
Volume 8, No. 5, May – June 2017

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2015-19, IJARCS All Rights Reserved 2160

ISSN No. 0976-5697

Relational Database Normalization under Tabular Approach:
 A Design Methodology

Kunal Kumar
Research Scholar

University Department of Statistics and Computer
Applications

T. M. Bhagalpur University, Bhagalpur-812007, India

 Dr. Sachindra Kumar Azad*
Associate Professor and Head

University Department of Statistics and Computer
Applications

T. M. Bhagalpur University, Bhagalpur-812007, India

Abstract: Relational Database Design and normalization, is a collection of processes that ensure the representing, development, interpreted and
maintenance of enterprise records and data management systems. It also helps to produce effective database management systems. That meets
the requirements of the end users and has high performance. Normalization approach uses to reduce data redundancy, inconsistency and
maintain the atomicity within a database relation. In this paper, A Tabular approach process is proposed to determining key(s) from set a given
set of functional dependencies. The moment, it determine the key(s) of a relation from a set of functional dependency. It shows an automatic
generation of all possible candidate key(s) and super key(s) of a relation. In the proposed method, a table has three columns and one row. This
column and row of the table contains the given set of functional dependency. Once, putting all possible valid set of functional dependency into
the tabular form, then using tabular method approach mechanisms applying to determine key(s) of a relation. Key of a relation is used to help to
reach higher level of relational database design.

Keywords: Normalization, Tabular Approach, Relational Database, Functional Dependencies, Candidate key

I. INTRODUCTION

Relational Database Design has been a most
popular research filed for many years because of its different
applications prospective [1]. Some of its paramount
potential application fields are University management
system, Airlines, Data entry, etc. Normalization is, in
database design the way of organizing data to minimize
redundancy in relation. It usually involves decomposing a
large database into one or more tables and also identifying
relationships between the relations. The objective is to
minimize upgrading problems that could arise after
modification of a relation attribute. The developer of the
relational model also proposed the concepts of
normalization and Normal Forms (NF) [2]. In general,
normalization requires additional relation and some
designers find this first difficult. Violating one of the first
three rules of normalization, make the application
anticipates any problems that may could occur while
designing database, such as redundant data and inconsistent
data dependencies.
 When using the simple definitions of the second
and third normal forms (2NF and 3NF for short), it must be
aware of partial and transitive dependencies on all candidate
key(s) and not just the primary key(s) [3] of the relation.
Database Normalization is the part of the logical database
design. The main goal of normalization is to eliminate
redundancy and potential modify anomalies. Redundancy
means that the group of data is saved, more than once in a
database relation. Update anomaly is a consequence of
redundancy. If a piece of record is stored in more than one
relation, the same record must be updated in more than one
place. Normalization is an approach by which one can
update the relation database schema to reduce the data
redundancy [4], [5]. Each normalization stage adds more
relations or tables into the database. Relational Databases

change time to time as data is inserted and removed. The
collection of data stored in the database table at a particular
moment is called an instance of the database. The overall
design of the relational database is called the database
schema. Schemas are update in frequently way, if at all. The
main concept of relational database schemas and instances
can be understood by analogy to a program written in
database languages [6]. A relational database schema
corresponds to the variable declarations with data type in a
program. Each variable has a particular literal value at a
given instant. The values of the variables in a database
program at a particular point in time correspond to an
instance of a relational database schema [7]. Relational
Database systems have several schemas, partitioned as per
their levels of abstraction. The physical schema describes
the relational database design at the physical level, while the
logical database schema describes the database design at the
logical level.
 A relational database may also have many schemas
at the view level, sometimes called sub schemas that show
different views of the database. Of these, the logical
database schema is by far the most important part, in terms
of its effect on application oriented programs, since designer
construct many applications by using the logical database
schema [8], [9]. The physical database schema is hidden
beneath the logical database schema, and can usually be
changed easily without affecting any application programs
[10]. Application programs are said to be exhibit physical
data independence, if they are not depend on the physical
database schema, and thus need not be rewritten if the
physical database schema changes.

II. FUNCTIONAL DEPENDENCIES

Functional dependency and its family is a relationship that
exists, when one or more attribute(s) uniquely identify
another attribute(s). If R is a relation with attributes A

Kunal Kumar et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2160-2164

© 2015-19, IJARCS All Rights Reserved 2161

and B , a functional dependency relation between the
attributes is represented as BA→ , which indicates Y is
functionally dependent on attribute A . Here A is a
determinant set and B is a dependent attribute [11]. Each
value of attribute A is associated precisely with one
attribute B value. Functional dependency in a database
relation serves as a constraint between two sets of
attribute(s). Defining functional dependency is an important
part of relational database design and contributes to aspect
normalization. A functional dependency is trivial functional
dependency, if B is a subset of A [12]. In a relation with
attribute(s) of students name and Aadhar_Number, students
name is functionally dependent on Aadhar_Number because
the Aadhar_Number is unique for individual students. An
Aadhar_Number identifies the students specifically, but a
student name cannot distinguish the Aadhar_Number
because more than one student could have the same name.
Functional dependency also defines BCNF normal form and
3NF normal form. This preserves dependency between
attribute(s), eliminating the duplicate of data. Functional
dependency is related to a candidate key(s), which uniquely
identifies a row and determines the value of all other
attribute(s) in the relation [13]. Functional dependency is
constraints on well-formed relations and shows formalism
on the structure of relation.

Definition I:
A functional dependency on a relation database schema R is
a constraint BA→ , where A and B are subsets of
attributes of R.

Definition II:
A Functional dependency is a relationship between an
attribute " B " and a determinant (one or more other
attributes) " A " such that for a given value of a determinant
the value of the attribute is uniquely defined.
 A Is a determinant of R
 A Determines B
 B Is functionally dependent on A
 BA→
 BA→ Is trivial if B ⊆ A

Definition III:

A Functional dependency BA→ is satisfied in an instance
r of R if for every pair of tuple(s), t and s: if t and s agree on
all attributes in A then they must agree on all attributes in
B

III. TABULAR MEHTOD

In order to understand the tabular method of determining
key(s).In Tabular method approach has Table, and can be
design using following rules.

a. A three columns and one row table can be
designed. First row of the table is named as left (L),
second row of the table named as middle (M) and
third row of the table is named as right(R).

b. The attribute(s), which is left hand side of the
arrow of Functional dependency, are inserted into
the left column of the table.

c. The attribute(s), which is both side of the arrow of
Functional dependency left as well as right hand
side, are inserted in to the middle column of the
table.

d. The attribute(s), which is right hand side of
Functional dependency the arrow, are inserted in to
the right column of the table.

e. The attribute(s) which inserted into right column of
the table, will never be a part of the any key(s)
attribute i.e. always seems as non-prime attribute.

After applying the above five rules, start finding closure of
left hand column of the table, if we are unable to find key
from left closure then, we take Cartesian of left and middle.
Consider a relation),,,(DCBAR , FD’s = { BCA→ and

DC → } ,Find Key of a Relation.
Table I is the Tabular representation of the dependencies

Table I. Tabular Approach representation of the dependencies

L M R
A C B,D

Now, we know the dependency is inserted into

tabular format. The algorithm says that attribute(s) which
reside(s) right column of the table will never be the part
key(s).Now, we start finding closure of left hand side
attribute(s).
So, the attribute(s) reside at left column is A
Closure set of }{}{ 0 AA =
Closure set of },,{}{ 1 CBAA =

Closure set of },,,{}{ 2 DCBAA =
Closure set of },,,{}{ 3 DCBAA =

Closure set of 32 }{}{ AA =

Hence, Closure of },,,{}{ DCBAA =+
Candidate key(s) of the relation R is A .No need to find out
the closure of middle column attribute(s) i.e. C , because left
hand side attribute A is able to find all the attribute(s) of
the relation. If left hand side attribute not able to find all
attribute(s) of the relation then, we consider the middle
column attribute(s) to determine key, combined with left
hand side attribute(s). So, a prime attribute(s) of the relation
i.e. A is part of the key element. B, C and D is not a part of
key, it is referred to as non-prime attribute(s).

IV. NORMALIZATION METHODOLOGY

It is assumed that the relational database table is in
first normal form. Where the table is free from redundancy
and there is no multi-valued attributes in a table. Relational
Database tools are used for the simulation work.

A. THE SECOND NORMAL FORM
A table is in second normal form or 2NF if it is in

1NF and there is no non-key attribute is partially dependent
on any candidate key(s) of the table. In other words,

Kunal Kumar et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2160-2164

© 2015-19, IJARCS All Rights Reserved 2162

no BA→ , where A a strict subset of a candidate is key(s)
and B is a non-key attribute. Simply, a table is in 2NF iff it
is in 1NF and every non-key attribute of the relation is either
fully dependent on the whole of any candidate key(s), or on
another non-key attribute [14].

Theorem: Let us supposed the table R is in 1NF and
having functional dependency dF .We have the following
results:

a. If key is single attribute then R is automatically in
2NF.

b. If there is partial dependency i.e. not fully
dependent then R is not in 2NF.

Proof.
a. If NULLFd = i.e., there is no partial dependency

on table R that means also that the first if-condition
of the algorithm will not satisfied..

b. If NULLFd ≠ , i.e., the first if-condition of the
algorithm holds at least once. Therefore, R is not in
2NF.

Let, that our relation is in NF1 , and the resulting first
normal form relation is:),,,,(EDCBAR , FD’s =
{ CAB → , DB → and ED → },Table II is the Tabular
representation of the dependencies

Table II. Tabular representation of the dependencies

L M R
A,B D C,E

After putting the FD’s into tabular form, it found that AB is
the key of the relation R and the relation is not in 2NF .In
2NF every non-prime attribute must be dependent on
candidate key(s), but not part of the key. Here, the
dependency DB → shows partial dependency which
shows it is not in 2NF. To form this schema R to in 2NF, It
have to decompose the table into),,(1 CBAR and

),,(2 EDBR . Now, 1R and 2R are in 2NF and the
decomposition is lossless, where functional dependency
preserve holds.

B. THE THIRD NORMAL FORM
A relation is said to be in third normal form if it is

in 2NF and none of its non-prime attributes are transitively
dependent upon any candidate key or non-prime attribute.
An alternative definition is a relation is in 3NF if in every
non-trivial dependency BA→ either A is a super key or B
is a key attribute (i.e., B is a prime attribute) [15]. The
transitive dependencies set on 2NF relations are defined by:

 }{ cd FBAF ∈→=
a. A is not a candidate key, and
b. B Is not a prime attribute.

Theorem: A relation schema R is in third normal form iff
for every key S of R and Every non key-
Attribute A depends directly on S not part of S.

 Let, that above relation is in NF2 , and the
resulting first normal form relation is),,,,(EDCBAR ,
FD’s = { CAB → , DB → and ED → }, Consider the
Table 3, it shows that the AB is the candidate key of the
relation and),,(1 CBAR and),,(2 EDBR are in second
normal form but not in third normal form. The reason which
violet the third normal form is in table),,(2 EDBR the
dependency ED → violets , because D is a non prime
attribute which is not a part of the key determine the
attribute E, is illegal in 3NF[16]. Now, to convert this table
to 3NF it is compulsory to decompose the table

),,(2 EDBR into one more different table 3R . Now,
),(2 DBR and),(3 EDR , it is in 3NF but not in BCNF.

Now,),,(1 CBAR ,),(2 DBR and),(3 EDR are in 3NF

with lossless decomposition and functional dependency
preserve holds.

C. THE BOYCE-CODD NORMAL FORM FORM
One of the more strict normal forms that can obtain is
Boyce–Codd normal form (BCNF) . It eliminates all data
redundancy and data inconsistency that can be derived based
on family functional dependencies, there may be other types
of redundancy remaining in the relation. Relation database
schema R is in BCNF with respect to a set of all possible
functional dependencies F if, for all functional dependencies
in +F of the form BA→ , where RA ⊆ and RB ⊆ , at
least of these holds [17].

a. BA → is a trivial functional dependency i.e.
AB ⊆

b. A is a super key of relational schema R

Let, that our relation is in NF1 , and the resulting first
normal form relation is),,,,,,,,,,(JIHGFEDCBAR ,
FD’s = { CAB → , DB → , EFD → , GHA→ and

IJH → }
Table III is the Tabular representation of the dependencies

Table III. Tabular representation of the dependencies

L M R
A.B D,H C,E,F,G,I,J

After feeding the FD’s into tabular form, it found

that AB is the key of the relation R and the relation is not in
2NF because, DB → and GHA→ shows the partial
dependency (PD). So, to eliminate this PD’s, it is
compulsory to create two different set of tables

),,,,(1 JIHGAR and),,,(2 FEDBR ,),,(3 CBAR .Now,
these three tables are in 2NF but neither in 3NF nor in
BCNF. So, to make these tables to 3NF or BCNF to have to
decompose the table because, the dependency IJH → , and
show that non-prime attribute determines the non prime
attribute. Decompose),,,,(1 JIHGAR
into),,(11 HGAR and),,(12 JIHR and also decompose

),,,(2 FEDBR into),(21 DBR and),,(22 FEDR .Now,

Kunal Kumar et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2160-2164

© 2015-19, IJARCS All Rights Reserved 2163

),,(3 CBAR ,),,(11 HGAR ,),,(12 JIHR ,),(21 DBR .Are
3NF and as well as BCNF.

V. A COMPREHENSIVE ANALYSIS

To express the applicability of the all the above algorithm.
Consider the table given which is un normalized table. This
table is in ONF i.e. un-normalized table. The motto of this
above algorithm is to normalize the given table up to BCNF
level. The table contains four attributes and two functional
dependencies. Let us consider a relation

),_,,(subjectcodesubjectnamerollR and functional
dependencies

}_,{ SubjectcodesubjectnamerollFD →→= .App
lying tabular approach to find out the key of the table R.

Table IV: Tabular representation of the dependencies

L M R

codesubjectroll _, subjectname,

After feeding the FD’s into tabular form, it found that

codesubjectroll _, is the candidate key of the relation R
and the relation is not in 2NF.

Table V: Student table

ROLL NAME SUBJECT_CODE SUBJECT

11 A MCA1001 C
12 B MCA1002 JAVA
13 C MCA1003 DBMS
14 D MCA1004 HTML

The dependencies

Subjectcodesubjectnameroll →→ _, have partial
dependency. So, the relation is not in 2NF. To convert this
table to 2NF it is compulsory to decompose into two
different tables),(1 namerollR
and),_,(2 subjectcodesubjectrollR .

Table VI: R1 is in 2NF

ROll NAME
11 A
12 B

13 C
14 D

 Table VII. R2 is not in 2NF

R2 is not in second normal form because; FD’s

Subjectcodesubject →_ shows the partial dependency

in table R2. Decompose R2 into two different tables
)_,(2 codesubjectrollR and),_(3 subjectcodesubjectR .

After decomposition of table into three different tables, the
table contents satisfy 2NF.

Table VIII. R2 is in 2NF

Table IX. R3 is in 2NF

The table R is divided into three different tables R1, R2 and
R3 are in 2NF. If a table is having only two attributes then,
the table is in BCNF automatically.

Table X. R1 is in BCNF

Table XI. R2 is in 2NF

Table XII. R3 is in BCNF

If a table is in BCNF, it also satisfies the requirement of
3NF.So, it can assume that the above three tables are in 3NF
and the of decomposition is lossless decomposition where
functional dependencies preserve holds.

VI. DISCUSSION AND CONCLUSION
This content of this paper shows a new technique of key
generation. It is based on the tabular approach method.
Earlier it usages the closure based key generation technique.
One best thing about the relational table, it eliminate the
non-prime attribute which is not a part of key in the table

Roll SUBJECT_CODE SUBJECT
11 MCA1001 C
12 MCA1002 JAVA

13 MCA1003 DBMS
14 MCA1004 HTML

Roll SUBJECT_CODE
11 MCA1001
12 MCA1002
13 MCA1003
14 MCA1004

SUBJECT_CODE SUBJECT
MCA1001 C
MCA1002 JAVA
MCA1003 DBMS
MCA1004 HTML

Roll SUBJECT_CODE
11 MCA1001
12 MCA1002
13 MCA1003
14 MCA1004

SUBJECT_CODE SUBJECT
MCA1001 C
MCA1002 JAVA
MCA1003 DBMS
MCA1004 HTML

ROll NAME
11 A

12 B
13 C
14 D

Kunal Kumar et al, International Journal of Advanced Research in Computer Science, 8 (5), May-June 2017,2160-2164

© 2015-19, IJARCS All Rights Reserved 2164

designing phase, where an attribute(s) which are inserted
right hand side of the tabular format will not be the part of
key. Tabular approach to database design is the process of
generating a detailed data model of a database. This data
model selects all the needed logical and physical design
choices and physical storage arguments needed to design in
a data definition language, which can then be used to design
a database. A fully attributed database data model contains
detailed attributes for each record. The effectiveness of the
proposed approach is saving time and reducing mind work.

VII. ACKNOWLEDGEMENT

The authors would like to thank the referees for their
valuable comments and improvements to this paper and
also thankful to University Department of Statistics and
Computer Applications, T. M. Bhagalpur University,
Bhagalpur for providing the basic requirement for the
preparation of the paper.

VIII. REFERENCES

1. Salvador Lucas, Jose Meseguera ,Normal forms and normal
theories in Conditional rewriting , Elsevier Journal of
Logical and Algebraic Methods in Programming, 85,
67–97, 2016.

2. Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang, Online
Energy Estimation of Relational Operations in Database
Systems, IEEE transactions on computers, vol. 64, no. 11,
November 2015

3. Carlos Busso, Soroosh Mariooryad, Angeliki Metallinou
and Shrikanth Narayanan, Iterative Feature Normalization
Scheme for Automatic Emotion Detection from Speech,
IEEE transactions on affective computing, vol. 4, no. 4,
October-December 2013

4. MOUSSA DEMBA,” Algorithm for relational database
Normalization up to 3NF” International Journal of
Database Management Systems (IJDMS) Vol.5, No.3,
June 2013

5. Vimala, S., Khanna Nehemiah, H., Saranya, G. and Kannan,
A.“Analysis and Modeling of Multivalued
Attributes in Entity Relationship Modeling: An Approach
for Improved Database Design, CRL Publishing - Computer
Systems Science and Engineering,Vol. 28, No. 4, 2013

6. Vimala, S., Khanna Nehemiah, H., Saranya, G. and Kannan,
A.“Applying Game Theory to Restructure PL/SQL Code”,
International Journal of Soft Computing, Vol.7, No.6,
pp.264-270, 2012.

7. Ashish Kamra and Elisha Bertino,”Design and
Implementation of an Intrusion Response System for
Relational Databases”, IEEE transactions on knowledge and
data engineering, vol. 23, no. 6, june 2011

8. Tauqeer hussain, shafay shamail, mian m. Awais,”
Eliminating process of normalization in relational database
design”, IEEE transactions on software engineering, vol.
31, no. 2, February 2005

9. S.Chaudhuri, Z. Chen, K. Shim and Yuqing Wu,” Storing
XML (with XSD) in SQL Databases: Interplay of Logical
and Physical Designs”,IEEE transactions on knowledge and
data engineering, vol. 17, no. 12, Dec-2005

10. Keng Siau and Xin Tan,” Cognitive Mapping Techniques
for User– Database Interaction”, IEEE transactions on
professional communication, vol. 49, no. 2, june 2006

11. Levein, R. E. and Maron, M. E. “A Computer System for
Inference Execution and Data Retrieval”, Communication
of ACM, Vol.10, No.11,pp.715-721, 1967.

12. Mens, T. and Tourwe, T. “A Survey of Software
Refactoring”, IEEE Transactions on Software Engineering,
Vol.30, No.2, pp.126-139, 2004.

13. Normann, R. “Minimal Lossless Decompositions and some
Normal Forms between 4NF and PJ/NF”, Information
Systems, Vol.23, No.7, pp.509-516, 1998.

14. Coleman, D.M., Ash, D. B., Lowther and Oman, P.W.

“Using Metrics to Evaluate Software System
Maintainability”, Journal of Computer, Vol.27, No.8, pp.44-
49, 1994.

15. Chen, P. P. “ The Entity-Relationship Model - Toward a
Unified View of Data”, ACM Transactions on Database
Systems, Vol.1, No.1, pp. 9-36, 1976.

16. An, Y., Hu, X. and Song. Y. “Maintaining Mappings
between Conceptual Models and Relational Schemas”,
Journal of Database Management, Vol.21, No.3, pp.36-68,
2010.

17. Jones, T.H. and Song, I.Y. “Binary Equivalents of Ternary
Relationships in E-R Modeling: A Logical Decomposition
Approach,” Journal of Database Management, Vol.11, No.2,
pp.12-19, 2000.

Mr. Kunal Kumar received the M.C.A and B.C.A
degree from the Birla Institute of Technology,
Mesra, Ranchi, India in 2012 and 2008. He is
currently working as a Research Scholar toward the
PhD degree at the University Department of

Statistics and Computer Applications. Tilka Manjhi Bhagalpur
University, Bhagalpur, India. His current research interests areas
include database design and database theory.

Dr. Sachindra Kumar Azad is an Associate
Professor and Head in the University Department of
Statistics and Computer Applications at Tilka
Manjhi Bhagalpur University, Bhagalpur, India.

	Introduction
	FUNCTIONAL DEPENDENCIES
	TABULAR MEHTOD
	NORMALIZATION METHODOLOGY
	THE SECOND NORMAL FORM
	THE THIRD NORMAL FORM
	THE BOYCE-CODD NORMAL FORM FORM

	A COMPREHENSIVE ANALYSIS
	DISCUSSION AND CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

