadoop framework for processing BigData in parallel. Hadoop has certain limitations that could be
exploited to execute the job efficiently. Efficient resource allocation remains a challenge in Cloud Computing MapReduce platforms. We
propose a methodology which is an enhanced Hadoop architecture that reduces the computation cost associated with BigData analysis.

Keywords: Big Data, Data flow, Energy Efficiency, Map Reduce, Performance, Resource Allocation, Scheduling

INTRODUCTION

In Cloud Computing the concept of parallel processing has
come out as a versatile research area as data is highly
voluminous and varied. To process and understand such an
enormous amount of data traditional processing methods
cannot be used. There is now an availability of freely available
and marketable cloud computing parallel processing platforms
that have paved the way to process structured, semi-structured
or unstructured data [1]. We first define what actually is
BigData and Hadoop and some terms related to it.

BIG DATA CONCEPTS

The term “Big Data” refers to large voluminous data sets that
is composed of a wide range of structured data as well as
unstructured data which can be too big, produced at a fast rate
and thus being difficult to be managed by traditional
techniques.
BigData can be either a relational database that is structured,
such as stock market data or non-relational database that is
semistructured or unstructured, like social media data [2].
BigData is catagerized by 4V’s 1) Volume of the data, which
means the data quantity 2) Velocity, which means the pace at
which the data is generated 3) Variety of the data, which
means the different forms of data that applications have to deal
with such as numeric data or binary data. 4) Veracity of the
data, which means the uncertain or imprecise data that provide
meaningful information to the applications[3].
There are many challenges in Big Data[4] which can be
described as technical challenges such as the challenge of
storing the BigData and also minimizing redundancy present
in it. Also many challenges like data integration,
representation of data and data cleaning are tedious tasks
because of such high volume of data. Because of these issues,
BigData needs such an environment or framework that can
help to work through these issues smoothly. One of such
framewok called Hadoop, which works with BigData sets, are

now used by most organizations to process BigData, and helps
overcoming theses challenges.
Hadoop is a framework responsible for distributed storage and
distributed processing, it is a freely available software
framework written in java by Apache Software Foundation. It
provides a file system that acts as an interface between the
users’ applications and the local file system, known as Hadoop
Distributed File System HDFS. The two main components of
Hadoop are (i) Hadoop Distributed File System (HDFS)
allowing for distributed storage (ii) MapReduce that allows for
distributed processing [5] [6].
Hadoop works by dividing the data into blocks where block
size is defined beforehand .The blocks will then be written
with the data and replicated in the HDFS. The blocks can be
replicated ato a certain fixed value based set to 3 by default
[7]. HDFS is one of the major components of Hadoop cluster
and HDFS is designed to have Master-slave architecture. The
Master node which is called NameNode and the slaves called
DataNodes. The Name Node manages and organizes data
storage capacity (HDFS), A particular NameNode manages the
file system and perform tasks like saving the data, it also
assigns the jobs to the suitable DataNodes that stores the
application data required by the job[8]. DataNodes facilitate
MapReduce to process the jobs in a parallel processing
environment [5, 9].
Map Reduce brings compute to the data, which is significantly
cheaper than moving data towards computation. MapReduce is
now heading as a standard tool[4] as it offers immense storage
power and substantially high amount of computing
power. Map Reduce also possess a Master-slave architecture.
The Master here is Job Tracker and slaves here are the many
Task Trackers.
Master that is the Jobtrackers is the point of interaction
between users and the map/reduce framework. JobTracker
coordinates and deploys the applications to the DataNodes
with TaskTracker services for execution and parallel
processing [7]. The Job Tracker puts the MapReduce job in a

Ayesha Saad et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,570-574

© 2015-19, IJARCS All Rights Reserved 571

queue of pending jobs, executing them on a FCFS basis, and
then assigns the map tasks and reduce tasks to the tasktrackers.
Slaves that is the tasktrackes will now execute tasks upon
instruction from the Master that is the Jobtracker and will be
handling movement of data between the map and reduce
phases. Thus, the master computer has two daemons, which
are NameNode in terms of HDFS and JobTracker in terms of
MapReduce. Similarly, the slaves also have two daemons,
which are DataNodes in terms of HDFS and TaskTrackers in
terms of MapReduce.

 Figure 1: Concept of Master and Slaves in Hadoop
MapReduce

A MapReduce job works by splitting the present input dataset
into autonomous chunks that is blocks and stores them in
HDFS. In the process of MapReduce, the numerous Map tasks
are processed in parallel which will be followed by many
Reduce tasks that is also processed in parallel. The number of
maps and reduce tasks performed are application dependent
and their number can vary for every application processed.
Also the number of map task and reduce task are not same
and be different from each other. In HDFS data can be stored
in different forms [3] such as in the form of <Key,Value>,
where the Key is determined and then the value of Key is
resolved at the end of Job.

 Figure 2: Example of MapReduce Processing

We try to explain MapReduce with the help of a simple
example -One of the first phase is the Input Phase where a
Record Reader transforms each record in an input file and
forwards it to the map phase, where it is present in the form of
key-value pairs. Now the next phase that is the Map phase is a
user-defined function, which works by taking a sequence of
key-value pairs and then processing each sequence to generate
zero or more key-value pairs. These key-value pairs generated
by the map phase are called intermediate keys. Then comes the
wok of a combiner which is a type of local Reducer that will
take similar data from the map phase and group it into
exclusive sets. It is not necessarily a part of the main
MapReduce algorithm and is optional. The other stage is of
Shuffle and Sort. The task of Reducer starts with this very
step. It copies the grouped key-value pairs onto the local
machine, it is where the reducer is running. The specific key-
value pairs are sorted by key into a larger data list. The data
list groups the alike keys jointly so that the reduce operation is
performed easily. The final main task of Reducer is that it
takes the alike key-value pairs as input and finally runs a
Reducer function on each pair. Now the data can be combined,
categorized and filtered. After this phase is over, zero or more
key-value pairs are generated to proceed towards the final step.
Finally, an output formatter translates the final key-value pairs
taken from the Reducer function and incorporates them onto a
file using a record writer. The NameNode provides the result
that has all keys and their values as the ultimate and final
result.

In the following text, an overview of existing Hadoop
MapReduce workflow is described and the limitations in terms
of performance of MapReduce is focused upon. The next
section discusses the issue that our proposed work tries to
solve. Then, we have proposed an enhanced workflow for
Hadoop MapReduce. In the next section, the implementation
and testing phase is discussed, and the results are evaluated
and enhancement of parameters achieved are conferred.
Finally the the work is concluded.

NATIVE HADOOP WORKFLOW

In the existing Hadoop MapReduce architecture, a job that is
provided by the client is sent using a Query language like Hive
or by creating a job source code[11] to the Name Node.
Blocks of equal size usually 64 or 128 MB of BigData are
uploaded to the HDFS and are distributed among different
DataNodes within the cluster. So any job that is ready for
execution should have the name of the data file in HDFS, the
source code file of MapReduce job that is in java, the name of
the file where the final reduced results will be stored in.
In the present Hadoop MapReduce architecture, if for multiple
jobs we have the same dataset, it will execute completely
independent of each other. For example if any job is executed
once and takes a certain amount of time for execution then if
another job of same nature, that is a similar job is given by the
client, it will take the same amount of time as was done by the
earlier job execution.
Here we try to explain the workflow of a native Hadoop
MapReduce:
Firstly, a Client “A” sends a request for job execution to the
NameNode. This request will handle the copying of data files
to DataNodes. The NameNode will reply with the IP address

Ayesha Saad et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,570-574

© 2015-19, IJARCS All Rights Reserved 572

of DataNodes. Now the Client “A” will access the raw data
and format it into HDFS format while dividing data blocks of
fixed size.
This data block will be send to different DataNodes in form of
multiple copies usually ‘3’ is the replication factor here.
Now the Client “A” will send a MapReduce job to the
JobTracker which in turn sends it to all the TaskTrackers
holding the blocks of data. The TaskTracker will execute the
specific task on each data block and sends final result back to
the JobTracker. The JobTracker sends the final result to Client
“A”. If another Client“B” comes up with a similar job again
the processing of job is done again using MapReduce at the
TaskTrackers, and take almost similar time as the earlier
executed job of Client”A”.

Figure 3: Workflow of Native Hadoop

A. Native Hadoop Map Reduce Limitations
One of the limitations we can observe here is that the job
execution is independent of each other. So, every job has to go
through the same process of execution even if it carries the
same task to be performed as that of earlier jobs. If we have
the same job executed more than once, it will read all the data
every time; which may lead to declining of Hadoop
performance.

B. Research Problem
In existing Hadoop architecture, as a new job arrives it is sent
by the job tracker to all the task trackers. Task Trackers
execute the Map-Reduce task and return results to Job Tracker
which gives it back to client. If same job comes again then the
same steps are repeated again. In our proposed work, if a job
has already been executed ensured by checking in the common
job table then the job does not undergoes Map Reduce
Processing again but the results are fetched that have already
been executed and thus it saves the execution time, as we don’t
have to re-execute the job. The proposed system has been
explained as follows.

COMMON JOB TABLE

The proposed work is almost same as the original Hadoop
processing of job however some features have been added like
the common job table that contains name of the already
executed jobs.
The Common Job Table stores information about jobs. The
job’s common job name, Input path, and the Output path. The
Common Job table has been built using Hive. This database
forms the Common Job Table where we will save the data of
all the previous jobs processed and this will help us in finding
the already run jobs.
Proposed work depends on Common Job Table for efficient
data analysis. Each time a new job is executed it’s job name,
Input path and Output path is saved in the Hive Common Job
Table. Common features in the table can be compared and
updated every time a client submits a new job in Hadoop.
Job Tracker will direct any new job with the common features
to common job table. Now if suppose there are two jobs J1 and
J2. J1 employs Map Reduce processing to process the job. If
J2 contains common features of J1, the output is mapped onto
J2 also and Map Reduce processing is not performed again.
If the Common Job Table is empty, the user will execute the
Map Reduce job in a traditional way without getting the
benefits of proposed solution.
Size of our common job table can be limited using ‘Leaky
Bucket’ or ‘Token Bucket’ algorithm, which can become a
topic of future discussion.

PROPOSED HADOOP MAPREDUCE WORKFLOW

Enhanced Hadoop architecture does not clash with the
already existing Hadoop architecture but there are some
enhancements of only the software level through or table
containing the common jobs. The workflow of our proposed
system has been explained as:

Firstly, a Client “A” sends a request for job execution to the
NameNode. This request will handle the copying of data files
to DataNodes. The NameNode will reply with the IP address
of DataNodes. Now the Client “A” will access the raw data
and format it into HDFS format while dividing data blocks of
fixed size.

This data block will be send to different DataNodes in form
of multiple copies usually ‘3’ is the replication factor
here.Now the Client “A” will send a MapReduce job to the
JobTracker which in turn sends it to all the TaskTrackers
holding the blocks of data. The TaskTracker will execute the
specific task on each data block and sends final result back to
the JobTracker, the results are returned to the client and in turn
JobTracker keeps the details of the job; its Jar file Name, Input

Ayesha Saad et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,570-574

© 2015-19, IJARCS All Rights Reserved 573

Path, Output Path in the Common Job Table of Hive.Then, if
another Client”B” submits a new MapReduce Job “Job2” to
JobTracker with the same Jar File Name and Input Path as
“Job1” which is found out when JobTracker checks Common
Job Table. Then, MapReduce processing is not performed
again and this output is fetched directly from Output Path. The
result is sent back to the Client.

There is some training data present before executing the
process of MapReduce so as to keep some metadata in the
table of common jobs so as to observe the advantages of the
new architecture.A relationship between processing of jobs, by
our proposed system is made with the already existing solution
and the proposed methodology comes out to be better.The
flowchart given below explains the above mentioned steps of
our proposed system.

Figure 4: Workflow of Proposed Hadoop MapReduce

IMPLEMENTATION AND TESTING

In, this section we have an implementation plan for the
proposed solution and its expected results.

C. Creating Common Job Table
We can create the Common Job Table using many different
techniques. One of the techniques is Hive, that gives a SQL-
like interface that helps in querying data stored in databases
and file systems that are integrated with Hadoop. It allows for
portability of SQL-based application to Hadoop. It uses a SQL
like query language called HiveQL.

D. Designing User Interface
As we proposed earlier the user interface should contain user-
friendly interface so that the user is receive the benefits of the
enhanced design when choosing common data from lists. For
example, when choosing the Common Job Name from a list of
common job names that are related to the similar data files.
Different forms of user interfaces can be designed based on the
user’s needs. One of the common user interfaces is, the
command line that is commonly used when the user knows the
commands and the related parameters they will use. Hadoop
and Hive are controlled by the same command line, which is a
shell command line in Linux. Therefore, in our work, we use
the shell command line as a user interface to implement the
proposed solution. The commands that are used here are the
same original Hadoops’ commands.

E. MapReduce Job
We executed a Job written in Java. The Job finds the
maximum and minimum temperature for the day. The data
was collected for 6 months. A more detailed and enormous can
be worked upon in the proposed system as a future prospect.

F. Units
We have Hadoop and Hive running on shell interface of linux.
Following applications are used:
• We have one Master node, that serves as the NameNode and

The JobTracker.
• We have 2 slave nodes that will serve as DataNodes and

TaskTrackers in different locations.
• Linux Ubuntu version 16.04 as an operating sytem on all

nodes.

We executed some MapReduce Jobs. Our first Job involved
temperature Input data. To check the authenticity of our work
we executed the same MapReduce Job the next time. The
proposed work did not perform MapReduce proceesing again
as the job was already executed. Another Job with same work
but with different Job Name and Input Path was saved and
executed and it performed MapReduce processing again to
execute the Job. Thus, we observed if same jobs are arriving
again and again at Job Tracker then MapReduce processing is
not performed everytime.

Ayesha Saad et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,570-574

© 2015-19, IJARCS All Rights Reserved 574

RESULTS AND EVALUATION

0

2

4

6

8

JOB 1 JOB 2 JOB 3

CPU Time for 1st
Execution

CPU Time for
2nd Execution

Figure 5: CPU Time for Job Execution

Figure 5 shows the difference of CPU Time taken by each Job
(3 Jobs taken) when run for the first time using our proposed
system that simply works like normal Hadoop framework and
when another similar Job comes and is run and processed
using our proposed system , it takes much less CPU time than
before. As it does not perform MapReduce operation again and
again.

0

2

4

6

8

10

JOB 1 JOB 2 JOB 3

Wall time taken
for 1st
Execution(sec)

Wall time taken
for 2nd
Execution(sec)

 Figure 6: Wall Time for Job Execution

The another parameter considered to compare the performance
is Wall Time for Jobs executed using our proposed system. As
the above figure shows the Wall time for the execution of Job
run using proposed architecture for first time and then second
time observes that Wall time Using Common Job table
requires less time than native Hadoop Architecture.

CONCLUSION

The proposed work presented here focuses on the software
aspect of Native Hadoop Architecture and brings out some
enhancements in the same. The work allows for the
NameNode to identify the already run Jobs using a Common
Job Table to store the Jobs with common name and Input Path

and saving the time spent in MapReduce processing of similar
Jobs by fetching the already present result. The proposed
architecture’s workflow was discussed and the time taken by
first execution where MapReduce processing has been
performed to the execution of similar Job arriving where
MapReduce is not performed again. Thus achieving significant
gain in Hadoop performance.

REFERENCES

[1] Eugen Feller,Lavanya Ramakrishnan,Christine Morin,”
Performance and energy efficiency of big data applications in
cloud environments: A Hadoop case study”, Journal of Parallel
and Distributed Computing,Elsevier (2015)

[2] Mukhtaj Khan, Yong Jin, Maozhen Li, Yang Xiang and
Changjun Jiang, “Hadoop Performance Modeling for Job
Estimation and Resource Provisioning”, IEEE Transactions on
Parallel and Distributed Systems.

[3] Javier Conejero, Omer Rana, Peter Burnap, Jeffrey Morgan,
Blanca Caminero, Carmen Carrión,” Analyzing Hadoop power
consumption and impact on application QoS”, Future Generation
Computer Systems 55 (2016)

[4] Jacob Leverich, Christos Kozyrakis” On the energy
(in)efficiency of Hadoop clusters”, Volume 44 Issue
1,January2010, Pages61-65 ,ACM New York, NY, USA

[5] Rini T. Kaushik, Milind Bhandarkar” GreenHDFS: Towards An
Energy-Conserving, Storage-Efficient, Hybrid Hadoop Compute
Cluster”, HotPower'10 Proceedings of the 2010 international
conference on Power aware computing and systems, Article No.
1-9, Vancouver, BC, Canada

[6] Yanpei Chen, Archana Ganapathi” GreenHDFS: Towards An
Energy-Conserving, Storage-Efficient, Hybrid Hadoop Compute
Cluster”, HotPower'10 Proceedings of the 2010 international
conference on Power aware computing and systems, Article No.
1-9, Vancouver, BC, Canada

[7] Zhuo Tang, Lingang Jiang, Junging Zhou, Kenli Li, Keqin Li “A
self-adaptive scheduling algorithm for reduce start time”, Future
Generation Computer System, Volumes 43–44, Pages 51–60
(2015)

[8] Weikuan Yu, Yandong Wang, Xinyu Que, Cong Xu “Virtual
Shuffling for Efficient Data Movement in MapReduce”, IEEE
Transactions on Computers, Volume: 64, Issue: 2 (2015)

[9] Kumar KA, Konishetty VK, Voruganti K, Rao GVP. CASH:
Context Aware Scheduler for Hadoop. In: Proceedings of the
International Conference on Advances in Computing,
Communications and Informatics. New

[10] CloudSuite 1.0, Web page at
[11] http://parsa.epfl.ch/cloudsuite/cloudsuite.html (Last access:

26.06.14).
[12] Tian C, Zhou H, He Y, Zha L. A dynamic MapReduce scheduler

for heterogeneous workloads. In: 8th International Conference
on Grid and Cooperative Computing. 2009. p. 218–24.

http://www.acm.org/publications�
http://dl.acm.org/author_page.cfm?id=81408597172&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587�
http://dl.acm.org/author_page.cfm?id=81100120990&coll=DL&dl=ACM&trk=0&cfid=740838944&cftoken=80749587�
http://www.sciencedirect.com/science/journal/0167739X/43/supp/C�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12�
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7006872�

	INTRODUCTION
	BIG DATA CONCEPTS
	NATIVE HADOOP WORKFLOW
	Native Hadoop Map Reduce Limitations
	Research Problem

	COMMON JOB TABLE
	PROPOSED HADOOP MAPREDUCE WORKFLOW
	IMPLEMENTATION AND TESTING
	Creating Common Job Table
	Designing User Interface
	MapReduce Job
	Units

	RESULTS AND EVALUATION
	CONCLUSION
	REFERENCES

