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1 INTRODUCTION AND PRELIMINARIES their coincidence points. Followed by the latest work of V.B.

Dhagat [4] extended the results for weakly compatible. Here we
Aamri and Moutawakil [1] introduce the concept of A-distance and have considered random uniform space with random uniformity.
E-distance in uniform space. Cho. Et. al. [2] introduced the notion With the help of these A-distance and E-distance we prove
of semi compatible maps in a d- topological space and Jungck & common fixed point theorems for weak commutative mappings
Rhoades [3] termed a pair of self maps to be coincidentally and semi compatible mappings.

commuting or equivalently weak compatible if they commute at

Definition 1. 1. Let (Q, }))be a measurable space with a sigma algebra of subsets of O and M a non-empty subset of a metric space X = (X, d).
Let 2M be the family of all non-empty subset of M and C(M) the family of non-empty closed subsets of M. A mapping G: Q — 2" is called
measurable if, for each open subset U of M,
GIW) eX, where G1(U) ={w € Q:Gw)NU = @}

Definition 1.2. A mapping € : Q - M is called a measurable selector of a measurable mapping G : Q —» 2™ if & is measurable and &(w) €
G(w) foreach w € Q.
Definition 1.3. A mapping T : Q X M — X is said to be a random operator if , for each fixed x € M, T(.,x) : Q — X is measurable.
Definition 1.4. A measurable mapping ¢:Q — M is a random fixed point of random operator T : Q X M - X if é(w) € (§,T(w)) for each
w € Q.

Random Uniform space (X,9(w)) a non-empty set X endowed of random uniformity 9(w), the latter being a special kind of filter on
X x X, all whose elements contain the random diagonal A(w) = {(x(w), x(w))/x(w) € X}, If V(w) € 9(w) and (x(w), y(w)) € V(w), x(w)
and y(w) are said to be V(w)-close and a sequence (x™(w)) in X is a Cauchy sequence for 9(w) if for any V(w) € 9(w), there exists N > 1
such that x™(w) and x™ (w) are V(w)-close for n,m = N. An uniformly 9(w) defines a unique topology T (9(w)) on X x Q for which the
neighborhoods of x(w) € X x Q are the sets V(x(a))) ={y(w) € X x Q/(x(w),y(w)) € V(w)} when V(w) runs over 9(w) for each w. A
uniform space (X x Q,9 (w)) is said to be Hausdorff if and only if the intersection of all the V(w) € 9(w) reduces to the diagonal A(w) of
XxQie, if (x(w),y(w)) e€eV(w) for all V(w) € 9(w) for each w implies x(w) = y(w). This guarantees the uniqueness of limits of
sequences. V(w) € 9(w) is said to be symmetrical if V(w) = V"1(w) = {(y(w), x(w))/(x(w), y(w)) € W(w) then x(w) and y(w) are both
W (w) and V(w)-close, then for our purpose, we assume that each V(w) € 9(w) is symmetrical. When topological concepts are mentioned in
the context of a uniform space (X, (w), 9(w)), they always refer to the topological space (X, (w), T(19 (w))).
Definition 1.5. Let (X x ,9(w)) be a random uniform space. A function p,,: (X X Q) X (X x Q) —» R* is said to be an A-distance if for any
V(w) € 9(w) there exists §,, > 0 such that if p(z(w), x(w) < §,, and p(z(w), y(w) < &, for some z(w) € X x Q, then
(x(w),y(w)) € V(w).
Definition 1.6. Let (X x Q,9(w)) be a random uniform space. A function
Po: (X X Q) X (X X Q) > R* is said to be an E — distance if
(p1) p,, i1san A — distance,
(02) Po (¥(@),y(@)) < poy (x(@), 2(@)) + Py, (2(), y(@)),V x(0), y(w), 2(w) € X x Q
Definition 1.7. Let Let (X x Q,9(w)) be random uniform space and p,, be A — distance on X x Q.
(I) X is S* complete if for every p,,-Cauchy sequence {x, (w)}, there exists x(w) in X X Q such that

1im,, o0 P (% (@)x(w)) = 0.
(1) X is p,-Cauchy complete if for every p,,-Cauchy sequence {x, (w)}, there exists x(w) in X such that
Ji_r,gx" (w) = x(w) with respect to T (9 (w)).
(1) f:X - X isp — continuous if
1im,, L0 Py (X, ) = 0 = limy, L6 Do (f (xn (a)),f(x(w))) =0.
(V) f:X - X is T(9(w))-continuous if lim,, e, x, (@) = x(w) with respectto T (I(w)) implies lim,, o, £ (x, (@) = f (x(w)).with respect
to T(z? (a))).
(V) X x Qs said to be p-bounded if
8p, (X x Q) = supifp,, (x(w), y(w))/x(w), y(w) € X X Q} < oo.
Definition 1.8: Let (X x Q,9(w)) be random uniform space and p,, be an E — distance on X. Two self maps S and T on are said to be semi
compatible if
Jl_}rg Po (STxn (w),Tx(a))) =0,

Whenever
lim,, Lo, Sx, (w) = lim,, Lo, T, (0) = x(w) .
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Definition 1.9: Let (X X Q,9(w)) be random uniform space and p,, be an E — distance on X. Two self maps S and T on are said to be weak
commutative if
r}ijgo Po (STx(w), TSx(w)) = 0,
Whenever
Jm Sxp(w) = r}l_l;glo Tx,(w) = x(w).

Lemma 1.1: Let (X x Q,9(w)) be a random Hausdorff uniform space and p be an A — distance on X. Let {x,(w)}, {y,(w)} be arbitrary
sequence in X x Q and {a(w),} and {#(w), } be sequence in R™ and converging to 0.
Then for x(w), y(w), z(w) € X x Q, the following holds:
(@) 1f p, (x(@)y, (@) < a(w), and p, (x(w),, z(w)) < B(w), for all n € N, then y(w) = z(w), In particular, if p, (x(w),y(w)) =0
and p,, (x(w),z(w)) = 0,then y(w) = z(w).
(b) Ifp, (x(w)y,y(W)y) < al(w), and p,, (x, (w), zv) < B(w), forall n € N, then {y(w), } converges to z(w).
©) If pu(x(W)n, x(w)y) < a(w), forall m > n, then { x(w),} is a Cauchy sequence in (X x Q,9(w)).
We also involve a non-decreasing function ¥ on R* such that
Y)<t fort>0and ¥*(t) = 0asn — .
2. Main Results
Theorem 2. 1: Let (X x Q,9(w)) be a random Hausdorff space and p,, be an E — distance on p — cauchy complete space X. Let 4,B,S
and T be self mapping of X x Q satisfying that
(21.1) AX x Q) S T(X x Q) and B(X x Q) S S(X x Q);
(2.1.2) The pair (4, 5) is semi compatible and (B, T) is weak commutative;
(2.1.3) Oneof 4, B, S and T iscontinuous;
(21.4) pu(A(x(@)), B(y(@))) < W[maxip, (S(x(@)), T(y())),
Po (S(x(0)), A(x(@))) + po (T(¥(®)), A(x(w))),

Po (T((@)), BH(@))) + P (T(1(@)), A(x(@)) ), P (T(y(@)), A((@)))}].
Then 4, B, S and T have unique common fixed point.
Proof: Let x, € X be any point, As A(X x Q) € T(X x Q) and B(X x Q) € S(X x Q), there exists x; (w) and x,(w) in X X Q such that,
A(x(w)o = T(x(w)1) and B(x(w)1) = S(x(w)7).
In general we can construct sequence { y(w),} in X x Q such that forn = 0,1,2, ....
Y(@)2ns1 = Alx(@)2n) = T(x(0)2n41) aNd y(@)2n12 = B(x(@)zn41 = S(x(@)2n42),
Now by (2.1.4) p(¥(@)2n11, Y (@) 2n+2) = P(A(x (@) 2n) B (x(@)2n41))
< Wmaxifp,, (S(x(w)zn), T (x(@)2n+1)),
Pw (S(x(w)Zn): A(x (w)Zn)) + Pw (T(x(w)2n+1), A(x(w)Zn))r
Pw (T(x(w)2n+1): B(x(w)2n+1)) + Pw (T(x(w)2n+1), A(x(w)Zn))r
Pw (T(x(w)2n+1):A(x(w)Zn))}]
= L[J[maxlfpw (y(w)Zn' (w)2n+1)' Pw (y(w)Zn: (w)2n+1) + Pw (y(w)2n+1' (w)2n+1)l
Pw (y(w)2n+1: (w)2n+2) + Pw (y(w)2n+1v y(w)2n+1):
Pw (y(w)2n+1: (w)2n+1)}]
= lp[max{pw (y(w)Zn: (w)2n+1): Pw (y(w)Zn: (w)2n+1)v Pw (y(w)2n+1: ((‘))Zn+2)v O}]

Po V(@)an+1, (Wan42) < P[pw (@)2n, (@)2n+1)]-
Similarly

Pw (y(w)n: (w)n+1) < Lp[pa) (y(w)n—l' (w)n+1)]'
= P (¥ (@), (@y1p) < P[5, (X)]
Where 6, (X) = supifp,, (x(w), y(w))/x(w),y(w) € X x Q}.
Then by ¥, and lemma 1.1(c) we have {y(w),} is Cauchy sequence in X x Q and X x Q is S * complete therefore lim,, ¢, p, (Y(@)y, z(w)) =
0. By lemma 1.1(%) there exists a sequences @wz and w2 which converging to 0.
There the subsequences A(x(w)2,) = T(x(0)2541), B(x(w)2n41) and S(x(w),n42) also converge to z(w).
Case I. Let S is continuous then SA(x(w),,) = Sz(w) and SS(x(w),,)) = Sz(w). By the semi compatibility of the pair (4,S) gives
AS(x(w)2,) = Sz(w) asn — oo,
By (6.3.1.4)
Po (AS(x(@)20), B(x(@)2541)) < P [maxifp,, (SS(x(w)2n), T(x(w)2n+1)),
Pw (Ss(x(w)Zn)' AS(X(CU)Zn)) + Pw (T(x(w)2n+1)' AS(x(w)Zn))l
Po (T (x(@)2n+1), Bt(@)2n+1) + Po (T (x (@) 20 41), AS(x(w)2,)),
Po (T(x(w)2n+1):As(x(w)Zn))}]
Letting n — oo, we get
Po (S(z(w)), z(w)) < ¥[max {S(z(a))),z(w)),
Pu (2(), 2(0)) + py (2(0),5(2())),
Po (2(@), S(z(@))}] < pu (S(2(0)), 2(w)).
= p, (S(z(w)),z(w)) =0.
Again, put x(w) = z(w) and y(w) = x(w)2,41 In (2.1.4)
Po (A(Z((‘)))v B(x(w)2n+1)) < lp[maX'{pw (S(z(w)), T(x(w)2n+1)):
Pu (5(2(0)), A(2(@) ) + P (TCe(@)2n 11, A(2(@))),
P (TG (@)2n41), BE(@)2041)) + Pur (TG (@241, A(2()) ),

Po (TG(@)2n 1), A(2(@)) )]
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Pw (A(z(®)), z(w)) < Y[maxifp,, (S(z(w)),z(w)) , P (S(z(w)),A(z(w)))
+p, (2(0), A(2())),
P (2(0),2(0)) + p, (2(0), A(2(@)) ), po (2(w), A(2(@) )]

Po (A(z(a))),z(w)) < WY[maxi{p, (Z(w),z((u)),pw (S(z(m)),z(w))
+10 (2(@), A(2(w))),
Pu (2(@), 2(6)), Py (2(0), A(2()) )}]
< po(A(z(w)), z(w))
= Py (A(z((u)),z(a))) =0.
Now p,, (S(z(a)),z(a)))) = 0andp, (A(z(a)),z(a)))) =0.
Hence Sz(w) = Az(w).
Do (z(w), z(w)) = Dy (z(w),AZ(w)) +p, (Az(a)), z(a))).
= p, (z(w),z(w)) = 0andp, (S (z(z(w)),z(a))) =0.
Hence z(w) = Sz(w) = Az(w).
Case 1. Since A(X x Q) € T(X x Q), therefore there exists u(w) in X x Q such that

Az(w) = Tu(w).
Put x(w) = x(w),, and x(w) = u(w) in (2.1.4)
Pu (AG(@)20), B(w(@))) < Wmaxifi,, (SCe(@)z), T(u(@))),
P (SC(@)20), AG(@)20)) + oy (T(1(@)), AC(@)2) ),
po (T(u()), B(u(®))) + Py (T(w(@)), Ax(@)20)),
Po (T(w(@)), AG(@)2) )]
pa) (Z((l)), B(u(w))) S LIJ[pw (Z((U), Z((U)), pw (Z((U), Z((U)) + pw (Z((l)), Z((l))),
Po (2(@), B(u(®))) + pu (2(0), 2(w)),
Po (2(0), z(w))}]
< po (z(0), B(u(w)))
= p, (z(w),B(u(w))) = 0.and so A(z(w)),z(w)) =0
iep (T(u(a))),z(a))) =0 = Tu(w) = Bu(w).
BTu(w) = TBu(w) = Bz(w) = Tz(w).
Case I11. Put x(w) = z(w) and y(w) = z(w). In (2.1.4), we get
Pu (A(2(@)), B(2())) < P[maxifh,, (S (2()), T(2())), pu (S (2()), A(z(0))),
Po (T (2(@)), B(2(0)) ), pu (T (2(0)), A(2(e)) ) }]
Po (A(z(a))),B(z((u))) < WY[max{p, (A(Z((u)),T(z(w))),pw (z(a)),z(w)),
Pu (T (2(@)), B(2() ), pu (T(2()), 2(@))}]
Po (z(@), B(z(w))) < W[maxfp, (z(w), B(z(w))), po, (2(w), 2(w))
+10 (B(2(0)), 2()) , po (T (2(@)), B(2(6)) ) + po (B(2(6)), 2(0) ) p (B(2(@)), 2(w) ]
< (z(w), B(z(w)))
= p, (z(w),B(z(a)))) = 0 and already p,, (z(w),z(w)) =0.
= Bz(w) = z(w). Hence Az(w) = Bz(w) = Sz(w) = Tz(w).
Uniqueness: Let z; (w) and z; (w) are two common fixed point of 4,5, B and T in X x Q. Then Az;(w) = Bz (w) = Sz;(w) = Tz;(w) and
Az (w) = Bzy(w) = Sz1(w) = Tz (w).
Now by (2.1.4)
Po (A(z(0)1), B(z(0)2)) < W[maxifp,, (S(z(0)1), T(z(w)7)),
Po (S(z(0)1), Az(w)1)) + pu (S(z(w)2), Alz(w)1)),
Po (T(2(w)2), B(z(w)3)) + pu (S (2(w)7), Az(w)1)),
Po (T(2(0)7), B(z(w)1))}]
Po (2(w)1,2z(w);) < P[maxifp, (z(w)1, z(w),),
Po (z(w)1, 2(w)1) + Py (2(w)2, 2(w)1),
Po (z(@)2, 2(w)2) + Py, (2(w)2, 2(w)1), P, (2(W)2, 2(w)1)}]
< po(z(w)1,z(w)1)
Po(z(w)1,z(w)1) = 0.
Again  p, (z(w)1,z(w)1) < Py (2(0)1, 2(w)2) + Py, (2(w)2, 2(w)1)
= p, (z(w)1, z(w)1) = 0.
Hence z(w); = z(w),.
Theorem 2.2 : Let Let (X x Q,9(w)) be a random Hausdorff uniform space and p,, be an E — distance on p,,-cauchy complete space X. Let
A, B, S and T be self mapping of X x Q satisfying that
H AXXxQ)STXExQ)and B(X x Q) € S(X x Q);
(II) The pair (4, S) is semi compatible and (B, T) is weak commutative;
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(I1I) One of A, B, S and T iscontinuous;

V) po(A(x(@)), B(y(@))) < ¥[maxip,, (S(x(@)), T(y(®))),
Do (S(x(@), A(x(@)) ) + P T(y(@)), A(x(@))),
Po (T((@)), B(r(®))) + p (T(r()), A(x(@))),
1/2(p, (S(x(@)), B((@))) + by (T(r(@)), A(x(@)) )}

Then 4, B, S and T have unique common fixed point.
Proof: Let x(w)o € X X Q be any point. As A(X x Q) € T(X x Q) and B(X x Q) € S(X x ), There exists x; and x(w), in X x Q such that
A(x(w)) = T(x(w); and B(x(w); = S(x(w)2).
In general we can construct sequence {y(w),} in X x Q such that forn = 0,1,2, ... ...
Y@ty = Alx(@)2) = T(x(@)2n41) Ad Y (@242 = B(x(@)2n11) = S(x(@)2n12),
Now by (2.1.4)
P (@)ant1, Y(@)2n42) = PAC(@)2,) B(x ()2 41))
< W[maxfp, (S(x(0)2n), T(x(@)zn+1)),
Pw (S(x(w)Zn)vA(x(w)Zn)) + Pw (T(x(w)2n+1): A(x(w)Zn)):
Po (T(x(w)2n+1): B(x(w)2n+1)) + Po (T(X(w)2n+1), A(x(w)Zn))v
1/2{py, (S(x(@)20), Bt (@) 21 41)) + Py (T (@) 20011), ACx (@) 2) ) 1}
= Lp[max{pw (y(w)an y(w)2n+1) 1Pow (y(w)Zn' y(w)2n+1) + Pw (y(w)2n+1' y(w)2n+1):
Pw (y(w)2n+1: y(w)2n+2) + Pw (}’(w)zn+1; y(w)2n+1):
1/2{p, (@) 20, Y(@)2n+2) + P V(@) 2041, Y (@) 20 41)3}]
Since p,, be an E — distance therefore by p, of def. 1.2, we have
Po V(@) 20, Y (@) 2n42) < Doy (@) 20, Y (@) 20 41) + P V(@) 2n 41, Y(@) 25 42)-
Hence p,, (y(@)2n+1, Y (@) 2n42) = Do (A(x(@0)20) By (@) 20 41))
< W[maxifp,, (¥ (@) 2n, Y(@)2041): P (@) 20, Y(@)2n11) + P V(@) 2541, Y (@) 2 41),
Pw (y(w)2n+1: y(w)2n+2) + Pw (}’(w)zn+1; y(w)2n+1):
1/2{po, (@) zn, ¥ (@)2n41) + P (@) 2n41, Y(@)2n42) + Do V(@) 241, Y (@) 204103
Do (@) 2041, Y(@)2n42) < P[P, (@) 20, ¥ (@) 41)].
Similarly Pw (y(w)n' y(w)n+1) < L["[Pw (y(w)n—li y(w)n+1)]-
= Po (Y(@)n, Y( @ 4p) < P [8pe, (X)]
Where §,,,, (X) = supifp(x(w), y(w))/x(w), y(w) € X X Q}.
Then by ¥, and lemma 1.1(c) we have {y(w),} is Cauchy sequence in X.
Remaining proof is same as in theorem 2.1.
Theorem 2.3: Let (X x Q,9(w)) be a random Hausdorff uniform space and p be an E — distance on p — cauchy complete X. Let A", B",S*
and T* are sequences defined on X such that
(D ATXXxQ ST X xQ)and B"(X x Q) € S5(X x Q);
(II) The pair (A", S*) is semi compatible and (B", T*) is weak commutative;
(111) oneof A", B",SS and TS is continuous;

V) Py (A7 (x(@)), B (y(@))) < W[maxilp, (5°(x()), T°(y())),
Pw (Ss(x(w)),Ar (x(w))) +p, (Ts(y(w)),AT (x(w))),

P (T2 (@), B" (y(@)) ) + P (T° (¥(@)), A" (x(@))),
1/2{py (5°G0, B”(00) + p (T (@), A7 (x(@)) )}

Where r and s are positive integers. Then A", B", S and TS have unique common fixed point.
Proof: Same as theorem 2.2.
Examples
Examples 1: Let X X Q = [w, 10(w)] random uniform space and d is usual metric on X. Define B,T: X X Q - X X Q by
w if w<x(w)<3(W)
Bx(w) ={w + x(w)

2 if x(w)=3w)
and
x(w)T=w if w<x(w)<2(w)
Tx(w) = 2x(w) + @ o) > 200)
— >

Also consider the sequence x, (w) = 2(w) + (1/n).

Clearly, T and S weak commutative

= BT2(w) = TB2(w) and T2(w) = S2(w) = (w). Similarly, we define 4,S: X x Q —» X xQ by
(w) if o< x(w)<4(w) x(w) if 1< x(w) <2

Ax(w) = {—2(”’);"(“’) i x(w) > 4(w) 45¥@) = {—"(‘“)6*(‘“) if x(w)=2

Clearly, the pair (4, S) is semi compatible. We observe that 4, B, S and T satisfying the conditions of theorem 2.1 and hence (w) is the fixed
point.
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