
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4180
Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 44

ISSN No. 0976-5697 ISSN No. 0976-5697

IMAGE SCRAMBLING USING QUANTUM DOTBITWISE XOR

Dr.Rafiq Ahmad Khan
Assistant professor

GDC Bemina, Kashmir

Mohd Iqbal Sheikh
PhD ScholarMewar university

chittorgarh, India

Abstract: With the rapid development of multimedia technology, the image scrambling for information hiding is severe in today’s world. But, in
quantum image processing field, the study on image scrambling is still few. Several quantum image scrambling schemes are in circle but, lot of it
is yet to be performed.This paper presents the implementation of XOR quantum dot gate using bitwise operation to scramble an image metric.
While the XOR operation has only half chance of outputting false or true (0, 1). XOR by scrambling an image so that image can be hidden
immensely to avoid third party intervention.

Keywords:Image scrambling, Quantum image processing bit.

INTRODUCTION

Quantum image processing is attracting more and more
attention in recent years, from quantum image
representation [1–3], quantum image operation [4–7] to
quantum image encryption [8–10].Image scrambling [11,12]
is a basic work of image encryption or information hiding
[13]. The image after scrambling removes the correlation of
image pixels space, which can make the watermark lose the
original information, and then, the watermark information is
tucked into the carrier. Thus, even if an attacker extracted
carriers from the image, he is almost unable to obtain the
original image information in any case. Therefore,
scrambling processing for the watermark or information
hiding is fairly indispensable in a large sense. The
scrambling algorithm mainly includes twocategories.Image
bit-plane refers to a series of two-value image planes. To
begin with, the pixel Values in the image are represented by
its corresponding binary values, and then, every single bit of
all the pixels will form a two-value image, it is called bit-
plane. To bespecific, if the image gray value range is [0,
255].
Two-input XOR (exclusive OR) also known as exclusive
disjunction is a logical function which gives a high
Output only if any one of the two inputs but not both are
high. The circuit diagram and the layout of XOR gate is
shown in Fig 5(a) and Fig 5(b). The third input line of
majority gate 1 is made high and that of majority gate 2 is
made low. The output of majority gate 2 is fed into an
inverter. Finally, the output from the majority gate 1 and
that of the inverter is fed into majority gate 3 whose third
input line is made 0. The output of majority gate 3 is the
XOR function.

WORKING

FLOWCHART

Bitwise XOR operation to scramble two character matrices
by generating a truth table
.I need to perform the operation for four characters where ea
ch of them have a bit representation as follow
: XOR
 A = 00
 G = 01
 C = 10
 T = 11

I need to create a table that’s two characters together which
gives the values for all combinations of ing pairs of characte
rs in the following way.

XOR A G C T
 A A G C T
 G G A T C
 C C T A G
 T T C G A

To obtain the output, you need to convert each character into
 its bit representation, the bits, then use the result and conver

Rafiq Ahmad Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,44-47

© 2015-19, IJARCS All Rights Reserved 45

t it back to example, consulting the third row and second
column of the table, by XOR ing C and G:

C = 10
C = 10
G = 01
C XOR G = 10 XOR 01 = 11 --> T

I would ultimately like to apply this rule to scrambling chara
cters in a 5 x 5 matrix. As an example:

A = ’GATT’ 'AACT' 'ACAC' 'TTGA' 'GGCT'
 'GCAC' 'TCAT' 'GTTC' 'GCCT' 'TTTA'
 'AACG' 'GTTA' 'ACGT' 'CGTC' 'TGGA'
 'CTAC' 'AAAA' 'GGGC' 'CCCT' 'TCGT'
 'GTGT' 'GCGG' 'GTTT' 'TTGC' 'ATTA'
B = ’ATAC’ 'AAAT' 'AGCT' 'AAGC' 'AAGT'
 'TAGG' 'AAGT' 'ATGA' 'AAAG' 'AAGA'
 'TAGC' 'CAGT' 'AGAT' 'GAAG' 'TCGA'
 'GCTA' 'TTAC' 'GCCA' 'CCCC' 'TTTC'
 'CCAA' 'AGGA' 'GCAG' 'CAGC' 'TAAA'

I would like to generate a matrixsuch that each element of A
 gets XORed with its corresponding element
 in B .A XOR B.
For example, considering the first row and first column:
A{1,1} XOR B{1,1} = GATT XOR ATAC = GTTG
First, let's define the function
 that takes two 4-character strings and bothstrings correspon
ding to that table that you have.
, let's set up alookup table where a unique two-bit string corr
esponds to a letter. We will also need the
 lookup table using a class where given a letter, we produce
a two-bit string. Wewant to convert each letter into its two b
it representation, and we need the inverse lookup to-
do this. After, we
XOR the bits individually, then use the forward lookup table
 to get back to wherewe started. As such:
function [out] = letterXOR(A,B)
 codebook = containers.Map
({'00','11','10','01'},{'A','T','G','C'}); %// Lookup
 invCodebook = containers.Map({'A','T','G','C'},{'00','11','
10','01'}); %// Inv-lookup
 lettersA = arrayfun(@(x) x, A, 'uni', 0); %// Split up each let
ter into a cell
 lettersB = arrayfun(@(x) x, B, 'uni', 0);
 valuesA = values(invCodebook, lettersA); %// Obtain the
binary bit strings
 valuesB = values(invCodebook, lettersB);
 %// Convert each into a matrix
 valuesAMatrix = cellfun(@(x) double(x) -
 48, valuesA, 'uni', 0);
 valuesBMatrix = cellfun(@(x) double(x) -
 48, valuesB, 'uni', 0);
 % XOR the bits now
 XORedBits = arrayfun(@(x) bitxor(valuesAMatrix{x}, v
aluesBMatrix{x}), 1:numel(A),
'uni', 0);
 %// Convert each bit pair into a string
 XORedString = cellfun(@(x) char(x + 48), XORedBits, 'u
ni', 0);
 %// Access lookup, then concatenate as a string
 out = cellfun(@(x) codebook(x), XORedString);

Let's go through the above code slowly. The inputs
letterXOR are expected to be character array of letters that
are composed of , , A,T,G,and C and . We first define the
forward and reverse lookups. We then split up each
character of the input strings A andB into a cell array of
individual characters, as looking up multiple keys in your
codebook requires it to be this way.
We then figure out what the bits are for each character in
each string. These bits are actually strings, and so what we
need to do is convert each string of bits into an array of
numbers. We simply cast the string to double and subtract
by 48, which is the ASCII code for0. By convertingto, you'll
either get 48 or 49, which is why we need to subtract with
48.
As such, each pair of bits is converted into a
 array of bits. We then take each 1x2 of bits between A
and Bitxor use
 to xor the bits. The outputs at this point are still 1 x 2 after t
his, we concatenate all of thecharacters together to make the
final string for the output.Make sure you save the above in a
function Called. Once we have this, we now
simply have to use one call that will XOR each four
element stringin your cellarray and
wethenoutput our final matrix. We will use
 to do that, and the input into
 willbe a matrix that is columnmajor defined.We do this as
MATLABcan access elements in
a 2D arrayusing a single value. This value is the column maj
orindex ofthe element in thematrix.
We define a Vector that goes from 1 to 25, then use
 to get this into the right 2D form.
The reason why we need to do this is because we want to ma
ke sure that the output matrix(Which is
in your example) is structured in the same way. As such:

ind = reshape(1:25, 5, 5); %// Define column major indices
C = arrayfun(@(x) letterXOR(A{x},B{x}), ind, 'uni', 0); %
// Get our output matrix
Our final output is:
C =
'GTTG' 'AACA' 'ATCG' 'TTAC' 'GGTA'
'CCGT' 'TCGA' 'GACC' 'GCCC' 'TTCA'
'TATT' 'TTCT' 'ATGA' 'TGTT' 'ATAA'
'TGTC' 'TTAC' 'ATTC' 'AAAG' 'AGCG'
'TGGT' 'GTAG' 'AGTC' 'GTAA' 'TTTA'

 we use XOR, if we used AND, OR orXOR with the one-tim
e and it’s extremely important to understand
that ANDhas a 75% chance of outputting 0 and a 25%chanc
e of outputting a 1. While OR has a 25%chance of outputtin
g 0 and 75% chance ofoutputting 1. While the XOR operatio
n has a50% chance of
Outputting 0 or 1.XOR by encrypting an image. Here is adig
ital image of Charles Babbage:
Let’s look at a visual exampleto see thedifferent scrambling
effects of AND vs. OR vs.XOR by encrypting an image
... Here is digital image of Charles Babbage:

Rafiq Ahmad Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,44-47

© 2015-19, IJARCS All Rights Reserved 46

OR GATE USED

AND GATE USED

Xor used in this imagecontainsno inormationabout the
original image. If we didn’t provide the shiftSequence it wo
uld be impossible for you toreverse it back to the original im
age. You couldtry every possible sequence, but that wouldre
sult in every possible image! How could you

Know it was Babbage? It's equally likely to be picture of yo
u or anything else another thing to note about XOR versus A
NDor OR is that it is reversible.
The truth table for XOR is:
0 0 | 0
0 1 | 1
1 0 | 1
1 1 | 0
So we know whenever we have 0 as the padbit, we can leave
 the bit as it is when
Decrypting. When we have 1 as the pad bit,
we flip the bit to get the decrypted bit.

CONCULUSION

While the XOR operation has only half chance of outputting
false or true (0, 1). XOR by scrambling an image so that
image can be hidden immensely to avoid third party
intervention. We use XOR, if we used AND, OR or XOR
with the one-time and it’s extremely important to understand
that AND has a 75% chance of outputting 0 and a 25%
chance of outputting a 1. While OR has a 25% chance of
outputting 0 and 75% chance of outputting 1. While the
XOR operation has a50% chance of outputting 0 or 1.XOR
by encrypting an image.

REFERENCES

1. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of

quantum images for polynomial preparation,
image compression, and processing operations. Quantum Inf.
Process. 10(1), 63–84 (2011)

2. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel
enhanced quantum representation of digital
images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

3. Li, H.S., Zhu, Q., Zhou, R.G., Song, L., Yang, X.J.: Multi-
dimensional color image storage and retrieval
for a normal arbitrary quantum superposition state. Quantum
Inf. Process. 13(4), 991–1011 (2014)

4. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P.,
Margolus, N., Shor, P., Weinfurter, H.: Elementary
gates for quantum computation. Phys. Rev. A At. Mol. Opt.
Phys. 52(5), 3457 (1995)

5. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Efficient color
transformations on quantum images. JACIII
15(6), 698–706 (2011)

6. Pang, C.Y., Zhou, R.G., Ding, C.B., Hu, B.Q.: Quantum search
algorithm for set operation. Quantum
Inf. Process. 12(1), 481–492 (2013)

7. Fijany, A., Williams, C.: Quantum wavelet transform: fast
algorithm and complete circuits (1998).
arXiv:quant-ph/9809004

8. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A
watermark strategy for quantum images based
on quantum fourier transform. Quantum Inf. Process. 12(2),
793–803 (2013)

9. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking
and authentication of quantum images
based on restricted geometric transformations. Inf. Sci. 186(1),
126–149 (2012)

10. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image
encryption and decryption algorithms
based on quantum image geometric transformations. Int. J.
Theor. Phys. 52(6), 1802–1817 (2013)

11. Ye, G.: Image scrambling encryption algorithm of pixel bit
based on chaos map. Pattern Recognit.
Lett. 31(5), 347–354 (2010)

Rafiq Ahmad Khan et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,44-47

© 2015-19, IJARCS All Rights Reserved 47

12. Dalhoum, A.L.A., Mahafzah, B.A., Awwad, A.A., Aldhamari,
I., Ortega, A., Alfonseca, M.: Digital
image scrambling using 2D cellular automata. IEEE Multimed.
4, 28–36 (2012)

13. Gunjal, B.L., Manthalkar, R.R.: Discrete wavelet transform
based strongly robust watermarking scheme
for information hiding in digital images. In: IEEE 3rd
International Conference on Emerging Trends
in Engineering and Technology (ICETET), pp. 124–129 (2010)

