
Volume 8, No. 5, May – June 2017 

International Journal of Advanced Research in Computer Science 

RESEARCH PAPER 

Available Online at www.ijarcs.info 

© 2015-19, IJARCS All Rights Reserved                    2155 

ISSN No. 0976-5697 

 
An efficient authentication protocol using zero knowledge property and pairing on 

elliptic curves 
 

Manoj Kumar 
Department of Mathematics and Statistics,  

Gurukul Kangri Vishwavidyalaya,  
Haridwar (Uttrakhand) 249404, India 

 
Abstract: The systematic introduction to zero knowledge proof protocol has important theoretical guidance and practical significance on 
attracting more scholars involved in research as well as expanding application fields. Zero-knowledge proofs were first conceived in 1985 by 
Shafi Golwasser, Silvio Micalli and Charles Rackoff in a draft of the knowledge complexity of interactive proof systems. The goal of the present 
paper is to introduce a new identity based scheme which is a combination of zero-knowledge interactive proof and weil pairing on elliptic 
curves. The concept of weil pairing was first introduced by Andre Weil in 1940. It plays an important role in the theoretical study of the 
arithmetic of elliptic curves and Abelian varieties. It has also recently become extremely useful in cryptologic constructions related to these 
objects 
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I. INTRODUCTION 
Efficient and secure public-key cryptosystems are essential 
in today’s age of rapidly growing Internet communications. 
Elliptic curve scalar multiplication in particular, which 
refers to the operation of multiplying a large integer by a 
point on an elliptic curve, is crucial for both data encryption 
technology as well as testing the security of cryptographic 
systems. An identification protocol (also known as 
authentication scheme) is an interactive protocol between a 
prover and a verifier by which a prover may prove his/her 
identity to a verifier without revealing essential knowledge. 
An identification scheme enables a prover holding a secret 
key to identify itself to a verifier holding the corresponding 
public key. The primary objectives of an identification 
protocol are completeness, in the case of honest parties the 
prover is successfully able to authenticate itself to the 
verifier, and soundness- a dishonest prover has a negligible 
probability of convincing a verifier. Identity based protocol 
is a new development of public key cryptography. 
Nowadays identity based cryptography has become a very 
active field of research. The concept of identity based 
protocol was first proposed by Shamir [19]. Identity based 
schemes have been extensively studied for last three decades 
and a lot of literature exist on the topic [2, 3, 4, 5, 6, 10, 13, 
14, 18, 19, 20].  
Recent years have brought a host of identification schemes 
that make use of bilinear pairings [17] on elliptic curves. In 
the world of elliptic curve cryptography [1, 8, 11], the 
pairing was initially considered as negative property. This is 

because it reduces the discrete logarithm problem on some 
elliptic curves (e.g. super singular curves) to the discrete 
logarithm problem in a finite field, thus diminishing the 
strength and practicability of super singular curves in 
cryptography. Until a tripartite key agreement protocol 
proposed by Joux in ANTS 2000 [9], the pairing for the first 
time became beneficial and favorable to cryptographic 
research and applications. Later Boneh and Franklin [2] 
proposed an identity based encryption scheme based on the 
modified weil-pairing and gave thorough analysis about its 
properties, security and performance. In the present paper 
we proposed a new zero knowledge identification scheme 
based on weil pairing on an elliptic curve, and prove its 
security given certain computational assumptions. The 
whole paper is organized into six sections. Section first is 
introductory in nature. Section second consists of basic 
definitions and notations used in the paper. Section third 
presents the basic identification scheme which proposed. 
Section fourth analyzes the security facts of the scheme. In 
section five we compare the efficiency of our scheme with 
Massoud et al [14] scheme. Finally the last section ends with 
the conclusion and future work. 

 
II.NOTATIONS AND BASIC DEFINITIONS 

 
A. Zero-knowledge proofs: Zero-knowledge proofs were 
invented by Goldwasser, Micali and Rackoff in 1982[7]. 
Zero knowledge protocols are instances of an interactive 
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proof system, where claimant and verifier exchange 
messages (typically depending on random events). A zero 
knowledge protocol must satisfy the following properties 
[4]:i). Completeness: If the statement is true, the verifier 
will be convinced of this fact by an honest prover. 
ii). Soundness: If the statement is false, no cheating prover 
can convince the verifier that it is true. 
iii). Zero-knowledge: If the statement is true, no cheating 
verifier learns anything than this fact. 
 
B. Elliptic Curve Cryptography: The use of elliptic curve 
cryptography was initially suggested by  Koblitz [12] and 
Miller [16]. For 1≥n  and a prime p  let qF be a finite 

field with npq = elements. An elliptic curve E over 

qF can be given by the Weierstrass equation of the form 

64
2

2
3

31
2 axaxaxyaxyay +++=++ , qi Fa ∈ , 

6...,,2,1=i  together with the condition that curve has no 
singular points. 

If  3,2≠q then an easier representation of elliptic 

curve E  is given by 

baxxy ++= 32
  (1) 

where qFaqa ∈∀= 0 and the discriminant 

)(mod0274 23 qba ≠+=∆ . 

Thus an elliptic curve E  is defined as the set of 
points ),( yx satisfying the equation (1) and including a 

point O  called point at infinity. 
The following properties hold on an elliptic curve 

E : 
i). If  ),( yxP is a point on an elliptic curve E then inverse 

(reciprocal or opposite) point of P is ),( yxP −− .  

ii). IF ),( 11 yxP and ),( 22 yxQ are two different points on 

the curve E , then their sum ),( 33 yxR is given by  

21
2

3 xxx −−= λ  

 and   1313 )( yxxy −−= λ   , 

where )/()( 2121 xxyy −−=λ . 

iii). If QP = then PyxR 2),( 33 =  is given by 

1
2

3 2xx −= λ , 1313 )( yxxy −−= λ  where 

1
2
1 2/)3( yax +=λ . 

 
C. Torsion points of an elliptic curve E : As we know that 
every point on an elliptic curve E  is one of two types (i) a 
point of finite order i.e. there exists a positive integer n  
such that OnP = (ii) a point of infinite order i.e. there exist 
no such n . The points of first type are known as torsion 

points. Thus the set of torsion points P on an elliptic curve 
E  denoted by ][nE  is defined as 

}:{][ OnPEPnE =∈= . 

It can be easily verified that ][nE is a finite subgroup of 

E i.e. ][)( 21 nEPP ∈− for all ][, 21 nEPP ∈ .  
 
D.Weil Pairing[15]: Let n  belongs to the set of positive 

integers N  and nG be a multiplicative group of nth roots of 

unity. Then weil pairing on an elliptic curve E over the 
field qF  , is family of maps 

                       
nn GnEnEw →× ][][:  

Having the following properties: 
i)Bilinearity: If ][,, nERQP ∈ then  

),().,(),( RQwRPwRQPw nnn =+
 and  

),().,(),( RPwQPwRQPw nnn =+ . 
ii) Alternating: If ][nEP∈ then 1),( =PPwn . 

Consequently using bilinearity we get 
1)],([),( −= QPwPQw nn  for all ][, nEQP ∈  

which is known as  skew-symmetry or anti-symmetry. 
iii) Non-degeneracy: If ][nEP∈ with OP ≠  then there 

exists ][nEQ∈ such that 1),( ≠QPwn . 

iv)Compatibility: If ][nkEP∈  and ][nEQ∈  

then ),(),( QkPwQPw nnk = . 

v) Galoic Invariance: If ][, nEQP ∈ and 

)/( qq FFGalk ∈
 

then k
n

kk
n QPwQPw )],([),( = . 

Besides the above definitions we will also use the following 
notations: 

• TEC-MUL:Time complexity for execution of an 
elliptic curve multiplication. 

• TEX: Time complexity for execution of an 
exponentiation. 

• TMUL: Time complexity for execution of a modular 
multiplication. 

• TSM: Time complexity for execution of a scalar 
multiplication. 

• TGw: Time complexity for execution of a bilinear 
pairing. 
 

III. OUR SCHEME 
The identification schemes based on classical cryptography 
use public key cryptosystems for establishing the common 
key. Some of them have been proven to be secure but they 
need high amount of resources and they require large keys 
for encryption / decryption. In this section we propose a 
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secure zero knowledge identification protocol based on 
torsion points of an elliptic curve. Applying this technique 
the memory and the power consumption are lower for the 
proposed protocol. Another advantage is that this kind of 
protocols are secure enough even if a small key size is used 
for encryption / decryption. The proposed protocol is based 
on expressing torsion points of an elliptic curve as the linear 
combinations of basis points.  
1). Initial Setup: To implement the proposed protocol we 
have to make some assumptions first as: 
i). To select field size q  ,  we choose a prime number 

3>p  such that pq =  if p  is an odd prime otherwise 
kq 2=  where 2≥k  . 

It is obvious that 3>q . 

ii) Choose two parameters a  and b in qF to   define 

the Weierstrass equation of an elliptic curve 
E over qF  as 

))(mod( 32 qbaxxy ++=      
iii) Select a very large prime n  and two base points 

P and Q  in ][nE .  

iv) Define a multiplicative group nG  of nth roots of 

unity then a weil pairing is given by   

nn GnEnEw →× ][][: . 

v) Choose a security parameter s  such that ns <2 . 
2). Protocol Description: The different phases of proposed 
protocol are described below 
i) Commitment: Prover selects two random numbers a  and 
b between 1 and )1( −n , calculates bQaPR += and 

sends R  to the verifier. 
ii) Challenge: Verifier selects a random number r from the 

set }2...,,2,1{ s and sends it to the prover. 

iii) Response: Prover calculates bray −= and sends it to 
the verifier. 
iv) Verification: Verifier accepts prover’s identity if and 

only if r
nnn QRwPRwyQPw )],().[,(),( = . 

3) Verification of zero knowledge properties: The 
correctness of our scheme can be shown by proving the 
following zero knowledge properties namely completeness 
and soundness properties:  
i) Completeness: We have  

r
nn QRwPRw )],().[,(  

      r
nn QbQaPwPbQaPw )],().[,( ++=  

      ),().,( PbQwPaPw nn=   
                r

n
r

n QbQwQaPw )],(.[)],([×  
                                   (using bilinearity property) 
    r

nn QaPwPbQw )],().[,(= (using alternating,    

                    compatibility and Galoic invar. property) 

   ar
n

b
n QPwPQw )],(.[)],([= (using compatibility   

                                   and Galoic invariance property) 

   ar
n

b
n QPwQPw )],(.[)],([ −=    

       (using antisymmetric property) 
   bar

n QPw −= )],([  

  y
n QPw )],([=  

  )],([ yQPwn=  

Thus completeness property holds in our proposed scheme. 
ii) Soundness: By completeness property, for two 
integers 1y and 2y   , we have  

11 )],().[,()],([ r
nn

y
n QRwPRwQPw =  

and  22 )],().[,()],([ r
nn

y
n QRwPRwQPw =  

Dividing above relations, we get 
2121 )],([)],([ rr

n
yy

n QRwQPw −− =                                           

                              21)],([ rr
n QbQaPw −+=  

                 )( 21)],([ rra
n QPw −=  

(using bilinearity, alternating, compatibiltyand Galoic 
Invariance property) 
which implies that ))(mod( 2121 nrrayy −=− . 

If )( 21 rr − and n  are relatively prime then private key a  
can be computed as  

)(mod)).(( 1
2121 nrryya −−−=  

If )( 21 rr − and n  are not relatively prime then 

knrr =− ),gcd( 21 i.e. 1,gcd 21 =





 −

k
n

k
rr

. 

 
IV. SECURITY OF THE SCHEME 

In this section we shall prove the security of our proposed 
scheme. The security of our scheme is based on representing 
torsion point of an elliptic curve into linear combination of 
basis points. This is more complicated than solving elliptic 
curve discrete logarithm problem (ECDLP) and hence our 
protocol provides a higher level of security. We shall 
explain the security facts in three steps. First we shall show 
that if we are able to represent a point R on an elliptic curve 
E as nQmPR += where P and Q  are basis points of 

E  and qFnm ∈, , then we can easily solve ECDLP. This is 

a one way implication result and its converse is not true. As 
we know that an ECDLP is said to be solvable for R on an 
elliptic curve E  , whenever S  is a multiple of R , we can 
always find a positive integer k such that kRS = . If S  is 
any  point on E then we can write S as a linear 

combination of basis points P and Q i.e. QnPmS 11 += . 
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Since R is on E therefore we can write QnPmR 22 += . 

But P and Q are independent and kRS = therefore we get  

)mod(21 orderPkmm =  
and  )mod(21 orderQknn =  

These two relations together with help us to find 
k modulo the order of R . Conversely suppose we are able 
to solve ECDLP. Solving our protocol means that for given 
basis points P , Q and a torsion point R on E , we are able 
to find two positive integers m  and n  such that 

nQmPR += . Since P and Q are independent therefore 

we cannot represent R as a scalar multiple P of as well as 
scalar multiple of Q .This implies that R  cannot be 

represented as a linear combination of P and Q i.e. we are 

unable to find m  and n  such that nQmPR += . This 
proves the correctness of the above result. Second fact 
related to the security of our scheme is private key for 
prover could be revealed by the verifier if a  is constant in 
the commitment phase. To find the prover’s private key 
verifier could calculate the difference of integers 1y and 2y  

i.e.  abraabrayy =−+−=− )(21  .This implies that 
zero knowledge property of our scheme will be vanished in 
obtaining prover’s private key by the verifier. The third fact 
about the security of our scheme is that even cheater guesses 
the accurate value of r  in challenge phase, he/she cannot 
introduce himself/herself as prover to the verifier. Suppose 
cheater could guess the accurate value of r  to impersonate 
prover, then he/she should compute the value of y  from  

YQRwPRwyQPwX r
nnn

y === )],().[,(),(  , 

where YX y =  is called discrete logarithm problem 
(DLP). Thus our proposed protocol provides higher level of 
security. 

V. COMPARISION 
Most of the identification schemes have been proposed in 
which security are based on intractability of factoring or 
DLP. In this section we compare the efficiency of our 
protocol with Massoud [14] identification scheme whose 
security was based on solving ECDLP. The following table 
(5.1) comprises the efficiency of our scheme with Massoud 
et al scheme. 
 
 
 
 
 
 
 
 
 
 
 

(Table 5.1) 
Stages Our Scheme 

 
Massoud et 
al Scheme 

Key 
generation 

0 TEC-MUL 1 TEC-MUL 

Commitment 
 

1 TSM 1 TEC-MUL 

Response 
 

1 TMUL 1 TMUL 

Verification 
 
 

1 TEX 
+  1TEC-MUL 
+  3TGw 

1 TEX 
+  1TEC-MUL 
+  3TGw 

          
It is obvious from the above table that the security 

of our scheme is improved in order to propose a more secure 
and efficient scheme. As we have discussed earlier that the 
security of proposed protocol is based on representing 
torsion points on an elliptic curve as linear combinations of 
basis points. Since it is not easy to represent a torsion point 
as a linear combination of basis points of an elliptic curve, 
therefore to solve our scheme is more complicated than 
solving ECDLP. Further as clear from the table, our scheme 
is more efficient as it requires minimal operations in 
encryption/decryption algorithms. 

 
VI. CONCLUSION AND FUTURE WORK 

In the present paper we presented a relatively more secure 
and efficient protocol which is based on expressing torsion 
point on an elliptic curve as a linear combination of basis 
points. The protocol has low complexity because 
identification is made through zero knowledge property. 
Using the concept of weil pairing on elliptic curve it 
provides a methodology for obtaining high speed 
implementation of authentication protocol as it requires 
minimal operations in encryption/decryption algorithms. We 
believe that weil pairing based cryptography can still bring 
efficiency to many well known applications and we intend 
our future work to be driven by this idea. 
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