
DOI: http://dx.doi.org/10.26483/ijarcs.v8i7.4113

Volume 8, No. 7, July – August 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 121

ISSN No. 0976-5697 ISSN No. 0976-5697

OPTIMIZED MODEL FOR SOFTWARE EFFORT ESTIMATION USING
COCOMO-2 METRICS WITH FUZZY LOGIC

Rahul Kumar Yadav
Department of Computer Science and engineering

Scholar, Mewar University Gangrar
 Chittorgarh, India

 Dr. S. Niranjan

Department of Computer Science and engineering
Professor, Mewar University Gangrar

 Chittorgarh, India

Abstract: Effort estimation is the crucial activity during the planning phase of any project. The successful delivery of the software project is
directly dependent on the accuracy of software effort estimation in planning phase. As effort multiplier have significant influence on the
COCOMO-II and this research proposed the model for improving the precision of effort estimation using fuzzy logic on COCOMO-II effort
multipliers. Fuzzy Logic is a rule based architecture which runs on binary pattern. It has Input set, associated with rule-sets based on the
membership function. There are three membership functions i.e. Triangular Membership function, Trapezoidal Membership Function and Bell
Membership Function which has been utilized in the proposed architecture.

Keywords: Software effort estimation, COCOMO-II, Fuzzy Logic, Membership Function.

1. INTRODUCTION

The most substantial activity in software project
management is Software development effort prediction.
Software effort prediction at early stages of project
development holds great significance for the industry to
meet the competitive demands of today’s world. Accuracy,
reliability and precision in the estimates of software effort
are highly desirable. The globalization result in high
competition between software industries. And so, estimation
task has become one of the most crucial tasks inside
software development course of action. Due to different
issues in computer software development global computer
software estimates are not exact, which leads to your great
loss. Estimation of software effort sometime causes
overestimation or underestimation. In both the cases
software effort estimation carried out is imprecise, so
companies have grown more unwavering in calculating
accurate computer software effort estimation. This reflects
that software cost estimation is often a complex task.

Estimation models may be introduced for dealing with such
problems, it is available in three categories [1] [2]: -
algorithmic model consisting of COCOMO model, perform
points etc., non-algorithmic style expert and machine
learning. Number of estimation models may be developed
but none has appeared perfect. The most popular
algorithmic estimation models which include Boehm’s
COCOMO [3], Putnam’s SLIM [4] and Albrecht’s Function
Point [5]. These models require as inputs, accurate estimate
of some attributes such as line of code (LOC), complexity
and so on which are difficult to obtain during the early stage
of a software project development. The models also have
difficulty in modelling the inherent complex relationships
between the contributing factors, are unable to handle
categorical data as well as lack of reasoning capabilities [6].
By this paper, I have focused on the fuzzy- logic model
useful for estimation process, which provides much more

accurate and sensitive results as compared with other
estimation models. Fuzzy logic focused COCOMO II
models are highly made for software effort estimation
specially when there are uncertain or imprecise data. Fuzzy
logic can be put under machine studying estimation model
[7].

2. THE COCOMO FRAMEWORK

The Constructive Cost Model (COCOMO) is an algorithmic
software cost estimation model developed by Barry W.
Boehm. The model uses a basic regression formula with
parameters that are derived from historical project data and
current project characteristics. Boehm proposed 3 modes of
projects:

1. Organic mode – simple projects that engage small
teams working in known and stable environments.

2. Semi-detached mode – projects that engage teams
with a mixture of experience. It is in between
organic and embedded modes.

3. Embedded mode – complex projects that are
developed under tight constraints with changing
requirements.

According to the Boehm’s, the basic COCOMO equation
takes the following form:

Effort = ab * (KLOC) bb

D = cb * (KLOC) db
Where,
D is estimated development time in months. The coefficients
ab, bb, cb, db are given in table these coefficients are
constraints for different category for software products.

Project ab bb cb db

Organic Mode 2.4 1.05 2.5 .38

Semidetached Mode 3.0 1.12 2.5 .35

Embedded Mode 3.6 1.20 2.5 .32

http://en.wikipedia.org/wiki/Estimation_in_software_engineering�
http://en.wikipedia.org/wiki/Barry_Boehm�
http://en.wikipedia.org/wiki/Barry_Boehm�
http://en.wikipedia.org/wiki/Barry_Boehm�
http://en.wikipedia.org/wiki/Regression_analysis�

Rahul Kumar Yadav et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,121-125

© 2015-19, IJARCS All Rights Reserved 122

The COCOMO II MODEL

The COCOMO II model is a COCOMO 81 update to
address software development practices in the 1990's and
2000's [8].

The COCOM O II model is a regression based software cost
estimation model and thought to be the most cited, best
known and the most acceptable of all traditional cost
prediction models.

COCOM O II comprises of the following models [8] [9]:-

Application Composition Model— this model assumes
that systems are created from reusable components,
scripting or database programming. This model involves
prototyping efforts to resolve potential high-risk issues such
as user interfaces, software/system interaction, performance,
or technology maturity. It is used during the early stages of
development when prototype of user interface is available.
Software size estimates are based on application points /
object points, and a simple size/productivity formula is used
to estimate the effort required. Object points include
screens, user interface, reports, and components that are
likely to be used.

Early Design Model-To get rough estimates of a project's
cost and duration before have determined its entire
architecture. It uses a small set of new cost drivers and new
estimating equations. It uses Unadjusted Function Points
(UFP) as the measure of size.

Post Architecture Model: Once the system architecture has
been designed, a more accurate estimate of the software size
can be made. – It involves the actual development and
maintenance of a software product. This model proceeds
most cost effectively if a software life-cycle architecture has
been developed; validated with respect to the system’s
mission, concept of operation, and risk; and established as
the framework for the product. One could use function
points or LOC as size estimates with this model. COCOMO
II describes 17 cost drivers that are used in the Post
Architecture model. The cost drivers for COCOM O II are
rated on a scale from Very Lo w to Extra High. COCOMO
II post architecture model is given as:

Effort = A× [SIZE] B × i=1Π

15 EM i

∑×+= iSF0.011.01B
 Where A = 2.45

Cost Drivers Range
Reliability required (RELY) 0.82-1.26

Database size (DAT A) 0.9-1.28
Product complexity (CPLX) 0.73-1.74

Required reusability (RUSE) 0.95-1.25

Documentation (DOCU) 0.81-1.23

Execution time constraint (TIME) 1-1.63

Main storage constraint (ST OR) 1-1.46

Platform volatility (PVOL) 0.87-1.3

Analyst capability (ACAP)+ 1.42-0.72

Programmers capability (PCAP) 1.34-0.76

Personnel continuity (PCON) 1.29-0.81

Analyst experience (AEXP) 1.22-0.81

Programmer experience (PEXP) 1.19-0.85

Language & Tool experience (LTEX) 1.2-0.84

Use of software tool (TOOL) 1.17-0.78

Multisite development (SITE) 1.22-0.8

Schedule (SCED) 1.43-1

Scale Factors Values For COCOMO II Model
Scale

Factors
Very
Low Low Nominal High

Very
High

Extra
High

PREC 6.2 4.96 3.72 2.48 1.24 0

FLEX 5.07 4.05 3.04 2.03 1.01 0

RESL 7.07 5.65 4.24 2.83 1.4. 0

TEAM 5.48 4.38 3.29 2.19 1.1 0

PMAT Level 1
[7.80]

Level 1+
[6.24]

Level 2
[4.68]

Level 3
[3.12]

Level 4
[1.56]

Level 5
[0.00]

3. FUZZY LOGIC

Since fuzzy logic foundation by Lotfi Zadeh in 1965, it has
been the subject of important investigations [10]. It is a
mathematical tool for dealing with uncertainty and also it
provides a technique to deal with imprecision and
information granularity [11]. The fuzzy logic model uses the
fuzzy logic concepts introduced by Lotfi Zadeh [10].The
membership! (") of an element x of a classical set A, as
subset of the universe X, is defined by (2), as follows:

 µ A (x) = 1 if x € A
 µ A(x) = 0 if x € A

A system based on FL has a direct relationship with fuzzy
concepts (such as fuzzy sets, linguistic variables, etc.) and
fuzzy logic. The popular fuzzy logic systems can be
categorized into three types: pure fuzzy logic systems,
Takagi and Sugeno’s fuzzy system and fuzzy logic system
with fuzzifier and defuzzifier [12]. Since most of the

Rahul Kumar Yadav et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,121-125

© 2015-19, IJARCS All Rights Reserved 123

engineering applications produce crisp data as input and
expects crisp data as output, the last type is the most widely
used one fuzzy logic system with fuzzifier and defuzzifier. It
was first proposed by Mamdani. It has been successfully
applied to a variety of industrial processes and consumer
products [13].

3.1 MEMBERSHIP FUNCTIONS

Below three membership functions are used [14]:
1. Trimf - Triangular-shaped built-in membership function

Syntax

y = trimf(x, params)

y = trimf(x, [a b c])

Description: The triangular curve is a function of a vector, x,

and depends on three scalar parameters a, b, and c, as given

by

or, more compactly, by

The parameters a and c locate the "feet" of the triangle and
the parameter b locates the peak.

Figure: Triangular membership function

3.2 GBELLMF - GENERALIZED BELL-SHAPED BUILT-IN
MEMBERSHIP FUNCTION

Syntax: y = gbellmf(x, params)

Description: The generalized bell function depends on three
parameters a, b, and c as given by

Where the parameter b is usually positive. The parameter c
locates the center of the curve. Enter the parameter vector
params, the second argument for gbellmf, as the vector
whose entries are a, b, and c, respectively.

A. Examples
x=0:0.1:10;

y=gbellmf(x, [2 4 6]);

plot (x, y)

x label ('gbellmf, P=[2 4 6]')

Figure: Gbell membership function.

3.3 TRAPMF - TRAPEZOIDAL-SHAPED BUILT-IN
MEMBERSHIP FUNCTION

B. Syntax
y = trapm f(x, [a b c d])

C. Description: The trapezoidal curve is a function of a

vector, x, and depends on four scalar parameters a, b, c,

and d, as given by

or, more compactly, by

The parameters a and d locate the "feet" of the trapezoid and
the parameters b and c locate the "shoulders."

D. Examples

x=0:0.1:10;

y=trapmf (x,[1 5 7 8]);

plot (x, y)

x label ('trapmf, P=[1 5 7 8]')

Rahul Kumar Yadav et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,121-125

© 2015-19, IJARCS All Rights Reserved 124

Figure: Trapezoidal membership function.

3.4 EVALUATION CRITERIA

The evaluation consists in comparing the accuracy of the
estimated effort with the actual effort. There are many
evaluation criteria for software effort estimation introduced
in the literature, among them we will apply the most
frequent evaluation criteria [15] such as:

1) Variance Accounted For (VAF)

 % VAF =

var()1 100
var()

Measured Effort Estimated Effort
Measured Effort

 −
− × 

 

2) Mean Absolute Relative Error (MARE)

 % MARE = mean

() 100
()

abs Measured Effort Estimated Effort
Measured Effort

 −
× 

 
3) Variance Absolute Relative Error (VARE)

 % VARE = Var

() 100
()

abs Measured Effort Estimated Effort
Measured Effort

 −
× 

 

4) Prediction (n)
Prediction at level n is defined as the % of projects
that have absolute relative error less than n.

5) Balance Relative Error (BRE),
BRE =

ˆ

ˆmin(,)

E E

E E

−

Where E = Estimated Effort, Ê =Actual Effort.

Absolute Relative Error (RE) =

ˆE E

E

−

4. PROPOSED COCOMO II FUZZY MODEL

The proposed framework developed is an optimized fuzzy
logic based framework and reconstruct the COCOMO II
model for software effort estimation. To evaluate
development effort we will use COCOMO NASA data set
on proposed developed models. This research is used to
handle the inaccuracy and vagueness present in the early

stages of the project to predict the effort more accurately by
including total transparency in the prediction system

The new proposed model is based on COCOMO II input’s
group and scale factors and one output, effort estimation. In
COCOMO effort is expressed as Person Months (PM). It
determines the efforts required for a project based on
software project's size in Kilo Source Line of Code
(KSLOC) as well as other cost drivers known as scale
factors and effort multipliers. It contains 17 effort
multipliers and 5 scale factors.
The below figures show that the fuzzy logic framework of
proposed Fuzzy COCOMO II model in Matlab. These three
includes upload of NASA project data, calculation of
COCOMO II effort and calculation of fuzzy effort
multipliers.

Figure: Proposed model framework in Matlab

Figure: Upload Project Data

Rahul Kumar Yadav et al, International Journal of Advanced Research in Computer Science, 8 (7), July-August 2017,121-125

© 2015-19, IJARCS All Rights Reserved 125

Figure: Calculation of Effort Multiplier for COCOMO II

5. CONCLUSIONS

Many researchers contributed towards the software effort
estimation and presented the different model to minimize
the gap between estimated and actual effort. But no single
model reach to the satisfactory level due to the influence of
different factors till the completion of the project. In this
paper we presented a COCOMO II fuzzy model of software
effort estimation. Due to the Fuzzification of 17 effort
multiplier, the model will minimize the imprecision in
estimated effort. The implementation of this model includes
Fuzzification, fuzzy rule generation and defuzzification. Our
future work will present the comparison of estimated effort
with actual effort based on this model using the data set that
contains records of 14 different years, starting from 1971
and ending at 1987, 93 NASA projects.

6. REFERENCES

[1]. M. Jørgensen, M. Shepperd, A systematic review of software

development cost estimation studies, IEEE Transactions
on SE 33 (1) (2007) 33–53.

[2]. Srichandan, Srimam, "A new approach of software effort
estimation using radial basis function neural
networks," International Journal on Advanced Computer
Theory and Engineering (IJACTE) 1.1 (2012): 113-120.

[3]. Bohem, B.W, “Software engineering economics,” prentice
hall, 1981.

[4]. L. H. Putnam, “A General Empirical Solution to the Macro
software Sizing and Estimating Problem,” IEEE
Transactions on Software Engineering, SE-4(4), 1978,
pp345-361.

[5]. Attar Software, “Fuzzy Logic in Knowledge Builder”, White
Paper. http://www.in tellicrafters.com/fuzzy.htm, 2002

[6]. M. O. Saliu, M. Ahmed and J. Al Ghamdi, “Owards Adaptive
Soft Computing based Software Effort Prediction, “Fuzzy
Information, 2004. Processing NAFIPS ’04.IEEE Annual
Meeting of the North American Fuzzy Information
Processing Society, 27-30, June 2004, 1, pp.16-21.

[7]. Chulani, Sunita, Barry Boehm, and Bert Steece.
"Bayesian analysis of empirical software engineering
cost models," IEEE Transactions on Software
Engineering 25.4 (1999): 573-583.

[8] . Bohem, B.W, Chris Abts, A. Winsor Brown, Sunita Chulani,
“Software Cost Estimation with COCOMO II,” Prentice-
Hall, 2000. ISBN 0-13-026692-2

[9]. Boehm B.W, B. Clark, E. Horwitz, R. Madachy, C. Abts,
S.Chulani, A.W.Brown and B. Steece,”COCOMO II
model definition manual, University of South California
Center for Software Engineering, 2000.

[10]. Uddin, M. Nasir, Tawfik S. Radwan, and M. Azizur
Rahman, "Performances of fuzzy- logic-based indirect
vector control for induction motor drive." IEEE
Transactions on Industry Applications 38.5 (2002): 1219-
1225.

[11]. Zhao, Jin, and Bimal K. Bose. "Evaluation of membership
functions for fuzzy logic controlled induction motor
drive." IECON 02, Industrial Electronics Society, IEEE
2002 28th Annual Conference, Vol. 1. IEEE, 2002.

[12]. L. A. Zadeh. “Fuzzy Sets,” Information and Control, 8,
1965, pp. 338-353.

[13]. Rahul Kumar Yadav and Dr. S. Niranjan, “Software effort
estimation using fuzzy logic : A Review,” International
journal of Engineering research and Technology, vol. 2,
no. 5, pp 1377 – 1384, 2013.

[14]. Chang J, Zhao Y, Wei C (2006) Research on optimization
of fuzzy membership function based on ant colony
algorithm. In: The 25th Chinese control conference, pp 7

[15]. Kitchenham, Barbara A., et al. "What accuracy statistics
really measure." IEE Proceedings-Software 148.3 (2001):
81-85.

http://www.amazon.in/s/ref=dp_byline_sr_book_4?ie=UTF8&field-author=Sunita+Chulani&search-alias=stripbooks�

	Below three membership functions are used [14]:
	Trimf - Triangular-shaped built-in membership function
	Syntax
	Description: The triangular curve is a function of a vector, x, and depends on three scalar parameters a, b, and c, as given by

	Gbellmf - Generalized bell-shaped built-in membership function
	Examples

	TRAPMF - TRAPEZOIDAL-SHAPED BUILT-IN MEMBERSHIP FUNCTION
	Syntax
	Description: The trapezoidal curve is a function of a vector, x, and depends on four scalar parameters a, b, c, and d, as given by
	Examples

	Evaluation Criteria

