
��������	�
����	��
�����������

������
����
�������
��������
���������
������� ��������!�������

�"!"�� #�$�$"��

��
��
%���&������
��'''��(
��������

© 2010, IJARCS All Rights Reserved 291

ISSN No. 0976-5697

Modelling of Reusability of Procedure Based Software Components Using K-Means

Clustering Approach

Rahul Malhotra
Associate Professor (Deptt. Of ECE)

B.M.S.C.E, Sri Muktsar Sahib

Punjab, India

blessurahul@gmail.com

Hemani Sharma*

Lecturer, (Dept. of CSE)

B.M.S.C.E, Sri Muktsar Sahib

Punjab,India

hemani.sharma@rediffmail.com

Abstract: Software reuse is the process of implementing or updating software systems using existing software assets. Software Reuse promises

significant improvements in software productivity and quality. There are two approaches for reuse of code: develop the code from scratch or identify

and extract the reusable code from already developed codes. A great deal of research over the past several years has been devoted to the development

of methodologies to create reusable software components and component libraries, where there is an additional cost involved to create a reusable

component from scratch. But the issue of how to identify good reusable components from existing systems has remained relatively unexplored. Our

approach, for identification and evaluation of reusable software, is based on software models and metrics. As the exact relationship between the

attributes of the reusability is difficult to establish so a Clustering Based approach could serve as an economical, automatic tool to generate

reusability ranking of software by formulating the relationship based on its training. The Kmeans based clustering has proved its effectiveness in

modeling of data in various domains. Inputs to the clustering system, are provided in form of McCabe’s Cyclometric Complexity Measure for

Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling

Metric values of the software component and output is be obtained in terms of reusability.This Approach is applied on the C based software

modules/components and it can further be extended to the Artificial Intelligence (AI) based software components e.g. Prolog Language based

software components. It can also be tried to calculate the fault-tolerance of the software components with help of the proposed metric framework.

Keywords: Reuse, clustering, metric, cyclometric, complexity, coupling etc.

I. INTRODUCTION

Software reuse is the process of implementing or updating

software systems using existing software assets. Software

assets or components include all software products, from

requirements and proposals, to specifications and designs, to

user manuals and test suites. Anything that is produced from a

software development effort can potentially be reused.

The reusability is the quality of a piece of software, that

enables it to be used again, be it partial, modified or complete.

Software professionals have recognized reuse as a powerful

means to potentially overcome the situation called as software

crisis[8].Software Reuse promises significant improvements in

software productivity and quality. According to Gomes, the

idea of software reuse appeared in 1968, opening new

horizons for the software design and development. Reusable

software components have been promoted in recent years. The

software development community is gradually drifting toward

the promise of widespread software reuse, in which any new

software system can be derived virtually from the existing

systems. As a result, an increasing number of organizations

are using software not just as all-inclusive applications, as in

the past, but also as component parts of larger applications. In

this new role, acquired software must integrate with other

software functionality[3].

Software reusability is an attribute that refers to the

expected reuse potential of a software component. Software

reuse not only improves productivity but also has a positive

impact on the quality and maintainability of software products.

Given the attractive payoff of reusing software, there have

been several efforts undertaken to discuss the topic of

reusability, including overviews of software reusability

research directions and software reusability in practice.

Developers are adopting many of these reuse approaches,

including reuse in product lines, design patterns templates,

reference architectures and advanced searching, matching, and

modeling tools.[8,10] Many other reuse approaches, such as

product lines, design patterns, and context-independent

techniques, address reuse in different ways and have also

demonstrated benefits.

There are two approaches for reuse of code: develop the

code from scratch or identify and extract the reusable code

from already developed code. For the organization that has

experience in developing software, but has not yet used the

software reuse concept, there exists extra cost to develop the

reusable components from scratch to build and strengthen

their reusable software reservoir. The cost of developing the

software from scratch can be saved by identifying and

extracting the reusable components from already developed

software systems or legacy systems[10].

The contribution of metrics to the overall objective of the

software quality is very well understood and recognized. But

how these metrics collectively determine reusability of a

software component is still at its naïve stage[10].

A. Introduction to Clustering Techniques

As a broad subfield of Fault Prediction, clustering is

concerned with the design and development of algorithms and

techniques that allow division of data in to different groups.

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 292

Clustering means to assign a set of observations in to different

groups (known as clusters), so that the observations are same

in some sense. At a general level, there are two types of

clustering: distance based and conceptual clustering. Distance

based clustering divides the data in to subsets on the basis of

distance.[6]. Conceptual clustering, cluster the data on the

basis of the similar concept the data will have.

An important component of a clustering algorithm is the

distance measure between data points. If the components of the

data instance vectors are all in the same physical units then it is

possible that the simple Euclidean distance metric is sufficient

to successfully group similar data instances. It is the ordinary

distance between two points that one would measure with a

ruler, which can be proven by repeated application of the

Pythagorean Theorem. The major focus of clustering research

is to extract information from data automatically, by

computational and statistical methods. Hence, clustering is

closely related to data mining and statistics.

Many clustering methods aim at finding a single partition

of the collection of items into clusters. However, obtaining a

hierarchy of clusters can provide more flexibility and other

methods rather focus on this[6]. A partition of the data can be

obtained from a hierarchy by cutting the tree of clusters at

some level. Most clustering methods were developed for

numerical data, but some can deal with categorical data or with

both numerical and categorical data.

The degree of membership of a data item to a cluster is

either in [0, 1] if the clusters are fuzzy or in {0, 1} if the

clusters are crisp. For fuzzy clusters, data items can belong to

some degree to several clusters that don’t have hierarchical

relations with each other. This distinction between fuzzy and

crisp can concern both the clustering mechanisms and their

results. Crisp clusters can always be obtained from fuzzy

clusters. Clusters can be seen either as distant compact sets or

as dense sets separated by low density regions. Unlike density,

compactness usually has strong implications on the shape of

the clusters, so methods that focus on compactness should be

distinguished from methods that focus on the density.

Clustering denotes changes in a system that enables a system

to do the same task more efficiently the next time. Clustering

is a method of unsupervised learning, in which one seeks to

determine how the data are organized.

Clustering algorithms can be:

[a] Hierarchical:

A hierarchical algorithm creates a hierarchy of clusters

which may be represented in a tree structure called a

dendrogram. The root of the tree consists of a single cluster

containing all observations, and the leaves correspond to

individual observations. In hierarchical clustering algorithm, a

valid metric may be used as a measure of similarity between

pairs of observations. Algorithms for hierarchical clustering

are generally either agglomerative, in which one starts at the

leaves and successively merges clusters together; or divisive, in

which one starts at the root and recursively splits the clusters.

[b] Partitional:

Partitional algorithms typically determine all clusters at

once. These algorithms divide data in to independent clusters

on the basis of distance measures. A division data objects into

non-overlapping subsets (clusters) such that each data object is

in exactly one subset.

K-Means is an unsupervised clustering technique used to

classify data in to K clusters. It is partitional clustering

approach, each cluster is associated with a centroid (center

point), each point is assigned to the cluster with the closest

centroid, Number of clusters, K, must be specified.

Fuzzy C-Means (FCM) is a method of clustering which

allows one piece of data to belong to two or more clusters. It
processes n vectors in p-space as data input, and uses them, in

conjunction with first order necessary conditions for

minimizing the FCM objective functional, to obtain estimates

for two sets of unknowns. FCM clustering is used to build

fuzzy rule bases for fuzzy systems design; and there are

numerous applications of FCM in virtually every major

application area of clustering

[c] Spectral:

Spectral clustering techniques make use of the spectrum of

the similarity matrix of the data to perform dimensionality

reduction for clustering in fewer dimensions.

The main requirements that a clustering algorithm should

satisfy are scalability; dealing with different types of attributes;

discovering clusters with arbitrary shape; minimal

requirements for domain knowledge to determine input

parameters; ability to deal with noise and outliers; insensitivity

to order of input records; high dimensionality; interpretability

and usability.

Clustering techniques create applications that are rugged,

self-adapting, easier to maintain and often more fault tolerant

than conventional systems. An adaptive feedback loop can

tailor a system to changes in enterprise policies and make it

more resilient. Clustering deals with the issue of how to build

programs that improve their performance at some task through

clustered data.

A great deal of research over the past several years has

been devoted to the development of methodologies to create

reusable software components and component libraries, where

there is an additional cost involved to create a reusable

component from scratch. That additional cost could be avoided

by identifying and extracting reusable components from the

already developed large inventory of existing systems. But the

issue of how to identify good reusable components from

existing systems has remained relatively unexplored. Our

approach, for identification and evaluation of reusable

software, is based on software models and metrics. As the

exact relationship between the attributes of the reusability is

difficult to establish so a Clustering based approach could

serve as an economical, automatic tool to generate reusability

ranking of software by formulating the relationship based on

its training.

II. A REVIEW OF LITERATURE

(Boetticher, G., et.al, 1993) assimilated knowledge about

object oriented concepts, analysis and design. Explanation of

various object-oriented metrics was also given such as class

oriented metrics (CK metric), metrics for source code, testing,

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 293

analysis model and design model. Advantages and

disadvantages of each object-oriented metric was explained.

Information regarding theoretical background of the

reusability of software and Object oriented metrics for

measuring size, complexity are also given in this reference.

(Boetticher, et.al, 1993) discussed various approaches for

measuring software reusability, to build reusable components

and to identify useful modules in existing programs.

Taxonomy of reusability metrics was given which provide the

attributes of reusable software. Two main methods are there to

measure the reusability. One is Empirical methods stress

objective, numerical, and repeatable metrics, such as those

obtained by observing the module complexity or size. Other is

Qualitative methods included (or even emphasized) subjective

criteria, such as how well a module complies with a set of

style, certification, quality guidelines, or simply agrees with

the opinions of "experts." These are further divided into two

categories module oriented and component oriented.

(Kartalopoulos, S. V. 1996) discussed REBOOT

(reusability based on object oriented technique) that develop a

taxonomy of reusability attributes. It provided reusability

factors, a list of criteria for factor and a list of metrics for each

criteria. Various object oriented concepts were defined in this

paper, which are useful for finding the reusability. Information

about software reuse, types of software reuse requirements for

building software reuse and management issues toward

reusable software were also given. This also shows the

advantages of this technique over other methods.

(Kartalopoulos, S. V. 1996) discussed REBOOT

(reusability based on object oriented technique) that develop a

taxonomy of reusability attributes. It provided reusability

factors, a list of criteria for factor and a list of metrics for each

criteria. Various object oriented concepts were defined in this

paper, which are useful for finding the reusability. Information

about software reuse, types of software reuse ,requirements for

building software reuse and management issues toward

reusable software were also given. This also shows the

advantages of this technique over other methods.

(Jang, J-S. R. and Sun, C.T., 1 9 9 5) stated that basic

reusability attributes depend on qualities of Correctness,

readability, testability but it is not possible to directly measure

the most of these attributes of reusable software. Attributes of

reusable software were clearly defined in their work. (Selby,

R. W., 1988) discussed neural network approach to generate

the metrics for measuring the reusability and it was proved

better over other object oriented metrics. Neural network

approach is used to find the reusability index, which give

information about software reusability. There were two

principle criteria determining which neural network to use.

First, a supervised neural network was required. Second, the

network needed to be able to classify.

(Selby, R. W., 1988) tried to identify a number of

characteristics of those components, from existing systems,

that are been reused at NASA laboratory and reported that the

developers there has achieved a 32 percent reusability index.

(Dunn and Knight, 1991)[6] Also experimented and reported

the usefulness of reusable code scavenging. (Chen, Nishimoto

and Ramamoorty, 1990) briefly discussed the idea of

subsystem extraction by using code information stored in a

relational database. They also described a tool called the C

Information Abstraction System to support this process.

(Esteva and Reynolds, 1991)Inductive Learning

techniques based on software metrics are used to identify

reusable modules.

(Caldiera and Basili, 1991) A tool, called Care, is used to

identify reusable components according to a set of “reusability

attributes” based on software metrics.

(Mayobre, 1991) These techniques can be extended and

used to help in identifying data communication components.

Chen and Lee developed about 130 reusable C++

components and used these components in a controlled

experiment to relate the level of reuse in a program to software

productivity and quality. In contrast to Selby, who worked

with professional programmers, Chen and Lee’s experiment

involved a team of 19 students, who had to design and

implement small database system. The software metrics

collected included the Halstead size, program volume,

program level, estimated difficulty and effort. They found that

lower the value of the software complexity metrics, the higher

the programmer productivity.

(Richard W. Selby, 2005) discussed that CK metric suit is

able to target all the essential attributes of OO-based

software.

(Parvinder, 2005) used Tuned and Refined values of the

following Metric suit for the reusability data Modeling:

A. Weighted methods per class (WMC)

B. Depth of inheritance tree (DIT)

C. Number of Children (NOC)

D. Coupling Between Object Classes (CBO)

Lack of Cohesion in Methods (LCOM)

III. PRESENT WORK

A. Problem Formulation

The aim of Metrics is to predict the quality of the

software products. Various attributes, which determine the

quality of the software, include maintainability, defect density,

fault proneness, normalized rework, understandability,

reusability etc. The requirement today is to relate the

reusability attributes with the metrics and to find how these

metrics collectively determine the reusability of the software

component. To achieve both the quality and productivity

objectives it is always recommended to go for the software

reuse that not only saves the time taken to develop the product

from scratch but also delivers the almost error free code, as the

code is already tested many times during its earlier reuse. A

great deal of research over the past several years has been

devoted to the development of methodologies to create

reusable software components and component libraries, where

there is an additional cost involved to create a reusable

component from scratch. That additional cost could be

avoided by identifying and extracting reusable components

from the already developed large inventory of existing

systems. But the issue of how to identify good reusable

components from existing systems has remained relatively

unexplored. Our approach, for identification and evaluation of

reusable software, is based on software models and metrics.

As the exact relationship between the attributes of the

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 294

reusability is difficult to establish so a Clustering Based

approach could serve as an economical, automatic tool to

generate reusability ranking of software by formulating the

relationship based on its training. The Kmeans based

clustering has proved its effectiveness in modeling of data in

various domains. Hence, kmeans based clustering approach is

experimented for modeling of the reusability of the procedure

based systems. Inputs to the clustering system, are provided in

form of McCabe’s Cyclometric Complexity Measure for

Complexity measurement, Regularity Metric, Halstead

Software Science Indicator for Volume indication, Reuse

Frequency metric and Coupling Metric values of the software

component and output is be obtained in terms of reusability.

B. Methodology

Reusability evaluation System for function Based

Software Components can be framed using following steps:

I) Selection and refinement of metrics targeting the quality of

function based software system and perform parsing of

the software system to generate the Meta information

related to that Software. The metric of the Parvinder et. al

2006 is used and the metrics are as under:

The proposed five metrics for function Oriented Paradigm

is as follows:

A framework of metrics is proposed for structural analysis

of procedure or function-oriented. The code of software is

parsed to calculate the metric values. The following suits of

metrics are able to target those the essential attributes of

function oriented features towards measuring the reusability of

software modules, so it tried to analyze, refine and use

following metrics to explore different structural dimensions of

Function oriented components.

The proposed metrics for Function Oriented Paradigm are

as follows:

[a] Cyclometric Complexity Using Mc Cabe’s Measure

According to McCabe, the value of Cyclometric

Complexity (CC) can be obtained using the following

equation:

1+= nodespredicateofNumberCC (1)

Where predicate nodes are the nodes of the directed

graph, made for the component, where the decisions are made.

Hence, the value of CC of a software component should

be in between upper and lower bounds as a contribution

towards reusability.

If CC is high with high regularity of implementation then

there exists high functional usefulness.

[b] Halstead Software Science Indicator

According to this metric volume of the source code of the

software component is expressed in the following equation:

)21(2log21 ηη ++= NNVolume (2)

Where, �1 is the number of distinct operators that appear

in the program, �2 is number of distinct operands that appear

in the program, N1 is the total number of operator occurrences

and N2 is the total number of operand occurrences.

The high volume means that software component needs

more maintenance cost, correctness cost and modification

cost. On the other hand, less volume increases the extraction

cost, identification cost from the repository and packaging cost

of the component. So the volume of the reusable component

should be in between the two extremes.

[c] Regularity Metric

The notion behind Regularity is to predict length based on

some regularity assumptions. As actual length (N) is sum of

N1 and N2. The estimated length is shown in the following

equation:

22log212log1 ηηηη +=′= NLenghtEstimated (3)

The closeness of the estimate is a measure of the

Regularity of Component coding is calculated as:

NNNNNgularity /]/){(1Re ′=′−−= (4)

The above derivation indicates that Regularity is the ratio

of estimated length to the actual length. High value of

Regularity indicates the high readability, low modification

cost and non-redundancy of the component implementation.00

[d] Reuse-Frequency Metric

Reuse frequency is calculated by comparing number of

static calls addressed to a component with number of calls

addressed to the component whose reusability is to be

measured. Let N user defined components be X1, X2 … XN in

the system, where S1, S2 … SM are the standard environment

components e.g. printf in C language, then Reuse-Frequency is

calculated as:

�
=

=−
M

i
iS

M

C
FrequencyReuse

0

)(
1

)(

η

η

(5)

Equation (5) shows that the Reuse-Frequency is the

measure of function usefulness of a component. Hence there

should be some minimum value of Reuse- Frequency to make

software component really reusable [24].

[e] Coupling Metric

Functions/methods that are loosely bound tend to be

easier to remove and use in other contexts than those that

depend heavily on other functions or non-local data. Different

types of coupling effects reusability to different extent.

Data Coupling: Data coupling exists between two

functions when functions communicate Data Coupling: Data

coupling exists between two functions when functions

communicate using elementary data items that are passed as

parameters between the two.

Stamp Coupling: When two functions communicate using

composite data item e.g. structure in C language then that kind

of coupling is called Stamp Coupling.

Control Coupling: If data from one function is said to

direct the order of instruction execution in another function

then Control Coupling is there between those functions.

Common Coupling: In case of Common Coupling the two

functions share global data items. Weight of coupling

increases from category “a” to “d”, means Data Coupling is

lightest weight coupling, whereas Content Coupling is the

heaviest one.

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 295

Let ai be the number of functions called and Data Coupled

with function “i”

bi be the number of functions called and Stamp Coupled

with function “i”

ci be the number of functions called by function “i” and

Control Coupled with function “i”

di be the number of functions Common Coupled with

function “i”

e
cdwcwbwawa iiii

caxf
)(43211

1
),,(

−+++−
+

= (6)

Where a = 10, c = 0.5 and wi for i = 1, 2, 3, 4 is the

weights of the respective the coupling types.

As coupling increases, there is decrease in understandability

and maintainability, so there should be some maximum value

of the coupling.

[I] calculate the metric values of the sampled software

components.

[II] Use the following algorithm of Kmeans Clustering based

prediction system:

Figure 3.1 Flowchart of Kmeans algoriithm

Step 1. Begin with a decision on the value of k = number of

clusters

Step 2. Put any initial partition that classifies the data into k

clusters. You may assign the training samples randomly, or

systematically as the following:

[i] Take the first k training sample as single-element clusters

[ii] Assign each of the remaining (N-k) training sample to the

cluster with the nearest centroid. After each assignment,

recomputed the centroid of the gaining cluster.

Step 3. Take each sample in sequence and compute its

distance from the centroid of each of the clusters. If a sample

is not currently in the cluster with the closest centroid, switch

this sample to that cluster and update the centroid of the

cluster gaining the new sample and the cluster losing the

sample.

Step 4. Repeat step 3 until convergence is achieved, that is

until a pass through the training sample causes no new

assignments.

If the number of data is less than the number of cluster

then we assign each data as the centroid of the cluster. Each

centroid will have a cluster number. If the number of data is

bigger than the number of cluster, for each data, we calculate

the distance to all centroid and get the minimum distance. This

data is said belong to the cluster that has minimum distance

from this data.

The number of folds is fixed to 10, as long as the number

of instances in the training set is not smaller 10. If this is the

case the number of folds is set equal to the number of

instances.

Deduce the results on the 10 fold cross validation

accuracy, precision and recall values.

In case of the two-cluster based problem, the confusion

matrix has four categories: True positives (TP) are modules

correctly classified as faulty modules. False positives (FP)

refer to fault-free modules incorrectly labeled as faulty

modules. True negatives (TN) correspond to fault-free

modules correctly classified as such. Finally, false negatives

(FN) refer to faulty modules incorrectly classified as fault-free

modules as shown in table 3.1.

Table 3.1. Confusion Matrix of Prediction Outcomes.

 Real Data Value of Reusability

Predicted Value of

Reusability
1 0

1 TP FP

0 FN TN

With help of the confusion matrix values the precision and

recall values are calculated described below:

C. Precision

The Precision is the proportion of the examples which

truly have class x among all those which were classified as

class x. The technique having maximum value of probability

of detection and lower value of probability of false alarms is

chosen as the best fault prediction technique.

Precision for a class is the number of true positives (i.e.

the number of items correctly labeled as belonging to the

positive class) divided by the total number of elements labeled

as belonging to the positive class (i.e. the sum of true positives

and false positives, which are items incorrectly labeled as

belonging to the class). The equation is:

D. Recall

Recall in this context is defined as the number of true

positives divided by the total number of elements that actually

belong to the positive class (i.e. the sum of true positives and

false negatives, which are items which were not labeled as

belonging to the positive class but should have been) [8]. The

recall can be calculated as follows:

[a] Accuracy

 The percentage of the predicted values that match with

the expected values of the reusability for the given data.

The best system is that having the high Accuracy, High

Precision and High Recall value.

IV. RESULTS AND DISCUSSION

The proposed Neural based methodology is implemented

in MATLAB. MATLAB (Matrix Laboratory) environment is

one such facility which lends a high performance language for

technical computing.

Precision = TP / (TP + FP) (1)

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 296

The function oriented dataset considered have the output

attribute as Reusability value. The Reusability in the dataset is

expressed in terms of six numeric labels i.e. 1, 2, 3, 4, 5 and 6.

The label 1 represents Nil and the label 6 represents the

Excellent Reusability Label. The statistics of the count of the

number of examples of certain reusability label is shown in the

Table 4.1. The Graphical representation of the count of the

number of examples of certain reusability label is shown in the

Figure 4.1

Table 4.1 Statistics of the Reusability Output Attribute in the Dataset

Figure 4.1 Bar-chart of Count of examples of the Reusability Output

Attribute in the Dataset

The statistics shows that in the dataset, there are 9

examples of label 1, 10 examples of label 2, 26 examples of

label 3, 29 examples of label 4, 17 examples of label 5 and 18

examples of label 6.

The input attribute-wise statistical details of the count of

the examples of the labels are shown in figure 4.2, figure 4.3,

figure 4.4, figure 4.5, figure 4.6. The input attributes are

expressed in the three linguistic labels i.e. 1, 2, and 3. The

label 1 corresponds to the Low value, label 2 corresponds to

the Medium value and label 3 corresponds to the high value.

Table 4.2 Statistics of the Input Attribute Coupling in the Dataset

Table 4.3 Statistics of the Input Attribute Volume in the Dataset

Table 4.4 Statistics of the Input Attribute Coupling in the Dataset

Table 4.5 Statistics of the Input Attribute Regularity in the Dataset

Table 4.6 Statistics of the Input Attribute Reuse-Frequency in the Dataset

The given data with five Input Attributes i.e. Coupling,

Volume, Complexity, Regularity, Reuse_Frequency, and

Output attributes is loaded in the Weka environment. First, the

Kmeans clustering ignores Reusability output attribute.

There following parameters are used in the algorithm:

A. Display StdDevs -- Display std deviations of numeric

attributes and counts of nominal attributes is set to

‘False’.

Distance Function -- The distance function to use for

instances comparison in which Euclidean Distance is used.

The Euclidean distance between points p and q is the length

of the line segment connecting them (don’t Replace

Missing Values -- Replace missing values globally with

mean/mode is set to ‘False’.

B. Max Iterations -- maximum number of iterations are set to

500.

C. Num Clusters -- number of clusters are set to 6.

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 297

D. Preserve Instances Order -- Preserve order of instances is

set to ‘False’.

E. Seed -- The random number seed to be used is 10.

The snapshot of the parameters set is shown in figure 4.2.

Figure 4.2. Snapshot of the Parameters Set in the Kmeans Clustering

Algorithm

The Kmeans clustering algorithm has created clusters numbered as

0 to 5 and assigned the 20 (means 18%) examples to cluster number 0,

24 (means 22%) examples to cluster number 1, 11(means 10%)

examples to cluster number 2, 11(means 10%) examples to cluster

number 3 and 3 (means 3%) examples to cluster number 4 and 40 (

means 37%) examples to cluster number 5. Further the cluster numbers

are again assigned Predicted Labels as follows:

Table 4.7. The Assignment of Predicted Labels to the Clusters formed by

EM

Cluster Number Predicted Label

 Cluster 0

5

Cluster 1

6

Cluster 2

2

Cluster 3

1

Cluster 4

3

Cluster 5

4

The confusion matrix calculated is shown in Table 4.8.

Table 4.8 The Confusion Matrix Generated after applying Kmeans

Clustering

 Real Data Label

Predicted Tabel 1 2 3 4 5 6

1 8 3 0 0 0 0

2 0 5 5 1 0 0

3 0 0 1 2 0 0

4 0 0 12 25 3 0

5 1 1 6 1 11 0

6 0 1 2 0 3 18

The Precision and Recall values for different the

Reusability levels if the reusability is shown in table 4.9 and

4.10 respectively.

Table 4.9 Recall Value of Different Classes of the Reusability Values

Reusability Level Class Recall Value

1 0.89

2 0.5

3 0.46

4 0.86

5 0.65

6 1

Table 4.10 Precision Value of Different Classes of the Reusability

As evidenced from the confusion matrix the incorrectly

clustered instances are 41 means 37.614% is the inaccuracy

value or correctly clustered instances are 68 means the

accuracy is approximately 63%.

V. CONCLUSION AND FUTURE SCOPE

A. Conclusion

In this study Kmeans based Clustering approach is

evaluated for Reusability Prediction of Function based

Software systems. Here, the metric based approach is used for

prediction. Reusability value is expressed in the six linguistic

values. Five Input metrics are used as Input and clusters are

formed using Kmeans algorithm, thereafter 10 fold cross

validation performance of the system is recorded. As deduced

from the results it is clear that Precision and Recall values of

the sixth level reusability class is the maximum, it means the

system is able to detect the “Excellent” components precisely.

Similarly, Precision and Recall values of the first level

reusability class is the second best, it means the system is able

to detect the “Non-Reusable” components with good

precision.

The proposed technique is showing Accuracy value

approximately equal to 63%, so it is satisfactory enough to use

the Kmeans based clustering technique for the prediction of

the function based reusable modules from the existing

reservoir of software components.

B. Future Scope

The proposed approach is applied on the C based software

modules/components and it can further be extended to the

Artificial Intelligence (AI) based software components e.g.

Prolog Language based software components. It can also be

tried to calculate the fault-tolerance of the software

components with help of the proposed metric framework.

Hemani Sharma et al, International Journal of Advanced Research in Computer Science, 2 (2), Mar-Apr, 2011,291-298

© 2010, IJARCS All Rights Reserved 298

The research work can be extended in the following

Reusability Level Class Precision Value

1 0.72

2 0.45

3 0.33

4 0.625

5 0.578

6 0.75

Directions:

[a] Intelligent Component Mining or Extraction algorithms

can be developed

[b] Early prediction of the quality of component based system

[c] Characterization of Software Components for easy

retrieval

VI. REFERENCES

[1] Anderson, J.A (2003) “An Introduction To Neural

Networks”, Prentice Hall of India.

[2] Arnold, R.S. (1990) “Heuristics for Salvaging Reusable

Parts From Ada Code”, SPC Technical Report,

ADA_REUSE_HEURISTICS-90011-N, March 1990.

[3] Arnold, R.S. (1990) “Salvaging Reusable Parts From

Ada Code: A Progress Report”, SPC Technical Report,

SALVAGE_ADA_PARTS_PR-90048-N, September

1990.

[4] Basili, V. R. and Rombach, H. D. (1988) “The TAME

Project: Towards Improvement Oriented Software

Environments”, IEEE Trans. Software Eng., vol. 14, no.

6, June 1988, pp. 758-771.

[5] Basili, V.R. (1989) “Software Development: A Paradigm

for the Future”, Proceedings COMPAC’89, Los Alamitos,

California, IEEE CS Press, 1989, pp. 471-485.

[6] Boetticher, G. and Eichmann, D. (1993) “A Neural

Network Paradigm for Characterizing Reusable Software”,

Proceedings of the Australian Conference on Software

Metrics, Australia, July, 1993, pp. 234-237.

[7] Boetticher, G., Srinivas, K. and Eichmann, D. (1990) “A

Neural Net-Based Approach to the Software Metrics”

Proceedings of the 5th International Conference on

Software Engineering and Knowledge Engineering,

San Francisco, CA, 14-18 June 1990, pp. 271-274.

[8] Caldiera, G. and Basili, V. R. (1991) “Identifying and

Qualifying Reusable Software Components,” IEEE

Computer, February 1991.

[9] Chen, Y. F. Nishimoto, M. Y. and Ramamoorty, C. V.

“The C Information Abstraction System”, IEEE Trans. on

Software Engineering, Vol. 16, No. 3, March 1990.

[10] Dunn, M. F. and Knight, J. C. (1993) “Software reuse

in Industrial setting: A Case Study”, Proc. of the 13th

International Conference on Software Engineering,

Baltimore, MA, 1993. pp. 56-62.

