
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4239

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 272

ISSN No. 0976-5697 ISSN No. 0976-5697

A COMPARATIVE STUDY OF VARIOUS TYPES OF SORTING TECHNIQUES

 Pavleen Kaur
CGC College Of Engineering

Mohali, India

Shivani Mahajan
CGC College Of Engineering,

Mohali, India

Ms. Harneet Kour
CGC College Of Engineering,

Mohali, India

Abstract: Sorting is the procedure of arranging the elements in ascending or descending order. Sorting algorithms are not only used in computer
science but also in our day-to-day life to reduce complexity. For optimizing the use of other algorithms, efficient sorting is required. This paper
makes a comparison between merge sort, quick sort, selection sort and insertion sort by their time complexities.

Keywords: Merge sort, quick sort, selection sort, insertion sort, analysis, time complexity.

I. INTRODUCTION

Algorithm is determined as a limited collection of consecutive
steps through which the solution of a particular problem is
obtained. An algorithm has to produce an output for the given
set of input values. The considered number of steps in any
programming language should be definite and unambiguous.
Each and every instruction must be such that it can be
executed easily.

Many relevant algorithms can be made by using a variety of
designing procedures. The various techniques taken into
account are divide-and-conquer, incremental approach, greedy
method, dynamic programming, backtracking and branch and
bound [1].

An algorithm that rearranges the elements of a list in a certain
order, for instance ascending and descending order is referred
to as a sorting algorithm. Numerical order and lexicographical
order are the most-used orders. There are many sorting
algorithms like merge sort, insertion sort, and quick sort [2].

The sorting algorithms efficiency depends on the number of
input values, some algorithms perform best when given small
number of input values while other perform best when given
large number. Algorithms efficiency is judged by its time
complexity, time complexity is the amount of time taken by an
algorithm to solve a particular problem. It is divided into three
cases, best case, worst case and average case. The best case is
denoted by Ω (Lower -Bound), worst case by Big-O-notation
(Upper-Bound) and average case by θ (Tight-Bound).

There are two types of sorting-Internal sorting and External
Sorting. If the list to be sorted is stored in the main memory,
then the sorting operation is called as Internal Sorting. On the
other hand, if the list is stored in the secondary memory
(floppy, hard disk, etc) then the sorting is referred to as
External Sorting.

II. DESCRIPTION OF SOME EFFICIENT SORTING
TECHNIQUES

A. Merge Sort
Merge Sort algorithm, which was invented by John von

Neumann in 1945, is a comparison based sorting algorithm.
Divide and conquer paradigm is used by merge sort algorithm
to accomplish the task of sorting. The beginning of this
algorithm includes comparing each pair of elements and
interchanging them if the first element is greater than the
second one. After that, each pair of pairs is merged into sorted
quadruplets and then into two sorted sub arrays and finally a
single sorted array list is obtained. It has O (n log n) worst case
time complexity, which is quite efficient [3]. The merge sort
algorithm can be represented as follows [4]:

1) Merge(LB,Mid,UB):
• Set i=LB, j=UB, k=mid+1, J=0
• Repeat steps 3&4 while(i<=mid && k<=UB)
• If(Arr[i]<=Arr[k]

a) Set B[J]=Arr[i]
b) Set i++

Else
a) Set B[J]=Arr[k]
b) Set k++

• J=J+1
• If(i>mid) goto Step 6 else goto Step 7
• Repeat step for l=k to UB

a) B[J]=Arr[l]
b) Set J++

• Repeat step for l=i to mid
a) Set B[J]=Arr[l]
b) Set J++

• Repeat step for l=LB to UB
• Set Arr[l]=B[l]

• Exit

Pavleen Kaur et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,272-275

© 2015-19, IJARCS All Rights Reserved 273

MergeSort(LB,,UB,Arr):
• if(LB<UB)

 a)Mid=(LB+UB)/2
 b)MergeSort(LB,Mid,Arr)
 c)MergeSort(Mid+1,UB,Arr)
 d)Merge(LB,Mid,UB)

Fig. 1 depicts the merge sort technique [5]:

Figure 1. An example to sort an array of 8 integer values using a recursive
merge sort algorithm.

B. Quick Sort
Quick Sort algorithm, also known as partition-exchange

sort was developed by Tony Hoare in 1959. It is an efficient,
recursive, comparison based and divide and conquer sorting
algorithm in which each element is placed in its proper location
at every step. It first picks up a random element, called a pivot
value from the list. The partitioning is done such that the
elements that are less than the pivot are moved before the pivot
and the elements that are greater than the pivot are moved after
it. The whole procedure is applied recursively for both the
obtained sub lists separately [6]. Despite of the slow worst case
running time as θ(n2) ,it is the most popular sorting technique
because of the average running time being θ(n log n).It is an in
place sorting technique, that is it will not acquire any additional
storage. The following algorithm demonstrates the quick sort
technique [7].

1) QuickSort(A[],low,high):

• Set l=low, h=high, key= A[(low+high)/2]
• Repeat steps 3 to 5 while(l<=h)
• Repeat step while(A[l]<key)

 a)l++
• Repeat step while(A[h]>key)

 a)h--
• if(l<=h)

 a) Set temp=A[l], A[l]=A[h],A[h]=temp
 b)l++, h--

• if(low<h)
 a)QuickSort(A,low,h)

• if(l<high)
 a)QuickSort(A,l,high)

This approach is illustrated in Fig. 2 [8]:

Figure 2. An example to sort an array of 8 integer values using a quick sort
algorithm.

C. Selection Sort
Selection Sort follows incremental approach, in this if one
element is positioned at its suitable place then the index is
incremented. In selection sort, first the least element in the
array list is found, then it is interchanged with the first element
of the list, after that we again find the least element in array not
considering the first element (an array without first element)
and interchange with the second element and it goes on until
we get the sorted list. Selection Sort has worst case time
complexity of O (n2) [9].

1) SelectionSort:
• Set j=0
• Repeat steps 3 to8 while(j<n)
• Set min=a[j]
• Set i=n-1
• Repeat step while(i>j)
• if(a[i]<min)
 a) Set min=a[i]
 b) Set loc=i
• Set k=a[j]
• if(k>min)

 a) Set a[j]=a[loc]
 b) Set a[loc]=k

• Exit

 The selection sort technique is represented in Fig. 3 [10]:

Figure 3. An example to sort an array of 6 integer values using a selection
sort algorithm.

Pavleen Kaur et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,272-275

© 2015-19, IJARCS All Rights Reserved 274

D. Insertion Sort
Insertion sort is the most effective sorting algorithm when

we have to sort a small number of input values [11]. Insertion
Sort is based on Bridge-Payer method. It is like arranging the
playing cards when distributed, with an empty left hand and a
pile of cards on the desk. We start removing one card from the
desk and insert it into its appropriate place in the left hand [12].

1) InsertionSort:
• Set j=1
• Repeat step 3 to 6 while(i<n)
• Set temp=a[j];
• Set i=j-1
• Repeat step while(i>=0 && temp<a[i])

 a) Set a[i+1]=a[i];
• Set a[i+1]=temp;
• Exit

Fig. 4 shows the insertion sort technique:

Figure 4. An example to sort an array of 8 integer values using an insertion

sort algorithm.

III. A COMPARISON OF DIFFERENT ALGORITHMS

The following table gives the summary of the best-case,
average-case and worst-case time complexity of the sorting
techniques [13].

Table I. Summary Of Best-Case,Average-Case And Worst-
Case

Sort
Time

Average Best Worst

Merge Sort O (n log n) O (n log n) O (n log n)

Quick Sort O (n log n) O (n log n) O (n2)

Selection Sort O (n2) O (n2) O (n2)

Insertion Sort O (n2) O (n2) O (n2)

The various advantages and disadvantages of the various

sorting techniques are given in the table below [14].

Table II. Advantages And Disadvantages Of Sorting
Techniques

Sort Advantages Disadvantages

Merge
Sort

1. This recursive sort is
quite fast.

2. It is appropriate for a
large list.

1. Memory
requirement is

larger than other
sorts.

Quick
Sort

1. Highly fast and
efficient.

2. No additional storage
is required.

1. Not a stable sort.
2. For choosing

some useful
element, it is

quite complex.

Selection
Sort

1. It does not depend on
the initial
management of data.

2. Appropriate for small
data set.

3. Advantageous when
data moves are costly
but comparisons are
not.

4. Any additional
temporary storage is
not required.

1. Not suited for
large lists.

2. Not a stable sort.

Insertion
Sort

1. Simple and easy to
implement.

2. Space requirement is
less.

3. Efficient for small
arrays.

1. Inefficient for
large lists.

IV. CONCLUSION

In this paper, we have discussed various sorting algorithms
(Quick Sort, Selection Sort, Merge Sort and Insertion Sort) and
compared their best, average and worst case complexities. So,
from this we conclude that Merge Sort and Quick Sort are
better than Selection Sort and Insertion Sort. Also, Quick Sort
is the most efficient algorithm.

V. REFERENCES

[1] Ravendra Kumar, “Review and Analysis of Sorting Techniques
in Various Cases”, International Journal of Advanced Research
in Computer Science and Software Engineering, Volume 6,
Issue 1, January 2016.

[2] Gaurav Kocher and Nikita Agrawal, “Analysis and Review of
Sorting Algorithms”, International Journal of Scientific
Engineering and Research(IJSER), Volume 2, Issue 3, March
2014.

[3] Nitin Upadhyay, The Design & Analysis Of Algorithms, 4th
Edn.

[4] Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran,
Computer Algorithm, 2nd Edn.

[5] https://en.wikipedia.org/wiki/Merge_sort
[6] https://en.wikipedia.org/wiki/Quicksort
[7] https://www.algolist.net/Algorithms/Sorting/Quicksort
[8] https://blog.world4engineers.com/quicksort/
[9] https://en.wikipedia.org/wiki/Selection_sort
[10] https://www.studytonight.com/data-structures/selection-sorting
[11] Sonal Beniwal and Deepti Grover, “Comparison of Various

Sorting Algorithms: A review”, International Journal of
Emerging Research in Management & Technology, Volume 2,
Issue 5, May 2013.

https://en.wikipedia.org/wiki/Merge_sort�
https://en.wikipedia.org/wiki/Quicksort�
http://blog.world4engineers.com/quicksort/�
https://en.wikipedia.org/wiki/Selection_sort�
https://www.studytonight.com/data-structures/selection-sorting�

Pavleen Kaur et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,272-275

© 2015-19, IJARCS All Rights Reserved 275

[12] Thomas H.Coremen, Charles E. Leiserson, Ronald L. Rivest and
Clifford Stein, Introduction to Algorithms, 2nd Edn., 2001.

[13] Pankaj Sareen, “Comparison of Sorting Algorithms (On the
Basis of Average Case)”, International Journal of Advanced
Research in Computer Science and Software Engineering,
Volume 3, Issue 3, March 2013.

[14] Kamlesh Kumar Pandey, Rakesh Kumar Bunkar and Kamlesh
Kumar Raghuvanshi, “A Comparative Study of Different Types
of comparison Based Sorting Algorithms in Data Structure”,
International Journal of Advanced Research in Computer
Science and Software Engineering, Volume 4, Issue 2, February
2014.

	INTRODUCTION
	Description Of Some Efficient Sorting Techniques
	Merge Sort
	Merge(LB,Mid,UB):

	Quick Sort
	QuickSort(A[],low,high):

	Selection Sort
	SelectionSort:

	Insertion Sort
	InsertionSort:

	A COMPARISON OF DIFFERENT ALGORITHMS
	CONCLUSION
	References

